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ABSTRACT

The study of automorphisms of algebraic structures has contributed immensely to
many important findings in mathematics. For example, Galois characterized the general
degree five single variable polynomials f over Q, by showing that the roots of such poly-
nomials cannot be expressed in terms of radicals, through the automorphism groups of
the splitting field of f. On the other hand, the symmetries of any algebraic structure are
captured by their automorphism groups. The study of completely primary finite rings has
shown their fundamental importance in the structure theory of finite rings with identity.
Quite reasonable research has been done towards characterization of the unit groups, R*
of certain classes of finite commutative completely primary rings. Much less known how-
ever, is whether there is a complete description of R*, up to isomorphism. The existing
literature is still scanty on the characterization of Aut(R*), the automorphism groups of
the unit groups of these classes of rings. Therefore, in this thesis, we have characterized
the structures and orders of the automorphisms of the unit groups of three classes of
commutative completely primary finite rings, that is, Square radical zero, Cube radical
zero and power Four radical zero finite commutative completely primary rings. The unit
groups of the classes of rings studied are expressible as R* = Z,»_1 x (1 + J) such that,
Zy—y and (1 + J) are of relatively prime orders, where (1 + .J) is a normal subgroup of
R* and J is the Jacobson radical of R. We have expressed the structures of Aut(R*) as
direct products of (Zy_1)* and G Lyga+.)(Fp). We have made use of the invertible matrix
approach, the properties of diagonal matrices and determinants to count the number of
automorphisms of (14 .J). We have then adjoined the counted Aut(1+.J) to o((Zy—1)*),
where ¢ is the Euler’s phi-function, in order to completely characterize the order Aut(R*).
Moreover, we have made use of the First Isomorphism Theorem to establish the relation-
ship between | GL, k145 (Fp) | and | SLyxa1.)(Fp) |. We noticed that our automorphisms
yielded very unique structure and order formulae, distinct from the well known structures
and order formulae of the automorphisms of the cyclic groups C,,. The results obtained
in this thesis contribute significantly to the existing literature on the structure theory of
finite rings with identity, thereby providing a much needed, accessible modern treatment
and a complete characterization of these classes of rings up to isomorphism.
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CHAPTER 1
INTRODUCTION

1.1 Background information

Automorphisms of algebraic structures has been an active area of research for a quite a
long time now. For instance, enormous number of papers have been devoted to studying
the automorphisms of associative rings (cf. in [21, 29, 60, 86] ). This has been evident
for quite some time, the central aim of these studies being, finding out and investigat-
ing those ring properties that are preserved under a transformation to a fixed ring and
under the fixed ring to the initial ring (cf [13]). The methods which emerged in these
studies proved their value for investigating arbitrary automorphisms of groups, rings and
derivations basically from the point of view of their algebraic dependencies. They proved
so effective that they made it possible to prove the Galois correspondence theorems in
the class of semi prime rings both for the automorphism groups and for Lie Algebras of
derivations.

Galois theory deals with the action of a finite group of automorphisms on a field. The
power and usefulness of the theory is great, and therefore, for a long time there has been
a noticeable interest in more general Galois theory. This has turned out to be a long
and involved quest. The theory has also led to the modern theory of automorphisms
and derivations of associative rings and algebras. To a greater extent, many technical
and conceptual advances were needed to bring Galois theory to its present rich state. A
few expositions worth mentioning are essentially given by Kharchenko in [61] concerning
rings with generalized identities, non-standard algebras and the powerful logic algebraic
meta-theorem.

The automorphism group of R* denoted as Aut(R*) is a set whose elements are auto-
morphisms ¢ : R* — R* and where the group operation is composition of automorphisms.

Thus, its group structure is obtained as a subgroup of the Sym(R*), the group of all per-



mutations on R*. Given an arbitrary finite group G, the computation of its automorphism
group Aut(G) is not a very easy task. Pioneer work in this regard was carried out by
Felsch and Neubuser [36, 37] who developed an algorithm which made use of their sub-
group lattice program. In the early 1970s, Neubuser independently developed a technique
to determine the automorphism groups by considering its action on the union of certain
conjugacy classes of G. Similar methods were used by Hulpke [5], Cannon and Holt [57]
who presented a new algorithm to answer this problem.

A few efficient approaches to determine the automorphism groups of the groups sat-
isfying certain properties are available. Following the work of Shoda [87], Hulpke in
1997 implemented a practical method for finite abelian groups. Wursthorn [71] adapted
modular group algebra techniques to compute the automorphism group of a p—group.
Smith [75] introduced for finite soluble groups. The p—group generation algorithm of
Newman [80] and O’Brien [84] can be modified to compute the automorphism group of a
finite p—group as outlined in [85]. The algorithm proceeds by induction down the lower
exponent-p—central series of a given p—group P; that is, it successively computes Aut(F;)
for the quotients P; = P/(P;(P)) where (P;(P)) is the descending sequence of subgroups
defined recursively by (P1(P)) = P and (P;+1(P)) = [(Pi(P)), P](P;(P))? for ¢ > 1. The
exponent-p class of P is the length of its lower exponent-p central series.

Despite these fruitful and numerous attempts to develop algorithms that compute
the automorphism groups of finite groups, no success has been achieved in developing
a universal algorithm that computes these automorphisms for all the various types of
groups. The researchers have so far concentrated in developing algorithms for specific
types of groups. Similarly, these algorithms are simply used in counting the number of
automorphisms, a given finite group satisfying certain properties has. As such is the case,
characterization of groups of automorphisms is still an open problem.

The limitations encountered with the algorithms which are basically computer coded,
have invigorated and shifted research towards order and structure formulae for auto-

morphism groups. Menengazzo [72] has given a systematic account of the order and



structure of the automorphism group of a finite non-abelian 2-generated p—groups with
cyclic commutator subgroup. Special cases of the same problem have also been solved by
Caranti and Scoppola [20], Miech [73], Davitt [33] and Cheng [22]. Bidwell, Curran and
McCaughan [16] have shown that if H and K are groups with no common direct factors
and G = H x K, then the Aut(G) can be expressed in terms of Aut(H) and Aut(K).
Bidwell and Curran [15] have dealt with two complications not encountered in [16] by
working with matrices M, «,, taking account of those automorphisms that permute the
direct factors. They have also given automorphisms for semi-direct products of 2 cyclic
p—groups.

Shoda [87] has characterized automorphisms of finite abelian groups by employing a
matrix representation for the Sylow subgroups of an abelian group A. A more elegant
version of Bidwell, Curran and Shoda’s formulae, where a much more involved argument
is used has been given by Hillar and Rhea [48]. They gave a useful description of the auto-
morphisms of an arbitrary abelian p—group by computing the size of this automorphism
group. In spite of these numerous attempts and the existence of such elegant order for-
mulae, the automorphisms of the unit groups R* of completely primary finite rings have
not been characterized.

The study of completely primary finite rings has shown the fundamental importance
of these rings in the structure theory of finite rings with identity. A finite ring has a
unique maximal ideal if and only if it is a full matrix ring over a completely primary finite
ring. Moreover, any finite commutative ring is a direct sum of completely primary ring.
Further, any finite ring is a direct sum of rings of prime power order. This follows from
the fact that when one decomposes the additive group of a finite ring into its prime power
components, the components subgroups are ideals. Thus, because completely primary
finite rings play an important role in the classification of all finite rings with identity,
they have been the subject of a good deal of research in recent years.

Given a completely primary finite ring R. Let Ry be the Galois subring of R and J be

its Jacobson radical which is the unique maximal ideal of R, then, several authors have



constructed such finite rings whose Jacobson radical or group of units yield particular
structures. For instance, in [26], Chikunji has obtained the structures of the unit groups
of classes of completely primary finite rings in which the product of any three zero divisors
is zero, Oduor, Ojiema and Mmasi [82] have obtained the structures of units of a class
of completely primary finite rings in which the product of any two zero divisors is zero
while in [83], we characterized the unit groups of some classes of power four radical zero
completely primary finite rings. It is well known that if R is a finite field, then its group of
units is cyclic. In [41], Gilmer has characterized some classes of finite rings whose groups
of units are cyclic.

Suppose R is a ring and R* is its multiplicative group of units, then, all such local rings
with cyclic groups of units were determined by Ayoub [10] and the same case was also
considered by Gilmer [41]. Gilmer showed that it is sufficient to consider finite primary
rings. Ayoub [10] restricted attention to finite primary rings and showed some connec-
tions between the additive group N, the radical of the ring R and the multiplicative group
1 + N. Clark [21] investigated R* where the ideals form a chain and has shown that if
p > 3,n > 2 and r > 2 then the units of the Galois ring GR(p"", p"™) are a direct sum
of cyclic groups of order p” — 1 and r cyclic groups of order p” — 1 (This was also done
independently by Raghavandran in [86]. Much less known however, is whether there is
a complete description of Aut(R*), the automorphism groups of the unit groups of com-
mutative completely primary finite rings.

In this thesis we have discovered the structures and orders of Aut(R*), the automorph-
isms of the unit groups of three classes of commutative completely primary finite rings,
namely; Square Radical Zero, Cube Radical Zero and Power Four Radical Zero finite
commutative completely primary rings. Since R is of order p™", n,r € Z and R* = R — J,
the order of R*, that is | R* |= p" V" (p" — 1) and | 1 + J |= p™ V", so that 1 + J is an
abelian p—group. In [48], Hillar and Rhea gave a useful description of the automorphism
groups of an arbitrary abelian p—group and they computed the size of this automorphism

group. We extend their work by characterizing Aut(R*) in a general setting.



1.2 Basic Concepts

In this section, we give basic terminologies, definitions, and results that are useful in this

study.

Definition 1.2.1. (i) A mapping 0 of a group G onto a group G is called a homo-

morphism if 0(zy) = 0(x)0(y), G’ being a homomorphic image of G.

(ii)A homomorphism 0 : G — G is called an endomorphism. If the homomorphism

defined is 1 — 1, then it is called an isomorphism.
(7ii) An isomorphism 6 : G — G is called an automorphism.

Definition 1.2.2. Let 0, : G — G, then, 0,(y) = xyz~' € G is called conjugation
map. An automorphism of G that corresponds to conjugation by some x € G is called an
inner automorphism denoted by Inn(G). Any automorphism that is not inner, that is,

Aut(G)/Inn(G) is called outer automorphism.

Proposition 1.2.1. The set Inn(G) of inner automorphisms of an arbitrary group G is
an invariant subgroup of the group of automorphisms and Inn(G) = G/C where C' is the

center of the group

Definition 1.2.3. A homocyclic abelian group is a direct product of one or more pairwise

isomorphic cyclic groups.

Definition 1.2.4. A completely primary finite ring is a ring R with identity 1 # 0 whose

subset of all the zero divisors forms a unique mazimal ideal J.

Definition 1.2.5. A unit in a unital ring R refers to any element u that has got an
inverse element v in the multiplicative monoid of R. It satisfies uv = vu = 1 where 1g
1s the identity element in R. The set of units of any ring is closed under multiplication

and forms an abelian group R* with respect to this operation.



Definition 1.2.6. The Jacobson radical J of a ring R is the intersection of all the max-
imal ideals of R. Since all maximal ideals are prime, the Nilradical is contained in the

Jacobson radical.

Definition 1.2.7. Let G be a group and I'(Aut(G)) be a graph of automorphisms of G.
Then, the proportions of I'(Aut(G)) on n vertices that tend to 1 as n tends to infinity are

called Z— graphs.

Theorem 1.2.1. (¢f [82] ) If a ring R has n > 2 zero divisors (including zero),then R

is a finite ring and |R| < n?.

Theorem 1.2.2. Let R be a finite ring with identity 1 # 0. Then every nontrivial ideal

of R consists entirely of zero divisors.
Theorem 1.2.3. If G is a cyclic group of order n, then G = Z,.

Theorem 1.2.4. (c¢f. [34]) Let G be a finite abelian group. Then G is isomorphic to a

product of groups of the form:
H,=7/p""Z X L|pPL X --- X L/p*™ L,

in which p is a prime number and 1 < e; < --- <e,.



1.3 Statement of the problem

The symmetries of a group are captured in its group of automorphisms. Given a com-
pletely primary finite ring R, with a Jacobson radical .J, various researchers have presented
characterizations of the unit groups, R* of certain classes of R. For instance, local rings
with cyclic groups of units were determined by Ayoub [10] and the same case was also
considered by Gilmer [41]. Gilmer showed that it is sufficient to consider finite primary
rings. Ayoub [10] restricted attention to finite primary rings and showed some connec-
tions between the additive group N, the radical of the ring R and the multiplicative group
1+ N. Clark [21] investigated R* where the ideals form a chain. This was also done inde-
pendently by Raghavandran in [86]. Oduor, Ojiema and Mmasi [82] determined the units
of completely primary finite rings of characteristic p™. Chikunji [25] determined R* for the
cube radical zero completely primary finite rings, while Oduor and Ojiema [83] determ-
ined R* for some classes of power four radical zero commutative completely primary finite
rings. Much less known however, is whether there is a complete description of Aut(R*),
the automorphism groups of the unit groups of commutative completely primary finite
rings. The documented literature shows that, no attempts have been previously made
to characterize Aut(R*) in terms of its structures and order. Since R is of order p™,
n,r € Z and R* = R — J, and R* 2< b > x(1+ J), then, | R* |= p™ " (p" — 1) and
| 14+ J |= p™= Y so that 1+.J is an abelian p—group. We therefore characterize Aut(R*),

where R is either square radical zero, cube radical zero or power four radical zero.

