Show simple item record

dc.contributor.authorJO Bonyo, JO Agure
dc.date.accessioned2020-08-19T11:19:23Z
dc.date.available2020-08-19T11:19:23Z
dc.date.issued2011
dc.identifier.urihttps://repository.maseno.ac.ke/handle/123456789/2193
dc.description.abstractLet H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For A, B ∈ B(H), we define inner derivations implemented by A,B respectively on B(H) by ΔA(X) = AX−XA, ΔB(X) = BX−XB and a generalized derivation by ΔA,B(X) = AX − XB, ∀X ∈ B(H). We establish the relationship between the norms of ΔA, ΔB and ΔA,B on B(H), specifically, when the operators A, B are S - universal. Mathematics Subject Classification: Primary 47B47; Secondary 47A12, 47A30en_US
dc.publisherInternational Journal of Mathematical Analysisen_US
dc.subjectGeneralized derivation, inner derivation, norms, normalized maximal numerical range, S - universal operatorsen_US
dc.titleNorms of Derivations Implemented by S-Universal Operatorsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record