1.4 Objective of the study

1.4.1 General objective

To characterize the automorphism groups of the unit groups of square radical zero, cube

radical zero and power four radical zero commutative completely primary finite rings.



1.4.2 Specific objectives

(1) To characterize the automorphisms of the unit groups of square radical zero com-

mutative completely primary finite rings .

(2) To characterize the automorphism groups of the unit groups of cube radical zero

commutative completely primary finite rings.

(3) To characterize the automorphism groups of the unit groups of power four radical

zero commutative completely primary finite rings.

1.5 Methodology
The following methods of study have been used in this thesis:

(1) The method of idealization of R,—module has been used in identification and classi-

fication of completely primary finite rings of interest based on their constructions.

(2) We counted the number of invertible My(Z,) € GL,y145)(F,) by inspection and
found it to be a tedious exercise. We therefore used the invertible matrix approach,
the properties of diagonal matrices and general properties of determinants to count

and generalize the number of automorphisms of 1+ J.

(3) We employed the First Isomorphism Theorem in establishing the relationship between
| GLrk(a)(Fp) [ and | SLga1)(Fp) | -

1.6 Significance of the study

A successful characterization of automorphisms of the unit groups of these classes of
commutative completely primary finite rings provide a better understanding of the groups,
thereby providing a much needed, accessible modern treatment of finite rings with identity.
The results obtained in the thesis mark an important step in the structure theory of finite
rings with identity. This is a significant contribution of knowledge towards the pursuit of

the classification of finite rings.



1.7 Structure of the thesis

The thesis has been presented in this fashion: In Chapter Two, we have given detailed
literature review on the automorphism groups of finite groups and rings that have been
studied by different researchers. In Chapter Three, we have given detailed account of
the unit groups of the various classes of the finite rings studied and characterized their
automorphisms in the respective sections. In Chapter Four, we have given summary of

our results, conclusion and provided a raft of recommendations.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

In this chapter, we give detailed literature and related studies concerning finite rings and
their representations, a survey on the theory of automorphisms, detailing the automorph-

isms of p—groups, direct products and finite rings.

2.2 Representations of Rings and Morphisms

A representation of a ring R is a ring homomorphism R — Endz(M), where M is an
abelian group. The theory of ring representation has been considered by various research-
ers to be of great interest in many facets of mathematics. For instance, the theory of
sectional representation of rings which has its origin, both in the characterizations of
rings of functions of various kinds occurring in analysis and geometry, and in the struc-
ture theorem of algebra which expresses certain rings in terms of direct and sub-direct
product of other rings is a development that has the link between representations of rings
and applications of intuitionistic mathematics, which has led to the introduction of dif-
ferent techniques for determining representations and a settling of its foundation in the
topological algebra.

Wilson [92], studied the representation of finite rings by extending the concept of
Szele’s representation of finite rings from the case where the coefficient ring is cyclic to
the case where the coefficient ring is Galois. Accordingly, he characterized completely
primary finite rings and nilpotent rings as those rings whose Szele’s representations sat-
isfy the same conditions. Of the two classes of finite rings studied, completely primary
finite rings are always of prime power order therefore, there is no loss of generality up to
direct sum formation. Finite commutative rings can be represented in a number of ways.

Among them given by Agrawal [3] are the following:

10



(i) Table Representation; This is the simplest representation. It involves listing all
the elements of the ring and their addition and multiplication tables. This rep-
resentation has size n = o(|R|?). It is a highly redundant representation and the
problem of finding automorphisms can be solved in n°1°8™ times since any minimal

set of generators for the additive group has size o(logn).

(ii) Basis Representation; It is specified by a set of generators of the additive group
R. Let CharR = n, then, the additive group (R,+) can be expressed as the
direct sum & ,Z,.b; where by, ...,b,, are elements of R and n;|n for each i. The
elements b; are called basis elements for (R,+) therefore, the ring R can be ex-
pressed as (nq, ..., Ny A1, ..., Ay,) where the matrix A; = (a;;%) describes the effect
of multiplication on b; viz; b;.b; = >3, @5 jk-bk, @i jx € Zy,. The size of this rep-
resentation is o(m?). This in general is exponentially smaller than the size of the
ring |R| = [T;%, n;. The problem of finding automorphism or isomorphism becomes
harder for this representation. As shown in [4], these problems belong to a com-

plexity class and can be as complicated as factoring integers.

(iii) Polynomial Representation; A third and even more compact representation of R
is obtained by starting with the basis representation and then selecting the smallest
sets of b;s, that is, by, ..., b,,,. The representation can be specified by m basis elements
and generators of the ideal of polynomials satisfied by these. Each polynomial is

represented by an arithmetic circuit. Such a ring can be written as

R="7Zu[x1,...;xn]/ i1, oy m)s ooy fr(X1, ooy Tin),

where x4, ..., 2, are basis elements and fi(z1,...,Tm), -y fe(T1, ..., Ty is the ideal
generated by the polynomial f1, ..., fx describing all polynomials satisfied by 1, ..., x,,.

More often, this representation is succinct than the previous ones.

Suppose f(x) € Z,x[x] is a monic polynomial of degree 7 irreducible modulo p, then,

it is well known (cf. [26]) that Z,./(f(z)) is the Galois ring of order p*" and characteristic

11



p* denoted as Ry . Therefore, a Galois ring is an irreducible algebraic extension of degree
7 of the ring Z/(p*), and, any two irreducible algebraic extensions of Z/(p*) of degree r
are isomorphic. This class of ring was first studied by Krull [62] and later rediscovered
by Raghavendran [86] and Janusz [56] among other researchers in subsequent studies. In
deed, Raghavendran described the structure of the multiplicative group of every Galois
ring. The importance of Galois rings is that if R is a completely primary finite ring of
characteristic p*, with Jacobson radical J such that R/J = GF(p*), then, R contains a
unique copy up-to inner isomorphism, of GR(p*",p"). Thus, a completely primary finite

ring is a GR(p*", p")-bi-module whose structural theory was developed by Wilson [92].

2.3 A survey of the Theory of Automorphism Groups

2.3.1 Automorphisms of p-groups with cyclic commutator subgroup

In [72], Menengazzo gave a systematic account of the automorphism groups of finite, non-
abelian, 2-generated p—groups with cyclic commutator subgroup, for odd prime p. Special
cases of this problem, have also been studied by Caranti, Miech, Davitt and Cheng in
[20, 22, 33, 73] in connection with many questions, with the aim of providing examples and
counterexamples. However, the general information available is still remarkably scarce.
It was remarked by Cheng [22], that in such groups G, the central factor group G/2(G)
is metacyclic, hence modular. It therefore follows that | G | divides | Aut(G) |.

Another known fact (cf. [72]) is that in any metabelian two-generated p—group G =<
a,b >, for all choices of z,y € G, there is an automorphism « mapping a — az and
b — by. Moreover, if G’ is cyclic and p is odd, such automorphisms are inner. This implies
that | Inn(G) |= (] G’ |)%. The automorphism of G' naturally induces a group of linear
transformations of the Z/pZ—vector space G/®(G), where ®(G) is the Frattini subgroup
which is GL(2,Z/pZ) denoted in [72] by Aut;(G), such that [ is the reminder of linearity.
The kernel of this action; i.e; {a € G|g*P(G) = ®(G),Vg € G} is sometimes denoted as
Aut®(G); for every p—group Inn(G) < Aut®*(G) < O,Aut(G), where O,Aut(G) is the

outer automorphism.
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A finite p—group G is called metacyclic where p is a prime, if the presentation of G

1

can be written as, G =< z,y | 27" = 1, y? = 2P yry~t = 21" > where the parameters

m, t, q,n satisfy the conditions in [16]. Menengazzo gave the following results:

Lemma 2.3.1. (¢f. [72]) Let G =< a,b > be a metacyclic group. Suppose G has a cyclic
normal subgroup N =< b > of order p™, say with cyclic factor group G/N =< aN > of
order p', then, there exists an automorphism mapping a — @ and b — b if and only if a

is of order p' and b = b
Theorem 2.3.1. (¢f. [72]) Let G =< a,b | a” = " = 1,b* = b'*7" > where 1 < s < m
and m — s < I. The effect of Aut(G) on the generators a,b is

b — a*bv,
a s aa™" " (a*bV)H,

where zp® = 0(p!), w 2 0(p), W = 0(p™).

(i) Ifl >m
| Aut(G) |= (p — 1)p'tmrt,
| Inn(G) |= p*™~2),
| Op(Aut(G)) |= pHmH2t,

| Aut,(G) [=p(p —1).

(ii) If m > 1> s

| Aut(G) |= (p — 1)p? >,
| Inn(G) |= 2=,
| 0,(Aut(G)) |= p+> 7,

| Auty(G) |= (p = 1)

(iii) If s > |

| Aut(G) |= (p — Dp**",
| Inn(G) |= p"=),
| Op(Aut(G)) |= p* 1,

| Auty(G) [=p(p —1).
As a consequence of the Lemma (2.3.1) and theorem (2.3.1) above, one clearly sees
that the order and presentation for the automorphism group of a finite non-abelian split

metacyclic p—group for odd prime p can be found in [72]. Similarly, an extension of
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the same problem was considered by Bidwell and Curran [15]. They showed that if
G = H x K is a semi-direct product of two cyclic p—groups H and K, Aut(G) has
cyclic subgroups A ~ Aut(H), B ~ xHom(K, H), the crossed homomorphism from K
to H, C' ~ Hom(H/[H,K],K), D ~ {6 € Aut(K);k™'6(k) € Cx(H) Vk € K} such that
Aut(G) = ABCD where AD = A x D normalizes B and C. Particularly, in [15], the case
when the prime p = 2, has been examined, that is, they considered the automorphism
groups of any finite split metacyclic 2—group. Although a few of these automorphisms
existed in ad hoc way, Bidwell and Curran [15] gave a unified approach to all such groups.
Moreover, the method used in [72] where p is odd does not exploit the regularity of
p—groups, therefore, similar approaches have been employed in [15]. However, there are
more cases considered and extra subtleties when the prime is 2. Nevertheless, the structure
of Aut(G) = ABCD where A, B,C, D are the same subgroups as identified in [72], for
p—odd prime. For example, Bidwell and Curran[15] considered a group G = H x K, a
semi direct product of H and K. Thatis H I G, K <G, HNK =1,and VY hy,h, € H
and ki, ko € K, hikihoks = hihs'kyky where h* = khk™'. As in [72], Biddwel and Curran

[15] associated with § € Aut(G) a 2 x 2 matrix of maps. That is;

Lemma 2.3.2. (c¢f. [15]) Let G = H x K be a semi direct product where K is abelian

and let

w={(55) (st Semmi )

where «, 3,7, 06 satisfy the following properties:
(i) ¥ h,h' € H,a(hh') = a(h)a(h )™,
(ii)V k. k' € K, B(kK') = B(k)B(K')°®,
(1ii)[H, k] < ker v ,s0, v € Hom(H/[H, K], K),
(iv) ¥ h € H Yk € K, a(h*)B(k)™ = B(k)a(h)*™,

(v) For any h', k' € G, there exists unique h,k € G such that a(h)B(k)°™ = ',y (h)3(k) =

!

k.
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Then, there is a one-one correspondence between Aut(G) and M given by 0 <> ( ?; ? >

where O(h) = a(h)y(h) and 0(k) = B(k)d(k). Further, if 0 < ( 3: 5: >, then

Do [ @at By aB e
Ya+dy  AB+86
Despite the complications for the prime 2, the order of Aut(G) remains the same

as taking p = 2 in the analogous odd prime case. Bidwell and Curran therefore easily

specified the order of Aut(G) for 2—groups:

Theorem 2.3.2. [16] Let G = H x K =< x,y : 2™ = y* = 1,2Y = 22" > where
m>3,n>1andl <r <min{m—2,n}. Then| Aut(G) |= 2m—tHminimnitmin{m-rn}tn-r
In particular, Aut(G) is a 2—group and its order in the three cases are ; (i.) 23mTn=2r=1

(id.) 2m+3n—r=1_ (G, ) 2Amin=r)=1
2.3.2 Automorphisms of direct products of finite groups

Fitting [38] noted that if ,¢ € Hom(G,H), the maps 0 + ¢ : G — H defined by
(04 ¢)g = 0(g)9(g) is again a homomorphism if and only if Im(f) and Im(¢) commute.
Bidwell, Curran and McCaughan [16], showed that if H and K are groups with no common
direct factors and G = H x K, then, the structure and order of Aut(G) can simply
be expressed in terms of Aut(H) and Aut(K) and the central homomorphism groups
Hom(H,Z(K)) and Hom((K),Z(H)). Thus we have:

Theorem 2.3.3. (cf. [38]) If G is any group and ¢ € End(G), there is a positive integer
r such that Ker(¢") = Ker(¢™™"), for every positive integer n. Further if o = ¢" and
Im(o) < G, then G = Ker(o) x Im(o).

Now if

w={(55): (5 Simtnnn "5 Emita i i 1)}

because of the commuting properties of the images of the given maps, one can verify that
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M is a monoid under matrix multiplication

a B O/ /8/ _ O(O/ + 57/ O(ﬁ, + 66/
’}/ 5 ’}/l 5/ ’}/a/ + 57/ f}/ﬁ/ + 55/
and the following monoid isomorphism follows:

Theorem 2.3.4. [16] If G = H x K, then End(G) = M where M is the matriz of

endomorphism given above,

Therefore, by the above theorem, it is possible to find the order formulae for the full
automorphism groups of the direct product G = H x K in the case where H and K have
no common direct factors in terms of the endomorphism rings. One such a formula is

given by Biswell, Curran and McCaughan [16] as follows:

Theorem 2.3.5. (¢f. [16]) Let G = H x K where H and K have no common direct

factors. Then AutG = A C M. In particular,
| Aut(G) |=| Aut(H) || Aut(K) || Hom(H, Z(K)) || Hom(K, Z(H)) | .

Similar descriptions of the order of Aut(G) can be found in [15]. Here, G = H™;n > 1
is the direct product of n—copies of an indecomposable non-abelian group H. The case
n = 2 arises by setting K = H for the groups studied in [16]. In this case, Aut(G) is
an extension of A in the above by Cy—the surplus due to the new automorphisms which
swaps the two direct factors.

For a general n, Bidwell and Curran [15] dealt with two complications not encountered
in [16] by working with n x n matrices and taking account of those automorphisms which
permute the direct factors. In this regard, their main result showed that Aut(G) is a
semi direct product of a matrix group similar to the 2 x 2 case, by the symmetric group
S, and | Aut(G) |=| Aut(H) |*| Hom(H,Z(H)) |~ n!. Also, as an extension of the
results of Menengazzo [72], the main result in [15] described the automorphism group
of an arbitrary finite direct product G = H}' x --- x HP" where the H; are all distinct

and indecomposable and §; > 1,(1 < ¢ < n). However, it is well known (cf. [87] ) that
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here, since H; is abelian and indecomposable (i.e, H; is a cyclic p—group, p— prime) that
Aut(H™) = GL(n,Z, ), where H = Z,- and r is a positive integer. Therefore, the matrix

of endomorphism rings given below is immediate;

Lemma 2.3.3. Let G = Hy X --- X H,. Then, End(G) = M where

o117 ... Oqp
M = : : D € HOm(Hj,Hi)> [Im(@z’jl)a[m(%jg)] =1V 4,71, 72; 1 7é J2

an1 ... Opn
and multiplication in M is just the usual matriz multiplication, with addition of two
homomorphisms o, B € Hom(H;, H;) defined by (a+3)(x) = a(x)5(z) and multiplication

of a and v € Hom(Hy, H;) defined by the composition ay.

We can deduce that, any finite group G has a direct product decomposition of the
form G = A x H{* x --- x HP» where A is abelian, the H;(1 < i < 1) are distinct,
indecomposable and non-abelian and ; are positive integers. A characterization of the
automorphisms of finite abelian groups has been given by Shoda [87]. There, a similar
matrix representation was employed for the automorphisms of the Sylow subgroups of an
abelian group A, and it follows that Aut(A) is a direct product of these. Using Shoda’s
results, it can be seen that Aut(C}.) = GL(n,Z, ), where Cy; is the homocyclic abelian
p—group. The order of this group is however well known as it has been described by Han

[45].

Lemma 2.3.4. ([45]) Let n and r be integers and p a prime. Then
| GL(N, Zpr) |: pn2(r—1) H(pn o pn—z)
i=1

The description above is similar to the one given by Bidwell and Curran [15] in the

following theorem:;

Theorem 2.3.6. ([15]) Let A= A" x --- x A¥m where A; 2 770 1 <1 < 'm are distinct,
p; prime and r; > 0. Then
m 2 T'i_l Vi . g m s T A
| Aut(H) |= THp "V TL0F —pr )} T eedi'p)7 .

i=1 j=1 ij=1,ij
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A more elegant version of these formulae can be seen in Hillar and Rhea [48], where a

much more involved argument is used.

Theorem 2.3.7. ([48]) The Abelian group H, = Z/p“'Z X --- X L/p*"Z has

n

| Aut(H,) |= H(pdk _ pk—l) H(pej)n—dj H(pei—l)n—cﬁ-l’
k=1 j=1

i=1

where dj, and ¢ are the maximum and minimum entries of the block upper triangular

matrixz of endomorphisms of H.
2.3.3 The Automorphisms of some common p—Groups

There are several familiar families of finite p—groups for which, some information re-
garding their automorphism groups is well known. In particular, for a number of these
families, the order of the automorphisms of these groups have been described in a reas-
onably extensive manner. We give a clear account of a couple of such descriptions;

A finite p—group G is special if either G is elementary abelian or Z(G) = G' = ®(G).
Furthermore, a non-abelian special p—group G is extraspecial if Z(G) = G' = ®(G) = C,,.
The order of an extraspecial p—group is always an odd power of p, and there are two
isomorphism classes of extraspecial p—groups of order p?"*! for each prime p and a pos-
itive integer n, as proved in Gorenstein [43]. When p = 2, both isomorphism classes have
exponent 4. When p is odd, one of these isomorphism classes has exponent p and the
other has exponent p?.

Winter [93] gave a nearly complete description of the automorphism groups of an ex-
traspecial p—group. Griess [44] stated many of these results without proof. Winter stated
the following theorem on the automorphism groups of the extra-special p—groups for all

primes p.

Theorem 2.3.8. (cf.[93]) Let G be an extraspecial p—group of order p*™*'. Let I =

Inn(G) and let H be the normal subgroup of Aut(G) which acts trivially on Z(G). Then,

(i) 1= (Cp)*".
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(i1) Aut(G) = Hx < 0 >, where 0 is an automorphism of order p — 1.

(77i) If p is odd and G has exponent p, then, H/I = Sp(2n,F,) and the order of H/I is

an H?:l(p% —1).

(iv) If p is odd and G has exponent p*, then, H/I = Q x Sp(2n — 2,F,) where Q is a
normal extraspecial p—group of order p**~*, and the order of H/I is p™ [} (p*-1).
The group (Q x Sp(2n —2,F,) is isomorphic to the subgroup (Sp(2n,F,) consisting
of elements whose matriz (a;;) with respect to a fized basis satisfies a1y =1, ay; = 0,

fori < 1.

(v) If p = 2, and G is isomorphic to the central product of n—copies of Dg, then, H/I
is isomorphic to the orthogonal group of order (2""=V+1)(2" — 1) [T’ (p* — 1) that

preserves the quadratic form V1g + 31y + - - - 4 Yon 119, over Fy.

(vi) If p = 2 and G is isomorphic to the central product of n — 1 copies of Dg and one
copy of Qs, then H/I is isomorphic to the orthogonal group of order (2""=D+1)(2" 4
DI p® — 1) that preserves the quadratic form iy + sthy + -+ + 2 | +

¢2n—1¢2n + ¢§n over FZ-

The set of automorphisms 6 does not necessarily constitute a subgroup of H, and so,
it is not obvious that H splits over I. Winter did not address this issue. However, as
Griess proved in [44], when p = 2, H splits if n < 2 and does not split if n > 3. Griess also
stated, but did not prove, that when p is odd, H always splits over I. This observation
can also be made in, and can be deduced from Isaacs [53, 54] and Glasby and Howlett
[42].

The automorphism groups of Sylow p—subgroups of the symmetric group for p > 2
were examined independently by Bondarchuk [17] and Lentoudis [65, 66, 67]. Their results
are reasonably technical and apparently non-conclusive. They showed that the order of

the automorphism group of the Sylow p—subgroup of Spm is
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where

1
n(m) =p" Pt S(m? = m et 2)p - L

Note that the Sylow p—subgroup of S,= is isomorphic to the m—fold iterated wreath
product of C,,.

A p—group of order p™ is of mazimal class if it has nilpotence class n—1. Many examples
can be found in [64], with the most familiar being the dihedral and the quaternion groups
of order 2" when n > 4. It is not too cumbersome to prove some basic results about the
automorphism group of an arbitrary p— group of maximal class. The presentation below

follows Baartmans and Woeppel [11].

Theorem 2.3.9. (c¢f. [11]) Let G be a p—group of mazximal class of order p™, where n > 4
and p is odd. Then, Aut(G) has a normal Sylow p—subgroup P a P'—complement H, so

that Aut(G) = H x P. Furthermore, H is isomorphic to a subgroup of Cp—1 X Cp_;.

From the result above, it can be observed that G has a characteristic cyclic series
G =Go> Gy > > G, = 1; that is, each G; is characteristic and G;/G;.; is cyclic
(cf. [52]). By a result of Durbin and McDonald [35], Aut(G) is supersolvable and so
has a normal Sylow p—group P with p —complement H, and the exponent of Aut(G)
divides pf(p — 1) for some ¢ > 0. The additional result about the structure of H comes
from examining the actions of H on the characteristic cyclic series and on the G/®(G).
Baartmans and Woeppel remark that the above theorem holds for any p—group G with
a characteristic cyclic series.

Baartmans and Woeppel [11] followed up these general results by focusing on the
automorphisms of p—groups of maximal class of exponent p with a maximal subgroup
which is abelian. More specifically, the characteristic cyclic series can be taken to be a
composition series, in which case G; = v;(G) for i > 2 and G; = C¢(G2/G4). Baartmans
and Woeppel assumed that G5 is abelian.

In this case, they showed by construction that H = C,_; x C,_;. Furthermore, P is

2n—3 (

metabelian of nilpotence class n—2 and order p Recall that a metabelian group is one
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I and maximal

whose commutator subgroup is abelian). The group Inn(G) has order p"~
class n — 2. The commutator subgroup P’ is the subgroup of Inn(G) induced by Gs. The
explicit description of Aut(G) is given in [11].

Other authors who have investigated automorphisms of certain finite p—groups of
maximal class include: Abbasi [1], Miech [74], who focused on metabelian groups of
maximal class; and Wolf [95], who looked at the centralizer C'(G) in a certain subgroup
of Aut(G). In [59], Juhasz considered more general p—groups than p— groups of max-
imal class. Specifically, he looked at p—groups G of nilpotence class n — 1 in which
11(G)/72(Gs) = Cym x Cpm and v;(G) /7i+1(G2) = Cpm for 2 < i < n — 1. He referred to
such groups as being of type (n,m). Groups of type (n,1) are the p—groups of maximal
class of order p”.

Assume that n > 4 and p > 2, as with the previous case, groups of the maximal class,
G, a group of type (n, 1) implies that Aut(G) = P x H where P is a Sylow p—subgroup
and H its p —complement such that H = Cp_1 x Cpq.

In [91], Webb looked at the automorphism groups of stem covers of elementary abelian
p—groups. A group G is a cental extension of Q by N if N is a normal subgroup of G
lying in Z(G) and G/N = Q. If N lies in [G, G] as well, then G is a stem extension of Q.
The Schur multiplier M (Q) of @ is defined to be the second cohomology group H?(Q, C*),
and it turns out that N is isomorphic to a subgroup of M (Q). Alternatively, M (Q) can
be defined as the maximal group NN so that there exists a stem extension of ) by N. Such
a stem extension is called a stem cowver.

The result below was given by Webb:

Theorem 2.3.10. (c¢f. [91]) Let G be elementary abelian, of order p™ with p—odd. As

n — 0o, the proportion of stem covers of G with elementary abelian automorphism group

n
n

of order p 2 tends to 1.

Not every finite p—group is the automorphism group of a finite p—group. Cutolo,

Smith and Wiegold have shown in [32] that the only p—group of maximal class which is
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the automorphism group of a finite p—group is Dg. But, there are several extant results
which show that certain quotients of the automorphism group can be arbitrary. For

instance Heineken and Liebeck [47] gave the result below:

Theorem 2.3.11. (Heineken and Liebeck [47]) Let K be a finite group and let p be
an odd prime. There exists a finite p—group G of class 2 and exponent p*> such that

Aut(G)/Aut.(G) = K

Lawton [63] modified Heineken and Liebeck’s techniques by constructing a smaller
group G with Aut(G)/Aut.(G) = K. He used undirected graphs which are much smaller,
and the p—graphs he defined are significantly simpler.

Webb [90] used similar, though more complicated techniques, to obtain further results.
She defined a class of graphs called Z-graphs(that is, the proportion of graphs on n vertices
which are Z-graphs goes to 1 as n goes to o). To each Z-graph A, Webb associated a
special p—group G for which Aut(G)/Aut.(G) = Aut(A). The set of all special p—groups

that arise from Z-graphs on n vertices is denoted by G(p,n).

Theorem 2.3.12 (Webb). Let p be any prime. The proportion of groups in G,, whose

automorphism group is (C,)", where r = n*(n —1)/2 goes to 1 as n — .

The reason the group (C,)" arises as the automorphism group is that for G € G(p,n),
Aut.(G) is isomorphic to Hom(G/Z(G), Z(G)) and hence it is isomorphic to (C,)". Webb

then showed that Aut(G)/Aut.(G) is usually trivial.

Theorem 2.3.13 (Webb). Let K be a finite group which is not cyclic of order five
or less. Then, for any prime p, there is a special p—group G € G(p,2 | K |) with
Aut(Q)/Aut.(G) = K.

In particular, the above theorem extends Heineken and Liebeck’s result to the case
p = 2. The constructed groups are special and Aut.(G) = Aut;(G), so that these theorems
also prescribe Aut(G)/Aut;(G). The p = 2 analogue of Heineken and Liebeck’s result was
discussed by Hughes [51].
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Bryant and Kovacs [18] looked at prescribing the quotient Aut(G)/Aut;(G), taking a
different approach from Heineken and Liebeck , in that, they assigned Aut(G)/Aut;(G)

as a linear group and did not bound the class of G.

Theorem 2.3.14. (c¢f. [18]) Let p be any prime. Let K be a finite group with dimen-
sion d > 2 as a linear group over F,. Then, there exists a finite p—group G such that

Aut(GQ)/Auts(G) = K and d(G) = d.

This theorem is non-constructive, in contrast to the results of Heineken and Liebeck.
However, the main idea can be understood as follows; Let F' be a free group of rank d, if
U is a normal subgroup of F' with F,,,; < U < F,, then G = F/U is a finite p—group and
Aut(G)/Aut¢(G) is isomorphic to the normalizer of U in GL(d,F,). Bryant and Kovacs
showed that if n is large enough, then, F,/F,.; contains a regular F,G'L(d, F,) —module,
which shows that, any subgroup K of GL(d,F,) occurs as the normalizer of some normal
subgroup U of F with F,,, < U < F,.

Ying stated two results in [96] about the occurrence of automorphism groups of
p—groups, which are p—groups, the second being a generalization of a result by Heineken

and Liebeck in [46].

Theorem 2.3.15. (c¢f. [96]) If G is a finite p—group and Aut(G) is nilpotent, then, either

G is cyclic or Aut(QG) is a p—group.

Theorem 2.3.16. (cf. [96]) Let p be an odd prime and let G be a finite p—group generated
by two elements and with cyclic commutator subgroup. Then, Aut(G) is not a p—group if

and only if G is the semi-direct product of an abelian subgroup by a cyclic subgroup.

Heineken and Liebeck [46] also gave a criterion which determines whether or not a
p—group of class 2 and generated by two elements has an automorphism of order 2 or if
the automorphism group is a p—group. If p is an odd prime and G is a p—group that
admits an automorphism which inverts some non-trivial element of GG, then G is an s.7
group (a some-inversion group). Clearly, if G is an s.i group, it has an automorphism of

order 2. If G is not an s.i group, it is called an n.7 group (a no-inversion group).
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Theorem 2.3.17. (c¢f. [46]) Let p be an odd prime and let G be a p—group of class 2
generated by two elements. Choose generators x and y such that < x,G >N <y,G >=
G, suppose that < z,G >=< 2" > and < y,G >=< y?" >,

(i) If either 2P =1 or y*" =1 then G is an s.i group.

(ii) If 27" = [z, y]™" £ 1 and y*" = [z, y]*" # 1 with (r,p) = (s,p) =1, and (n— 1+ k —

n)(k — 1) is non-negative, then, G is an s.i group.

(1ii) If k and | are defined as in (ii) and (n — 1+ k —n)(k — 1) is negative, then G is an

n.i group and its automorphism group is a p— group.

Now, for any group G, let m(G) be the set of distinct prime factors of | G |. In [50]
Horosevskii gave the following two theorems on the order of the automorphism group of

a wreath product;

Theorem 2.3.18. Let G and H be non-trivial finite groups, and let G, be a maximal

abelian subgroup of G' which can be distinguished as a direct factor of G. Then,
T(Aut(GUH)) = n(G)Un(H) Un(Aut(G)) Un(Aut(H)) U n(Aut(G1 L H)).
Theorem 2.3.19. Let Py, P, --- , P, be non-trivial finite p—groups. Then,

T(Aut(PLY Py -0 Py)) = | m(Aut(P)) U {p}.

s

=1

Thus, given any finite p—groups whose automorphism groups are p—groups, one can
construct infinitely many more by taking iterated wreath products.
Macdonald [69] calculated the order of the automorphism group of an abelian p—group

using Hall polynomials as follows;

Theorem 2.3.20. (c¢f. [69]) Let G be an abelian p—group of type \. Then,

| Aut(G) |= A2 I T by (p7H),

i>1
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where m;(\) is the number of parts of X equal to i, n(A) = Y5y ( /\2’ ) and ¢ (t) =
1= =) (1 —tm).

There are a variety of other results in the literature on the automorphism groups of
abelian p—groups. For instance, Morgado [77, 78] proved the following theorem about

the splitting of the sequence 1 — K(G) — Aut(G) — A(G) — 1.

Theorem 2.3.21. (¢f. [77, 78]) Let G be an elementary abelian p—group. Let K(G)
be the subgroup of Aut(G) that acts trivially on G/®(G) and let A(G) be the subgroup
of Aut(G/®(Q)) induced by the action of Aut(G) on G/®(G). If p > 5, then, the exact
sequence 1 — K(G) — Aut(G) — A(G) — 1 if and only if G has type (p™,p,--- ,p) for

some positive integer m. If p =2 or p = 3, this condition is sufficient but not necessary.

A different type of result comes from Abraham [2], who showed that, for any integer
n > 0 and for p > 3, the automorphism group of any abelian p—group G contains a
unique subgroup which is maximal with respect to being normal and having exponent at
most p".

The first known example of a finite p—group whose automorphism group is a p—group
was given by Miller [76], who constructed a non-abelian group of order 64 with an abelian
automorphism group of order 128. Generalizing Miller’s construction, Struik [89] gave the

following infinite family of 2 groups whose automorphism groups are abelian 2-groups:
G=<abcd: ¥ =¥=&>=d*=1,

a,d = [a,d] = [b,c] = [c,d] = 1,bab = a®",bdb = cd >,
[a,c] =

where n > 3 (G can be expressed as a semi-direct product as well ). Struik showed that,
Aut(G) =2 (Cy)° x Con—s.

As noted in [89], it turns out that Macdonald [68], showed that Aut(G) is an abelian

2—group. Also, Jamali [55] constructed, for m > 2 and m > 3, a non-abelian n—generator
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group of order 22+=2 with exponent 2" and abelian automorphism group (Cs)™ x Cam—2.

More examples of 2-groups whose automorphism groups are 2-groups are given by
Newman and O’Brien [79]. As an outgrowth of their computations of 2-groups of order
dividing 128, they presented (without proof) three infinite families of 2-groups for which
| G |=| Aut(G) |. They are, for n > 3,

(1) Czn—l X CQ,

(2) <a,b:a? =0 ab =a'*?"" > and

—2

(3) <a,bc:a* " =0 =c*=[bal=1,a°= a2 e = b2 >

Moving on to finite p—groups where p is odd, for each n > 2, Horosevskii [49] con-
structed a p—group with nilpotence class n whose automorphism group is a p-group, and
for each d > 3, he constructed a p—group on d—generators for each d > 3 whose auto-
morphism group is a p—group. He gave explicit presentations for these groups.

Curran [30] showed that if (p — 1,3) = 1, then, there is exactly one group of order p°

whose automorphism group is a p—group of order p°. It has the following presentation:

G=<a,b: b =la,b =[a,b,b]’ =[a,b,b,b]P =]a,b,b,bb]P =1,
a? = [a,b,b,b] = [b,a,b] " >

When (p — 1,3) = 3, there are no groups of order p° whose automorphism group is
a p—group. However, in this case, there are three groups of order p® which have no
automorphisms of order 2. Curran also showed that p® is the smallest order of a p—group
which can occur as an automorphism group, when p is odd.

In [31], Curran constructed 3-groups G of order 3" with n > 6 where | Aut(G) |= 3"*3
and p—groups G for certain primes p > 3 with | Aut(G) |=p | G |. On the other hand,

Menengazzo [72] noted that, for p—odd and n > 3, the automorphism group of

n 7 n—1
G=<ab:a" =10 =a"" ,a®=d'"?>
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has order p | G | .

Ban and Yu [12] proved the existence of a group G of order p™ with | Aut(G) |= p"*,
for p > 2 and n > 6. In [46], Heineken and Liebeck constructed a p—group of order p°
and exponent p? for each odd prime p which has an automorphism group of order p'°.

Jonah and Konvisser [58] exhibited p + 1 non-isomorphic groups of order p® with ele-
mentary abelian groups of order p'® for each prime p. All of these groups have elementary
abelian and isomorphic commutator subgroups and commutator quotient groups, and
they are nilpotent of class 2. Moreover, all their automorphisms are central.

Malome [70] found more examples of p—groups in which all automorphisms are cent-
ral. For each prime p, he constructed a non-abelian finite p—group G with a non-
abelian automorphism group which comprises only central automorphisms. Moreover,
his proof showed that if F is any non-abelian finite p—group with F' = Z(F) and
Aut.(F) = Aut(F), then, the direct product of F' with a cyclic group of order p has
the required property for G.

Caranti and Scoppola [19] showed that for every prime p > 3, if n > 6, there is a
metabelian p—group of maximal class of order p" which has automorphism group of order
2(n—2

P ), and if n > 7, there is a metabelian p—group of maximal class of order p” with an

n=2)+1 They also showed the existence of non-metabelian

automorphism group of order p*
p—groups (p > 3) of maximal class whose automorphism groups have orders p” and p°.
Fuchs [39], asked for a characterization of abelian groups, which could be groups of
units of a ring. This question was noted to be too general for a complete answer by
Stewart [88] and the methods that emerged later (cf. [9, 26, 82, 83] e.t.c) and a natural
course has been to restrict the classes of groups or rings to be considered. In particular, if
R is a completely primary finite ring (not necessary commutative), then, it is well known

(cf. ([24, 27])) that the group of units of R, contains a cyclic subgroup < b > of order

p" — 1 such that R* is a semi direct product of 1 4+ J and < b >. That is,

RE=(1+J)x<b>.
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The automorphisms of R* are not known, however, the methods used in determining the
automorphisms of direct products of finite groups by Hillar and Rheah [48], Menengazzo
[72], Fitting [38], Bidwell [14] and Bidwell and McCaughan [16] Han [45] and Shoda [87]

can be extended in order to characterize both the structure and order of Aut(R*).
2.3.4 Automorphism Groups of Finite Rings

The determination of the group of automorphisms of finite rings was invigorated by the
research of Alkhamees in [6], where he studied finite chain rings of characteristic p. In
[7], Alkhamees considered the case of finite completely primary rings with the minimal
index of nilpotence J?> = (0) and determined completely the group of automorphisms
of such rings. If we consider the other extreme of maximal index of nilpotency, we are
led naturally to the case of chain rings [8]. Therefore, in [6] he determined fully the
automorphism group, in the commutative case of chain ring of characteristic p and then,
showed how this can be used to solve the non-commutative case using ideas introduced in
[8]. Since finite principal rings of characteristic p are direct sums of finite chain rings of
characteristic p, it is possible to determine the group of automorphisms of finite principal
rings of characteristic p.

Let R be a finite chain ring of characteristic p and J be the set of all zero divisors
of R, then, J is the unique maximal ideal of R, | R |= p*", | J |= p* V" and R has a
subfield of order p" where k is the index of nilpotency of J and p” is the residue order of
R, namely, R/J is a field of order p” (cf. [8, 86, 94]). Let J = Rm. Then we have the
following facts: We can choose 7 in such a way that there exists an automorphism o of

K such that
k-1
R = Z eK.

1=0

(as K —vector spaces) and for each r € K, nr = r7n (cf. [21, 94]). Clearly, R =
K|x,0]/(z"), where K[z, 0] is the skew polynomial ring with respect to o. It is well known
that o is uniquely determined by R and K and it is called the associated automorphism

of R with respect to K. In [6], Tk denotes the set of all triplets (K, 7, o) which come from
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the above descriptions. If R; is a chain subring of R, then J(R;) = Rlﬂ'k/ so that
ki—1 ,
R, = Z K h
i=1
where k; = [(k/k’) 4+ 1]. Thus, the chain subring R, is the only maximal commutative
subring of R containing K and it is unique up to inner automorphism of R. Considering
J(R), H(R) =1+ J(R), Ggr— the group of units of R and Autx(R) as the subgroup of

Aut(R) which fixes K elementwise. Alkhamees gave the following facts:

Lemma 2.3.5. (¢f.[6]) Let R be a finite chain ring of characteristic p. Then (K,0,0) € Tx

if and only if 0 = dwm, where X is an element of K* and w an element of Hy(Ry).

Proposition 2.3.1. Let R be a finite chain ring of characteristic p. Then ¢ is an auto-

morphism of R if and only if

gb(z rmt) = Z rT(Awr)'z ™,

where X is an element of K*, x an element of Ggr, T an automorphism of K and w an

element of Hi(Ry).

Remark 2.3.1. Let M = [a;;] where a;; € K, define M™ = [af}]. Let e;; denote the matriz
with identity of K in (i, 7) positions and zeros elsewhere. The group Gy_1 of all triangular

malrices

1 + Z bijeij,

j<1
where bj; € K is a Sylow p—subgroup of GLy_1(K). Let E be the subgroup of Gj_1 which
contains all the matrices [a;j| where
Q5 = Z Ae1Qf 51,
e+ f=i

Then, obviously, E is a subgroup of G of order p*=1)r.

Theorem 2.3.22. (¢f. [6]) Let R be a finite commutative chain ring of characteristic p
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and E be the subgroup of G of order p*~Yr. Then,
Aut(R) = (Exg, K*)xg, Aut(K),

where if M = [a;;] is an element of E, X an element of K* and 7 an element of Aut(K,)
then
01N (M) = [N ay], 02(7) (M, A) = (M",\").

Theorem 2.3.23. (cf.[6])Let R be a finite chain ring of characteristic p. Then,
Aut(R) = (Inn(R)xeAut(Ry))/Auty(R),
where, if ¢ € Aut(Ry), then 0(¢)(V.) = Wy .

Chikunji [28] described the group of automorphisms of completely primary finite ring
R of characteristic p? and p?® with Jacobson radical J such that J2 = (0) and J? # (0).
In this case, the annihilator of J coincides with J? and the maximal Galois (coefficient)
subring Ry of R lies in the center of R. He determines the automorphisms of R by the
images on the generators of the additive group of R and of the invertible element b of
order p" —1 of the Galois subring Ry of R. This supplements his earlier work (cf. [27]) on
rings of characteristic p and Alkhamees” work (cf. [6]) on automorphisms of chain rings
of characteristic p.

Let R be a completely primary finite ring, | R/.J |= p" and char(R) = p*. Then, it can
be deduced from [21] that R has a coefficient subring Ry of the form GR(p*", p¥) which
is clearly a maximal Galois subring of R. Moreover, if R} is another coefficient subring
of R, then there exists an invertible element x in R such that RE) = xRz~ ! [86, Theorem

8]. Furthermore, there exist my,--- ,my € J and o1, -+ , 0 € Aut(Ry) such that

h
R=Ry® Y Rym,

=1

m;ro = rg'm; Vrg € Ry and any ¢ = 1, -, h. Moreover, oy, ..., 0, are uniquely determined

by R and Ry [28]. These o; are called the automorphisms associated with m; and oy, ..., oy,
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called, the associated automorphisms of R with respect to Ry.

The rings R whose Jacobson radical satisfies J*> = (0) and J? # (0) considered in
[28] were studied in [23, 24] where their detailed constructions were given for all the
characteristics. Since R is such that J® = (0), according to Raghavendran (cf.[86]), the

char(R) is either p,p? or p* .

Remark 2.3.2. A supplementary construction on the additive group R = Ry U &V

has been given by Chikunji [28], by defining the multiplication on R as
uu; = a pf + Zajpul + Z afft,

wa = o, vpa = avg(1 <4,5),a <s,1<1<d, 1 <k<t

where «, a%, aﬁj, ;i]+k € Ry/Jy and f =1 or 2 depending on whether char(R) = p* or p?.

In that case, (aéj) for i =0,1,...,torl=1,2,...,d + t are s X s linearly independent
matrices with entries in Ry/pRy if char(Ry) = p* and [ = 0,1,...,d + t is s X s linearly
independent matrices with entries in Ry/pRy if Char(R) = p*. We call (al;) the structural
matrices of the ring R and the numbers p,n,r, s, d,t, the invariants of the ring R. By
restricting the findings to cases p € J? and p € J — J?, the following characterizations

which can be found in [28] give explicit descriptions of the automorphisms of R:

Theorem 2.3.24. (c¢f. [28]) Let R be a ring of the construction in remark 2.3.2. of

characteristic p* in which p € J* and with the invariants p,n,r,s,t. Then

Aut(R) = [Ms1yxs(Rof/DRo) X M (RofpR,) % (pRo ® U © V)] x

Oy Aut(R, x 01(GL(s, Ro/pR,)) x GL(t, R,/pR,)]-

Theorem 2.3.25. (c¢f. [28]) Let R be a ring of the construction in remark 2.3.2. of

characteristic p* in which p € J — J? and with the invariants p,n,r,s,t,d. Then

Aut(R) = [Mgriyxs(Ro/PRo) X Migxiy(Ro/pRo) X (PR, ® U & V)] %
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0] Aut(R, x 61(GL(s, Ry/pR,)) x GL(t, R,/pR,) x GL(d, R,/pR,)].

Theorem 2.3.26. (cf. [28]) Let R be a ring of the construction in remark 2.3.2. of

characteristic p* in which J*> = (0) and with the invariants p,n,r,s,t,d. Then
AUt(R) = [M(l+d+t)><5(R0/pR0) X M(l-i-t)xd(RO/pRO) X (pRo U V)]X
Os[Aut(R, x 61(GL(s, Ry/pR,)) x GL(t, R,/pR,) X GL(d, R,/pR,)]-

Raghavendran [86] appears to have made the deepest study into the nature of com-
pletely primary finite rings while, Alkhamees [8, 9] has done considerable work on auto-
morphisms of completely primary finite rings. Many expositions on the automorphisms
of completely primary finite rings can still be mentioned. For instance, Alkhamees [9]
has determined the automorphisms of finite rings in which the product of any two zero
divisors is zero, which is a special case of a class of finite rings in which the product of
any two zero divisors lies in the coefficient subring. Chikunji’s results in [28] precisely
describe the group of automorphisms of cube radical zero completely primary finite rings.
Oduor [81] has characterized the automorphisms of a certain class of completely primary
finite rings. His results (cf.[81]), compare perfectly well with Alkhamees’ and Chickunji’s
results ([6, 7, 8, 9, 28]).

Oduor constructed an additive abelian group R = Ry@® U such that Ry = GR(p"", p"),
n > 3 . This ring R is completely primary of characteristic p", referred to in [81] as a

finite ring with property A and whose Jacobson radical J(R) satisfies;
(i) J(R) =pR, & U,

(i) (J(R))"~! = p"~' R,

The description of the automorphism groups of the class of rings constructed ( which

is stated in the next theorem) is an elegant improvement of Alkhamees’ description [9,
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Theorrem 2]. This provides a generalized structure of the automorphisms of certain classes

of completely primary finite rings with property A, for all the characteristics of the rings.

Theorem 2.3.27. (c¢f [81]) Let R be a ring with property A. Then the map
Aut(R) — U x, (H GL(l,, Ro/PR,) X Aut(Ro/pR0)>
v=1
is an isomorphism, and in particular
s ly—1 )
| Aut(R) |= (p")" (H [T - (pr)z)) r
v=1 =0

where U = U1 ®...®U, such that each U, = 3" ; DR, uy, so that oy is the automorphism

op=0

associated with u,, and 1 < v < s.

Finite rings have been studied extensively in recent years by various researchers. A
few expositions have been demonstrated by among other scholars, Corbas [29], Chickunji
[24, 26, 27, 28], Oduor [81], Oduor , Ojiema and Mmasi [82], Oduor and Ojiema [83],
Raghavendran [86], Wison [92], Stewart [88], and the tools necessary for describing com-
pletely primary finite rings have been available for some time, however, their classification
into well known structures that is, units, automorphisms, regular elements, zero divisor
graphs excreta, essentially given in Chikunji [24, 26, 27, 28], Oduor [81], Oduor , Ojiema
and Mmasi [82], Oduor and Ojiema [83] and Clark [21] is not complete. In particular,
from the information in literature, no attempts have been made to characterize the auto-
morphisms of the unit groups of any classes of completely primary finite rings that have
already been classified. This motivated our study; thus in this thesis, we provide a partial
solution to this elusive problem of classification by considering three classes of commut-
ative completely primary finite rings, whose units are well known, namely, square radical
zero, cube radical zero and power four radical zero commutative completely primary finite

rings.
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2.4 Some preliminaries on unit groups and automorphisms

Proposition 2.4.1. [2/] Let R be a completely primary finite ring and let J be its unique
maximal ideal. Then, there exists an element b € R of multiplicative order p" — 1 such
that if v» : R — R/J is the canonical homomorphism, then, 1(b) is a primitive element
of R/J and

K =< b > U{0},

forms a complete system of coset representatives of J in R. Further, if v,u € K with

v—p € J, then v = p.
Proof. Obviously, the group of units Gy say, of Ris R —J and ¢ : R — R/J induces a
surjective multiplicative group homomorphism

(5 :Gr— G(R/J).

Since Ker(¢) = J, we have Ker(¢) = 1+ J. In particular, 1 + J is normal in G.
Let < 8 >= G(ryy) and let by € ¢~1(/3). Then, the multiplicative order of by must be

a multiple of p” — 1 and a divisor of
‘ R—J |: pnr . p(nfl)r — p(nfl)r(pr . 1)

hence of the form p*(p” — 1). But then b = bgk has multiplicative order p” — 1 and
&(b{)’A) = [Bp* which is still a generator of G g/, since (p*,p" — 1) = 1.
Further, ¢(K) = R/J, and hence, K is a complete set of coset representatives of J in

R. Hence, v, u € K with v — o € J implies that v = p. O]

Lemma 2.4.1. Let G = F}. The automorphisms of G as an abelian group are just the
automorphisms of G as a vector space over F,. Thus, Aut(G) = GL,(F,). Because G is

commutative, all non-trivial automorphisms of G are outer.
Example 2.4.1. As a particular case to the above lemma, we see that

A'LLt(CQ X 02) = GLQ(IFQ)
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But GLy(Fy) ~ Ss, that is, GLy(Fy) permutes the three non-zero vectors in F3, the 2-
dimensional vector spaces over Fy and so, the non-isomorphic groups Cy x Cy and Ss

have isomorphic automorphism groups.

Lemma 2.4.2. Let G be a cyclic group of order n, that is, G =< g > . An automorphism

0 of G must send G to another generator of G.

Proof. Let m be an integer such that m > 1. The smallest multiple of m divisible by n is

n
“ged(m,n)

m . Therefore, g" has order = ~— and so, the generators of G are the elements

d(m,n)

g™ with ged(m,n) = 1. Thus 6(g) = g™ for some m relatively prime to n, and in fact, the

map 0 — m defines an isomorphism
Aut(Cy) — (Z/nZ)",

where (Z/nZ)* = {m + nZ | ged(m,n) = 1} . This isomorphism is independent of the

choice of a generator g for G. If §(g) = g™, then for any other element ¢ = ¢* of G,

Proposition 2.4.2. If C,, = Z/nZ, then Aut(C,) ~ (Z/nZ)*.

Proof. If n = pi'...pls is the factorization of n into powers of distinct primes, then, by

Chinese Remainder Theorem, we have an isomorphism
ZInL =Z7)p0 L x - X L]pZ,
such that m(mod)n — m(mod)(p7'), ..., m(mod)(pL) which induces an isomorphism
(Z)nZ)" = (Z)pPZ)" X ... x (Z]pZ)* .

Hence, we need to only consider the case n = p”, where p is a prime integer.
Suppose first that p is odd, the set {0,1,...,p" — 1} is a complete set of representatives

for Z/p"7Z and % of these elements are divisible by p. Hence (Z/p"Z)* has order p" — %T =
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I are relatively prime, we know that (Z/p"Z)* is

p " '(p —1). Because p — 1 and p"~
isomorphic to the direct product of a group, say A of order p — 1 and another group B of
order p"~!. The map

(Z/p"2)" — (Z/pZ)" =T,

induces an isomorphism A — F7 and F, being a finite subgroup of the multiplicative
group of a field, is cyclic. Thus, (Z/p"Z)* D> A =< a > for some element a of order p — 1.

Using the binomial theorem, we find that, 1 + p has order p" — 1 in (Z/p"Z)* and
therefore generates B. Thus (Z/p"Z)* is cyclic with the generators a.(1 + p) and every
element can be written uniquely in the form a’.(1 +p)/,(0 < i <p—1,0<j < p'1)

Thus,
C(p—l)pT—la 2 *pa
(Z/p"Z) =~ O, p=2%
CQ X C27'72, P = 2,7’ > 2.
]

Proposition 2.4.3. Let R be a completely primary finite ring. Then, any quotient ring

of R (by two sided ideal) and any homomorphic image of R is a completely primary ring.

Proof. Let 6 : R — Ry be a surjective ring homomorphism. Since J is the unique maximal
ideal of R, Ker(0) C J. Also, clearly {z+ Ker(0) : x € J} is the set of all the zero divisors
in R/Ker(f) and hence it is a subgroup of (R/Ker(0),+). So, R/Ker(0) is a completely

primary finite ring, thus R; is completely primary too. O]
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CHAPTER 3

THE UNIT GROUPS R*, STRUCTURES AND ORDERS OF THE
AUTOMORPHISM GROUPS

3.1 Unit Groups of Finite Completely Primary Rings

Completely primary rings with full characteristic p™ have been of interest for some years.
Clark mentioned in [21] that Krull worked with these rings as early as 1924 (cf. [62])
and that Januz rediscovered them in [56]. Raghavendran [86] has classified these rings
as quotients of polynomial rings. However, Raghavendran’s classification of these rings
had already been discovered by both Krull and Januz, although their considerations have
been less detailed. Indeed, the terminology 'Galois Rings’ which Raghavendran used for
a coefficient ring of this type, was introduced by Januz.

Several authors have constructed finite rings whose Jacobson radical or group of units
yield a particular structure. For instance, in [26], the author has obtained the structure
of unit groups of classes of completely primary finite rings in which the product of any
three zero divisors is zero, [82] has obtained the structure of units of a class of completely
primary finite rings in which the product of any two zero divisors is zero while in [83], the
unit groups of some classes of power four radical zero completely primary finite rings have
been characterized. Further, it is well known that if R is a finite field, then the group of
units is cyclic. In [41], Gilmer characterized all rings whose groups of units are cyclic.

Suppose R is a ring and R* its multiplicative group of units, then, all such local rings
with cyclic groups of units were determined by Ayoub [10] and the same case was also
considered by Gilmer [41]. Gilmer showed that it is sufficient to consider finite primary
rings. Ayoub [10] restricted attention to finite primary rings and showed some connections
between the additive group of N, the radical of the ring R and the multiplicative group
1 + N. Clark [21] investigated R* where the ideals form a chain and has shown that if

p > 3,n > 2and r > 2 then the units of the Galois ring GR(p"™", p") are a direct sum
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of cyclic groups of order p” — 1 and r cyclic groups of order p” — 1 (This was also done
independently by Raghavandran in [86].

Stewart [88] considered a more general problem by proving that for a given finite
group G (not necessarily abelian), there are up to inner isomorphism, only finitely many
directly indecomposable finite rings having groups of units isomorphic to G. Ganske and
McDonald [40] provided a solution for R* when the local ring R has a Jacobson radical

J such that J? = (0) by showing that;
nt
R = (@) e(m) @e(|K] - 1),
i=1
where n = dimg(J/J?)|K| = p' and e(7) denotes the cyclic group of order 7.

3.2 Unit Groups of Square Radical Zero finite commutative Completely
Primary Rings

Corbas [29] showed that there are exactly two types of these rings; one being of charac-

teristic p and the other being of characteristic p?. Further study on this class of rings was

done by Alkhamees in [7].

Since the index of nilpotency of the Jacobson radical of this class of ring is 2 and every
r € J maps to r € ann(J), the annihilator of J, we call such a ring, square radical zero
finite completely primary ring.

Oduor, Ojiema and Mmasi [82] considered a generalized characterization of the units
of commutative completely primary finite rings of characteristic p”. The construction
given by these authors is a consideration of the values of n such that (a) n = 1,2 and
(b) n > 3, as such is the case, they assumed a general construction. If we restrict our
construction to case (a), then, we have a ring of characteristics p, p*, whose group of

units are of interest in this section.
3.2.1 Construction of Square Radical Zero Finite Rings and their Units

We adapt the construction given by Oduor, Ojiema and Mmasi [82] and restrict our

attention to case (a) only;
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Let Ry be the Galois ring of the form GR(p"™",p"). For each i = 1, ..., h, let u; € J(R),
such that U is an h— dimensional Ry—module generated by {uy, ..., up} so that R = Ry®U

is an additive group. On this group, define multiplication by the following relation
(*) If n = 1,2, then pu; = wu; = wju; = 0, urg = (r9) % u;,

where 7o € Ry, 1 <i,57 < h, p is a prime integer, n and r are positive integers and 9; is
the automorphism associated with u;. Further, let the generators {u;} for U satisfy the
additional condition that, if u; € U, then, pu; = w;u; = 0. From the given multiplication
in R, we see that if ro+ E?zl Aiu; and sg + 2?21 YiUi, To, So € Ro, \i,vi € Fp, are elements
of R, then,
h h h
(ro + ; it ) (S0 + ; Vi) = ToSg + ;{(ro + pRo)vVi + Ni(s0 + pRo)7 Yus.

It is easy to verify that the given multiplication turns the additive abelian group R, into

a ring with identity (1,0,---,0). Moreover, we notice that p € J(R).

Remark 3.2.1. Since n = 1,2, the construction above yields rings in which multiplication
of any two zero divisors is zero, that is , J* = (0). Such rings are well known to be

completely primary (cf. [9, 27, 29, 81, 83, 86])

As a consequence of the given construction, the following results (which can be found

in [82]) are important;

Lemma 3.2.1. The ring described by the construction above is commutative if and only

if 0; =idp,, for eachi=1,--- h

Proposition 3.2.1. Let R be a finite ring from the class of finite rings described by the
construction (*). If U is generated by {uy,-,un}, then, it is also generated by {ui,u; +

U, Uy + Ug + oo+ Uupt

Proposition 3.2.2. Let R be a finite ring from the class of finite rings described by the

construction (*). If h > 1 and char(R) = p, then,
1+ J = (Z0)"
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Proposition 3.2.3. Let R be a finite ring from the class of finite rings described by the

construction (*). If h > 1 and char(R) = p?, then,
1+J =27 x (Z))".

Theorem 3.2.1. (c¢f., [82]) The unit group R* of the commutative completely primary
finite ring of characteristic p™ with mazimal ideal J such that (J(R))* = (0) whenn = 1,2
and (J(R))™ = (0), (J(R))"' # (0), when n > 3 and with invariants p(prime integer),

p€ J(R), r>1 and h > 1 is a direct product of cyclic groups as follows:

(i) If char (R) = p, then,
R* = Zy—1 X (Z0)".

(i) If char (R) = p?, then,
R* =Ly X T X (Z7)".
3.3 Automorphism Groups of the Units of Square Radical Zero Finite Com-
pletely Primary Rings
The following general structure result for the automorphisms of a finite group follows from
a classical result of Gauss in number theory. Let Z,, denote the additive group of integers

mod n and U(Z,) the multiplicative group of integers mod n. Gauss analyzed the orders

of elements in U(Zyn) for p prime. His results can be summarized as follows:

Theorem 3.3.1. (Gauss) Let p be an odd prime andn >1 orp=2 andn > 2. Then
U(an) g Zp"_l(pfl% U(Zgn) g ZQ X ZQn—Q.

Notice that U(Z,) is precisely the set of generators of Z,. Since any automorphism
§ € Z, sends 1 to a generator, the valuation map E : Aut(Z,) — U(Zy) given by
E(#) = E(1) is an isomorphism of groups. This sets the stage for prime factorization of
the integer n and consequently the classification of the automorphisms of an arbitrary

finite abelian group. On the other hand, the automorphisms of cyclic groups are precisely
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known. In fact, given any prime p and any integer n, the group Aut(Cy) = Aut(Zy), the
group of n by n invertible matrices over the field Z,. These and related matrix groups
play important roles in the classification of simple groups.

It has been shown in the previous section that if R is completely primary, the group
of units R* of R is given by R* = Z,~_1 x (1 +J), a direct product of abelian groups. We
need to find all the elements of G Ly, (Z,) and G Lx41)-(Z,) for both of the characteristics
of R that can be extended to a matrix in End(1 + J) and calculate the distinct ways of
extending such elements to the endomorphism.

The following Lemma is useful in the sequel:

Lemma 3.3.1. (¢f. [48]) Let H and K be finite groups of relatively prime orders. Then,
Aut(H) x Aut(K) = Aut(H x K).

Proposition 3.3.1. Let R* = Z,-_1 x (1+J). Since ged(p”"—1,| 1+J |) =1, Aut(R*) =
Aut(Zyr—1 x 14+ J) = Aut(Zyr—1) x Aut(1+ J).

Proof. This is a modification of the proof of Lemma 2.1 in [48].
Let 0 : Aut(Zyr—1) x Aut(1 + J) = Aut(Zy—1 x (14 J) be a homomorphism. Suppose
¢ € Aut(Zy—1) and ¢g € Aut(l + J), then, it is easy to see that an automorphism
0(¢1, ¢2) of Zp-—1 x (1 + J) is given by 0(¢1, ¢2)(z,y) = (d1(z), d2(v)).

Let idy € Aut(Zyr—1) and idy € Aut(1+J) be the identity automorphisms of Z,-_; and

(1+ J) respectively. To show that, # is indeed a homomorphism, notice that 6(id;,idy) =

idz,, )% (1+0) and that, 0(10, dady)(z,y) = (P10 (), P20 (y))
= (61, 02)0(y, 92) (2, Y), Y1, ¢y € Aut(Zyr_1), bo, py € Aut(1 + J).

Next, we verify that 6 is an isomorphism. Clearly, 8 is injective. Thus, we are left
with showing surjectivity.
Let n =p" — 1 =[Zy 1 | and m =| (1 + J) | such that ged(n,m) = 1. Write ¢z, , and
¢11, for the standard projection homomorphism ¢z, @ Zyr—y X (1 +J) = Zyr—y and

Grig: Ly 1 x (14+J) = 1+J. Fix 0 € Aut(Z,_, x (14.J)) and consider the homomorph-
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ism o : 14 J — Zyr_q given by a(y) = ¢z, , (6 (id1,y)). Notice that {y" :y € 1+ J} C
Ker(a) since idy = ¢z, (0 (id1,y))" = ¢z, (0 (id1,y)") = ¢z, _, (0 (idy,y")) = a(y™).

Also, since ged(m,n) = 1, the set {y" : y € 1 + J} consists of m elements. Con-
sequently, it follows that ker (a) = (14 J) and « is the trivial homomorphism. Similarly,
§: Zy—1 — 1+ J given by 6(z) = ¢145(0 (,idy)) is trivial.

Finally, define endomorphisms of Z,_; and (1 + J) by; 6 (v) = gzﬁzpul(gl(x,idg)),
6E1+J) (y) = ¢147(0 (idy,y)). From this construction and the above argument, we have
0 (,y) = 0 (z,idy) - 6'(idy, ) = (6, (2), 61, (9)) = (6, 0y(y))for all 3 € Zyr
and y € (1+J).

It remains to prove that HIZPLI € Aut(Zy 1) and 0, ; € Aut(1+ J) and for this, it
suffices to show that that leptl and 9’1+J are injective (since both n,m < 00).

Now, suppose that Glzpr_l(x) = id, for some & € Z,_1. Then, 0 (v, idy) = (G/Zpr_l (2), 0y, ,(idy) =
(idy,idy). So, x = idy by injectivity of . A similar argument shows that 9/1+J € Aut(1+J)

and this completes the proof. O

Remark 3.3.1. From the Lemma 3.3.1 and the Proposition 3.3.1 it is easy to see that since
the groups Zy-—1 and (14 J) are of relatively prime orders and Aut(Zyr—1) = (Zyr—1)*, it

implies that;
(i) when char(R) = p, then Aut(R*) = Aut(Zyr 1) % Aut((Z5)") = (Zyr—1)* x Aut((Z;)").
(it) when char(R) = p?, then Aut(R*) = (Zyr—1)* x Aut((Z))"*).

Lemma 3.3.2. Let Char R = p, where p is a prime integer and B, = 1+ J = (Z;)h,
then, | B, |=p™.

Lemma 3.3.3. Let Char R = p*, where p is a prime integer and B, = 1+ J = (Z7)"*!,

then, | B, |= pr"+b.

In the sequel, we determine Aut(I + J) for both the characteristics of R.
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3.4 The Endomorphism Rings of the group 1+ J

For a successful characterization of Aut(R*), it is necessary and sufficient to find a descrip-
tion of E,, the endomorphism ring of (1 + J) and finally specify which endomorphisms
are automorphisms. Elements of F, are group homomorphisms from 1+ J into itself with
ring multiplication given by composition and addition given naturally.

An element of 1+ J is a column vector (z1,...,7,)T in which each z; € Z/p“Z and

x; € Z is an integral representative.
3.4.1 Characteristic of R =p

Proposition 3.4.1. Let R be a finite ring whose additive group (R, +) is of type (p, p®2, - -+ ,p) :
€; > ey > -+ > ¢. Then, R can be identified with a subring of the endomorphism ring
say, of the additive group. The ring can be considered as the ring of all | X | matrices

(a;j) such that 1 <1, j <1 of the form,

a1 a1z -+ Ay
Pl %ag ax - ag
(ai;) = - .
pel_eQG/ll e e all
such that

an — 4 Qi 1< J;

v €I, 1> g

p ij) J-

Definition 3.4.1. Let 1+ J =7, X Z, X --- X Z,,. We define

h

R, = {(aij) € Zpxn : p~ 9 | a;j, where 1 < j <i <n}. (3.1)

The set R, defines a set of all the rings of matrices describing the representations of all

the endomorphisms of 1+ J.

Example 3.4.1. Suppose n = 4. Since e; = 1l,e5 = 2,e3 = 3,e4 = 4, then G =
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Ly X L2 X L3 X Lys s0 that

ail a12 13 Q14
o pas1 22 Q23 (24 .
Rp = 2 D Qg e Z
p as1 pazz Az asa
3 2
P 41 P Q42 Pag3z Qg
Therefore generally, for 1 + J = Zy, X -+ X Ly,
—_— —m———
T
aix aig -t Qir
A1 Q22 --° Qo
Rp = . . . : L Qg4 e Z
Ar1 Qpp - App

Lemma 3.4.1. [48] R, forms a ring under matriz multiplication.

Proof. Let A = (a;;) € R,. The condition that p“~% divides a;; for all ¢ > j is
equivalent to the existence of a decomposition A = PA'P~', in which A" € Z"*" and
P = diag(p®, ..., p) is diagonal.

Now, if A,B € R,, then, AB = (PA'P ') (PB'P™') = PABP™' € R, as re-

quired. O

Proposition 3.4.2. Let ¢; : Z — Z/p“Z be defined by x — x mod (p®). Let ¢ : 7" —
(1+J) be a homomorphism given by ¢(x1, ..., x,)T = (d1(21), ..., O (20))T = (21, ..., 20)7T.
Then, E, is a multiplication by a matrizc A € R, on a vector of integer representatives

followed by an application of ¢.

Theorem 3.4.1. [48] The map ¢ : R, — E, given by (A)(x1, ..., xn)" = ¢(A(x1, ..., zn)T)

s a surjective ring homomorphism.
Proof. Follows from the proof of Theorem 3.3 in [48]. O

Remark 3.4.1. Given this description of E, = End(1+ J), we can, characterize, those

endomorphisms giving rise to elements in Aut(1+ J).

Lemma 3.4.2. The kernel of ¢ is given by the set of matrices A = (a;;) € R, such that

p~% divides a;j for all i, j.
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Remark 3.4.2. [t is now clear that E, which is the endomorphism of (14 J) is explicitly

characterized as a quotient R,/ Ker (¢).

Theorem 3.4.2. [}8] Let A € Z"*" be such that det(A) # 0. Then, there exists a unique
matriz B € Q™™ called the adjugate of A such that AB = BA = det(A)I and moreover,

B has integer entries.

Proposition 3.4.3. Let R be a square radical zero finite commutative completely primary
ring constructed in the previous section. Let the characteristic of R be p so that 1 +

J = (Zh)". Suppose, B, = Ly x ---x L, C (14 J) , then we can construct a set of
—_———

T
endomorphisms of B, in a similar manner as in the sequel such that,

a1; Q2 -+ Qir
e . . Q21 Q22 -+ QA2

Ry ={(ay) :p" Y ay 1<j<i<r}= S :T cai; € Ly = M(Zy).
Ar1 QApy - (o7

(3.2)

As a result, the following conditions hold:

(i) End(B,) = ¥(A) such that A = (a;;) € M, (Zy) and ¢ : M.(Z,) — End(B,) is a

surjective ring homomorphism
(i1) Aut(B,) = GL,(Z,).

(iti) | Aut(B,) |= ITiZ (0" — p').

Proof. The proof of (i) and (ii) follow from the previous results.

Now, consider Aut(Z, x --- X Z,). We start with Aut(Z,) and Aut(Z, x Z,) in order
—_—

to obtain the size of the autO;norphism group of B,. In Z,, each of the p — 1 nonidentity
elements has order p. Suppose Z, =< a >, then the map a + a' is an element of Aut(Z,)
provided i € [1,p—1]. Thus | Aut(Z,) |= p—1 = ¢(p), where ¢ is the Euler’s phi-function.

Next, let a and b each generate groups of order p, so that Z, x Z, =< a >< b >. A
homomorphism 6 : Z, X Z, — Z,x Z, is an automorphism if and only if | #(a) |=| (b) |=p

and < 0(a) > intersects with < 6(b) > only at identity.
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To find | Aut(Z, x Z,) |, we must count the pairs (3, ) of elements in Z, x Z, such
that 6(a) = B and §(b) = 3 determines an automorphism. Each of the p? — 1 nonidentity
elements of Z, x Z, has order p , so, a given element of Aut(Z, x Z,) may map a to any
of the p? — 1 different places.

Let 3 be nonidentity element. We must count the elements 3" of Z, x Z, such that
< f >=pand < >N < >={e}. Since each 3 generates a group of order p and any
of the p? — p elements of Z, x Z,, lying outside of < 3 > will generate a group of order p

that intersects the group < > only at identity element, it follows that

| Aut(Zy x Z,) |= (p* = 1)(p* — p) (3.3)

For B, =Z, X -+ X Zy, let {g1,--- ,g.} be a set of generators for B,, so that
—_— ————

r

Ly X oo X Wy =< g1 > X < gg> XX < gp >
—_——
T

Each of the nonidentity elements of B, has order p. We now count the number of injective
maps from the above generators to nonidentity elements that generate groups intersecting
only at the identity element.

Suppose that an automorphism of B, sends g; to some element 3 in B, then there
are p” — p elements 3 such that < § > N < § >= {e}. Supposing further that this
automorphism is given by ¢, — 8 and g, — 8 for some " not in < 3 >, there remain
p" — p? elements 3 € B, that are outside of < > x < 5" >. Sending g3 to any such §"
gives (< f>< 3 >)N< " >={e}.

Continuing in this manner, it is easy to specify where an automorphism of B, sends
the first n generators and then find p" — p" elements in B, to which the next generators
might be sent. Thus,

r—1
| Aut(Zy,) |=] Aut(B,) |= H)(pr —p'). (3.4)
i

]
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In addition to the result above, we have:

Theorem 3.4.3. Any endomorphism M = (A) where A € R, is an automorphism if
and only if A mod p € GL,(F,) where n = rank(1 + J).

Proof. Fix a matrix A € R, with det(A) # 0. It is well known that an adjugate of A say
B € Z"*™ exists such that AB = BA = det(A)I. We need to show that B is actually an
element of R,.

Let A = PA'P~! for some A" € Z™" and B' € Z™" be such that A'B" = B'A" =
det(A')I. Notice that det(A) = det(A"). Let C = PB'P~! and observe that

AC = PA'B'P~! = det(A)I = PB AP~ = CA.

By the uniqueness of B, it follows that B = C' = PB'P~! and thus, B is in R, as desired.
Now, suppose that p { det(A) so that A mod p € GL,(F,) and let A\ € Z be such that
A is the inverse of det(A) modulo p®(such an integer exists since ged(det(A),p) = 1).
Thus we have, det(A) - A =1 mod p% whenever 1 < j < n.
Let B be the adjugate of A. Define an element of R, by A" := \ . B, whose image

under ) is the inverse of the endomorphism represented by A :
W(ATDA) = p(AATY) = (X - det(A)]) = idp,.

This proves that ¥/(A) € Aut(1+ J). Conversely, if )(A) = M and ¥(C) = M~! € E,
exists, then, ¢ (AC — I) = ¢(AC) —idg, = 0. Hence, AC — I € ker(v).

From the kernel calculation , it follows that p | (AC — I) entry-wise and so, AC' = I
mod p. Thus, 1 = det(AC) = det(A) det(C') mod p. In particular, p { det(A). O

Lemma 3.4.3. Consider R* such that char(R) = p, so that 1+ J = Z, X Z, X .... X Z,,.

h

Then,
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apn A1y ai(r+1) " aiery - Q1(hr)
45} A2y ag(r+1) " Qa2ry " a2(hr)
Qy Qpy Qp(p Qp(2r Qp(hr
(i) R, = '1 (,H) ) (,2 ) ( ) tai; €L
eyt 0 Ay Qe (r4+1) 0 G@2r)@2r) T A2r)(hr)
Apryr 0 Qhryr Qhr)(r4+1) " Qrr)(2r) " Q(hr)(hr)
— My (Z,) (3.5)

(1))End(1 + J) = (A) such that A = (a;;) € Mw(Z,) and ¢ : Moy (Z,) — End(1+ J)

is an onto ring homomorphism.
(iii) Aut(1+ J) = GLp,(Z,).

Lemma 3.4.4. Consider R* such that char(R) = p* so that 1 4+ J = Zy X L, X ... X L.

h+1
Then
aiy T Qlp ai(r+1) 0 A1(2r) " a1((h+1)r)
a21 T Qop ag(r+1) 0 A2(2r) A2((h+1)7)
. Qr1 e Ay Qp(r41 o Qp(2r e Qr((h+1)r
(Z)Rp: (. ) . (.) ((.)) :CLUEZ
a(2r)1 A2y A2r)(r41) T Q(2r)(2r) a2r)((h+1)r)
A((h+1)r)1 " A(ar)r Q(hr)(r+1) 77 Q(hr)(2r) 7" G((h+1)7)((h+1)7)
= Mpy1)r(Zp) (3.6)

(it)End(1 4+ J) = (A) such that A = (ai;) € Myni1y(Zy) and Y © Mypi1)(Zy) —

End(1+ J) is a surjective ring homomorphism.
(iii) Aut(1+ J) = GL(py1)r(Zyp).

3.5 Counting the Automorphisms of 1+ J for both characteristics of R

3.5.1 For the characteristic of R =p

From Lemma 3.4.3, Aut(1l+ J) = GLp(Z,). Thus, we need to find all the elements of

G Ly, (Z,) that can be extended to a matrix in End(1 + J) and calculate the distinct
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ways of extending such an element to an endomorphism. So, we need all such matrices
My, (Z,) € End(1 + J) that are invertible modulo p.

Now, recall that (1 + J) = (Z;)" and define the following numbers:
ar = max{m : e, = ex} and By = min{m : e,, = ex}. (3.7)

Since e,, = e, for m = k, we have the two inequalities a, > k and [, < k.
Note that 8; = 3 = - -+ = [,, and since e; = ey = --- = e, = ey, = 1, it follows that

n = hr and «; coincides with §j for all the values of k.

3.5.2 For the characteristic of R = p?

Similarly, since (1+.J) = (Z)"*" , we define the numbers:
ar = max{m : e, = e}, B = min{m : e, = ey}

Since e, = e, for m = k, we have the two inequalities a, > k and By < k

Note that §; = 2 = -+- = 35, and since e; = e3 = -+ = €, = e(41) = 1, it follows
that n = (h + 1)r and oy coincides with [y for all the values of k.

Now, for both of the considerations, the number of matrices say A € R, that are
invertible modulo p are upper block triangular matrices which may be expressed in the

following forms:

miy Miz2 0 Mi(hr)
: mip,
A — May1 _ mM2p,
My2
0 Mr)sry " TR (hr)
0 My, hr

for char(R) = p and
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mi; Mg - M1((h+1)r)

ma22

0 Mo y1ym) ((R41)r)

mig,
mM2s,

0 MU+ DDB(yry " D) (A1)
for char(R) = p*.

The number of such A is [[",(p® — p*~1) for char(R) = p and [IVV"(p™ — pF—1)
for char(R) = p* since we require linearly independent columns. Thus when char(R) = p,
the abelian group (1 + J) = (Z7)" has | Aut(1 +J) |= [T, (p* — p*1) and when
char(R) = p?, the abelian group 1+ .J = (Z7)"*! has | Aut(1+J) |= [T (pow — ph=1)y.

The results below follow:

Theorem 3.5.1. The structure of the automorphisms of the unit groups R* of the com-
mutative completely primary finite ring of characteristics p and p* with Jacobson radical
J such that J* = (0) and with invariants p (prime integer), p € J,r > 1 and h > 1 is a
direct product of the units of Z,_1 and the general linear group whose dimension is the

rank of 1+ J as follows:
(i) When the characteristic of R equals p, then,
Aut(R*) = (Zyr—1)" X GLp,(F,).
(i) When the characteristic of R = p*, then,
Aut(R") = (Zyr-1)" X GLr1) (Fp).

Theorem 3.5.2. The order of the automorphisms of the unit groups R* of the commut-
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ative completely primary finite ring of characteristics p and p* with Jacobson radical J
such that J* = (0) and with invariants p (prime integer)p € J,r > 1 and h > 1 is

characterized as follows:

(i) When the characteristic of R equals p, then,

hr
| Aut(R*) |= o(p" = 1) - [T (0™ = p*1).
k=1
(ii) When the characteristic of R = p*, then,
(h+1)r
| Aut(R) |[=o(p" =1)- T (™ —p"*").
k=1

3.6 Unit Groups of Cube Radical Zero Commutative Completely Primary
finite rings
Let R be a commutative completely primary finite ring with maximal ideal J such that
J? = (0) and J? # (0). The detailed constructions describing these rings for each charac-
teristic p, p? and p® are well known (see for example in [23]). Further, R/J = GF(p") and
the characteristic of R is p* where 1 < k < 3. Let Ry = GR(p™,p") be a Galois subring
of R, of order p™" and characteristic p”. Then, the ring R can be expressed as an additive
abelian group R = Ry @Z?Zl Rym; whose maximal ideal J satisfies J = pRo® Z?:l Rom,;.
Such a class of a ring expressed as R = Ry & U &V & W has been constructed by
Chickunji in [23], where it has been shown that the Jacobson radical J is of the form
J=pRy®dU ®V & W where U,V and W are finitely generated Ryp—modules . The
structure of R was characterized by the invariants p,n,r,d, s,t and A\, where p is a prime
integer, d is the number of generators whose order is different from p, and n, r are posit-
ive integers, s, t, A are the generators of the sets U, V, W respectively, and the linearly
independent matrices (af;) defined in the multiplication. Moreover, in [28], d > 0 denotes
the number of the sets {mq,...,my} with pm; # 0. Similarly, It is considered that s, ¢, A
are the numbers in the generating sets for the Ry—modules U, V. W respectively.

In [24], the author determined the unit groups R* of the ring R when s = 2, t = 1,
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A = 0 and the characteristic of R is p; and when ¢t = w, A = 0 for a fixed in-
teger s for all the characteristics of R. In [25], the author obtained the structure of R*
when s = 2,t = 1,A = 0 and the characteristic of R is p? and p3; and the case when
s =2,t =2,A =0 and the characteristic of R is p. In both [24, 25], it was assumed that
A = 0 so that the annihilator of the maximal ideal J coincides with J2.

It has been shown in [26] that 1+ J is a direct product of its subgroups 1+pRy@U SV
and 1+ W and further, the structure of 14+ W determined in general. The structure of R*
has been determined when s = 3,t = 1,A > 1 and char(R) = p. A generalization of the
structure of R* in the case when s =2,t =1t = @ for a fixed integer s and for all the
characteristics of R has been done, and when s = 2,¢ = 2 and char((R) = p) determined
in [24, 25] to the case when the ann(J) = J> + W so that A > 1. This complements the
solution to the problem in the case when ann(J) = J2.

Notice that since R is of order p"" and R* = R — J, it is easy to see that | R* |=
p U (p" — 1) and | (1 + J) |= p"~V" so that (1+ J) is an abelian p—group. Thus, since
R is commutative,

R =<b>.1+J)=<b>x(1+J).
a direct product of the p—group (1 + J) by the cyclic subgroup < b > .
3.6.1 The Structure of 1 +J

Chikunji [23] has given the structure of 1+ W, a form of 1+ J of the completely primary
finite ring R = Ry ® U ® U & W where Ry = GR(p*",p*) (1 < k < 3), s,t,\ € ZT are
numbers in the generating sets {us, ..., us}, {v,..., v}, and {wy,...,wy}, for finitely gen-
erated Ryp— modules U, V, W respectively, where ¢ < @ and A\ > 1. It was established

that,
s t A
R = RO D ZROUZ D Z RQ"U]' (&) Z Rowk,
i=1 j=1 k=1

s t A
J=pRo®> Rou; ®>_ Rov; ® > Rowy,

i=1 7j=1 k=1
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¢ A
ann(J) =pRy® > Rov; ® Y Rowy,

j=1 k=1
or
t A
ann(J) = p*Ry ® Z Ryv; @ Z Rowy,
j=1 k=1
t
J2 = pRO S Z ROU]',
j=1

or

t
J* = p’Ry @ > Rov,

J=1

and J3 = (0). Hence
s t A
1 —|—J =1 +pRO@ZROUi@ZROUj D ZRowk
i=1 j=1 k=1

The following results were found to be vital in determining the structure of 1+ J.
Proposition 3.6.1. /23] If A\ > 1, then 1 + X, @ Row; is a subgroup of 1 + J.
Corollary 3.6.1. [23]/ 1+ ann(J) is a subgroup of 1+ J.

The following results were given in [23] in order to simplify most of the work in the
sequel;

Proposition 3.6.2. The p—group 1+ J is a direct product of the subgroups 1 + pRy &
>iq Rou; @ Z§:1 Rov; by 1+ 22:1 Rowy,.

Since the structure of 1+pRy®>.7 Roui@zzzl Ryvjfors =2t =1;5s =2t =2and
char(R) = p and t = @ for a fixed s, have been determined in [24, 25|, the structure
of 1 + W = 1+ ¥}, w; is sufficient, it is determined in [26] for every characteristic
Pk, (1 < k < 3). It is noted that pw; = 0 for each w; € W(i = 1,---,)\), since

W Cann(J) = J? + W. Thus:

Proposition 3.6.3. The group 1 + W = 1 + X0 w; = Ly X -+ X Ly, for any prime
—_———
A>1

integer p such that charR = p* (1 < k < 3).
The case when char(R) = p, s =3,t =1 and A > 1 has also been considered in [26].
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3.6.2 The Structure of the Unit Groups

As a result of the previous properties of (1 + J) and given that R* = Z,»_y x (1+J), the
structure of the unit groups of cube radical zero commutative completely primary finite

rings is characterized as follows:

Theorem 3.6.1. (c¢f. [26]) The unit group R* of a commutative completely primary finite
ring R with mazimal ideal J such that J* = (0) and J* # (0); and with the invariants

p,k,r s, t and A > 1, is a direct product of cyclic groups as follows:

(i) If s =2,t =1,A > 1 and char(R)=p, then

Z2T—1 X ZZ X Zg X (Zg))\7 or;
R = Ligr_1 X Zg X Zg X Zg X (Zg))\, pr =2;
Loy X Ly X Ly X T x (Z0), if p # 2.

(ii)If s = 2,t = 1,\ > 1 and char(R)=p?, then

g = | Lo XLy X Ly X L X T % (Z;;)A,A or;
L1 X Ly X Lipy X Ly X Ly X (Z3,)*, if p # 2.

and if p = 2 then,

(ZQ X Zg) X (ZQ X Zg) X Zig X (Zg))\, ZfT’ =1 cmdp eJ— CLTLTL(J),’

Digr_y X Ty X Ty X 75 < (7)™, ifr>1andpe J—ann(J);
Rt ] B X Ly X T X (Z5)*, or;
T Zyr X 7 X T x T x (Z5), if pe J?
Dgr 1 X Ty x Tl x Ty x (Z5)*, or;
Dgr_y X T x T x 75 x (Z5)*, if p € ann(J) — J%.

iWi)lf s =2,t = 1,\ > 1 and char(R)=p>, then
(iii)If : P

g = | Bora X L X Ly X Ty X Ty X Ty X (Z5), or;
L1 X Ly X Ly X Ly X Ly X (Z), if p # 2.

and
Loyr X Ty X Ty x Ty x (Z5)™, or;
R* = Zory X T X Ty x Ly x 7 x (Zh)*,
Lgr—q X Ly X Ly x Ly x Ly x Ty x (Zy), if p=2.
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() If s = 2,t =2, A > 1 and char(R)=p, then
Loy —y X Ly X T X T X Lh (L), if p # 2;

R* = Zogr_y X Tl x 7} x (Z5)*, or;
Doyr . X Ty x Ty x Ty x (Z5)™, if p=2.

(v) If t = s(s+1)/2,A > 1 for the various characteristics of R, then

R = { Zoe oy x (Z)° x (Z5)" % (Zp), ifp=2
Zyr1 X (T) % (Zy)° X (Zy) x (), ifp#2,

for Char(R) = p.

e Do X Ty x () x () x () x (Z)*, ifp=2;
L1 x T x (Z3)* x (Zp)* x (ZL) x (T, if p#2,

for Char(R) = p*.

g = | Bora X2 X Ty X 2T X (Z5)° X (Z4)° X (L)Y x (Z5)*, if p=2;
T\ Zyro1 X Zy X (Z)° X (Zp)* % (Z3)7 x (Zh)?, if p#2.

p

for CharR = p?, where v = (s* — s)/2.

3.7 Automorphism Groups of the Units of Cube Radical Zero Commutative
Completely Primary Finite Rings

We now characterize Aut(R*) by establishing the structure and order of the automorphism

groups of the unit groups whose structures are given in the previous theorem. We pay keen

attention to the particular cases and describe the set of matrices R, and endomorphisms

M = (A) such that A € R, and ¢ : R, — End(1+J) is a surjective ring homomorphism.

The following results are important in the sequel:

Proposition 3.7.1. Let 1 + J = Zyer X Zpes with e; < ey. Then, the matriz ( ; Z >

represents:

(i) An Endomorphism of 1+ J if and only if i € Zyer, j =0 mod (p®~ ), r € Zyeo and

S € Zp€2.

(i) An Automorphism of 1+ J if and only if i € (Zyer)*, j =0 mod (p® =), 1 € Zyes

and s € (Zyes) .
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Lemma 3.7.1. Let R be a class of ring considered in this section and 1+ J be a normal

subgroup of its unit group R*. The following conditions hold:

(i) The map ¢ : R, — End(1 + J) acting on each column or row of R, is a surjective

ring homomorphism.

(77) Let K be the set of matrices A = (a;j) such that p*~% | a;; for alli,j. This forms
an ideal. The ideal K is the kernel of ¢ and the endomorphism M = (A) =
R,/ Ker 1.

(iii) The endomorphism M = (A) is an automorphism if and only if A mod p €
GL,(F,).

3.7.1 Endomorphisms of 1+ J and their properties for all the characteristics
of R

Case 1: If s =2t =1,A > 1 and char(R)=p, then

Ziy x L x (Z5),
L+ J =1 ZyxZx Zy x (
Ly, X Ly X Zipy % (

or;

Zg))\v if p=2;
T\ :

L), if p# 2.

(a) If s=2,t=1,A > 1 and char(R) = 2 and
14+ J =75 x 75 x (Z5)* = (Zy)™ Y x 77,

then, for a;; € Z,

ail T A1(r(A41)) A1(r(A+1)+1) T A1(r(2+2))
a1 e a2(r(A+1)) A(r(A+1)+1) T A2(r(A+2))
Ry = A(r(A+1))1 T A(r(A+1))(r(A+1)) ArA+1))(r(A+1D)+1) 7 Ar(A+1)(r(A+2))
2004141 7 2000+ D) 4D (D) A+ DD (O 41 T G 1) 1) (r(A+2))
2ag-2)1 0 200042)(r(A+1)) Alr(A+2)(r(A+1D)+1) " A(r(A+2))(r(A+2))

Proposition 3.7.2. If s =2,t = 1,A > 1 and char(R) =2 and 1 + J = (Zy)"**V) x 7],

then,
(1) Ry = {(ay) : 297 | a;; : 1 < j <i <r(A+2)} = My(ay2)(Za).
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(it) rank(1 + J) = r(A +2).

(iii) For A € Ry and a surjective ring homomorphism v : Ry — ((Zg)™™V) x Z1,),

End((Zo)" ™Y x Z5,) = ¢(A).
(v) Aut((Ze)" ™Y x Z,) = GLp(rr2)) (Fa).
(b) orif s=2t=1,A>1, char(R) = p = 2, then

L+ J = Z5 x Zy x Zy x (Z5)* = (Zy)" ).

So,
ar 12 s A1(r+1) T A1(r(A+3))
21 22 T A2(r+1) T a2(r(2+3))
Ry = a(r)1 a2 A1) A(r)(r(A+3)) s € Lo
A(r4+1)1 A(r41)2 ce A(r4+1)(r+1) " A(r41)(r(A+3))
A(rA+3)1 Ar(A+3)2 GO +3)(r+1) " A@r(A+3)(r(A+3))

Proposition 3.7.3. If s =2,t = 1,A > 1 and char(R) =2 and 1 + J = (Zy)"**3) then,
(1) By = {(ai) - 2979 |y : 1 <j <0 <r(A+3)} = Myag3)(Z2).
(it) rank(1 + J) = r(A + 3).

(iii) For A € Ry and a surjective ring homomorphism 1 : Ry — ((Zg)"®*), End((Z)"* %)) =

W(A).
(z'v) Aut((Zg)T(”?’)) = GL(T(/\+3)) (Fg)
(c) If s=2,t=1,\>1 and char(R) = p # 2, then,

L+ J =2Z, x Z, x Zj, % (Z;;)A = (Zp)r(m).

o7



In this case a;; € Z,, and

ai a2 T A1(r+1) T A1(r(2+3))
Q21 22 T Ag(r+1) T A2(r(A+3))
Rp = ()1 A(r)2 T A(ry(r+1) U A(r)(r(A+3))
A(r4+1)1 A(r41)2 s A(r4+1)(r+1) A(r4+1)(r(A+3))
Ar(A4+3)1  Ar(A+3)2 “°° GrO+3)(r+1)  “°° Ar(A+3))(r(A+3))

Proposition 3.7.4. If s =2t =1,A>1 and char(R) =p # 2 and 1 + J = (Z,)"**+¥,

then,
(i) By ={(ay) : p“ % | a; : 1 <j <i <r(A+3)} = Mrya)(Zy)
(i) rank(l 4+ J) = r(A + 3).
(iii) For A € R, and a surjective ring homomorphism 1 : R, — ((Z,)" %)), End((Z,)"®*?) =
W(A).
(v) Aut((Z,)" ) = GL (i3 (Fp)-
Case 2: If s=2,¢t=1,A > 1 and char(R) = p?, then

r r T T T\ .
1+J:{prprZp><Zp><(Zp) on
Ly X Ly X Lz X Ly % (Z3,)", if p # 2.

If p = 2 then,
(Zg X Zz) X (ZQ X ZQ) X Zg X (Zg))\, if r =1 and p e J — CL’I’L?’L(J),
Zh x Ly x 7 x (Z5)™, ifr>1andpeJ—ann(J);
) 2y <} Zi x (Zy), or;
VHT=3 20 x 75 x 75 % (25 itpe 2,
7y x T x 7 x (Z5)*, or;
7l x I x 7 x (Z5)*, if p € ann(J) — J2.

(a) If s =2,t =1, A > 1 and char(R) = p?, p # 2, then,

L+ J =70 x Zh x 7 x Zh % (Z0) = (Z,)" O,
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Thus, for a;; € Z,

ai a2 T A1(r+1) T A1(r(2+4))
21 22 T Ag(r+1) T A2(r(A+4))
Rp = ()1 A(r)2 T Q(ry(r+1) U Ar)(r(A+4))
A(r4+1)1 A(r41)2 s A(r4+1)(r+1) A(r41)(r(A+4))
A(r(A4+4))1  Ar(A+4)2 OO+ r+1) " Q@r(A+4)(r(A+4))

Proposition 3.7.5. If s =2t = 1,\A > 1 and char(R)=p*, p # 2 and 1+ J = (Z,)" ™),
(i) Ry = {(ay) : p“"9 [ay : 1 < j < i <r(A+4)} = Mgy (Zy).
(it) rank(1 + J) = r(A+4).

(iii) For A € R, and a surjective ring homomorphism 1 : R, — ((Z,)"*), End((Z,)"**Y) =

P(A).
(iv) Aut((Zp)T(AH)) = GL(T()\+4))<FP).
(b) If s =2,t =1,A > 1 and char(R)=p?, p # 2, then
L+ J =70 x Zly X Ly x Ly x (Z0) = (Z,)" ) x 2%,

and for a;; € Z,

a1 o a1 (r(A+2)) A1(r(A+2)+1) e A1(r(A+4))
as cee a2(r(A+2)) A2(r(A+2)+1) T A2(r(2+4))
Rp = A(r(A+2))1 A(r(A4+2))(r(A+2)) A(rA+2)(r+2)+1) " O(r(A+2))(r(A+4))
Pagr+2)+1)1 "0 PArO+2)+1)(r(A+2)) A(r(A+2)+1)(r(A+2)+1) " A(r(A+2)+1)(r(A+4))
Par+4a)1 - PA(r(0+4))(r(A+2)) A(rA+4)(r(0+2)+1) " O(r(A+4))(r(A+4))

Proposition 3.7.6. Ifs = 2.t = 1,\ > 1 and char(R)=p?, p # 2, and 1+J = (Z,)"**? x

12, then
(i) Ry = {(ay;) : p®9 | a; : 1 < j <i <r(A44)} = Myoga)(Zy).

(it) rank(1 + J) = r(A+4).
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(iii) For A € R, and a surjective ring homomorphism ¢ : R, — ((Z,)"**? x %),

End((Z,)" 2 x 22) = ¢(A).
(iv) Aut((Z,) O+ x Z2%) = GLy(nray) (Fp)-
(c)If s=2,t=1,A>1and char(R)=p*>, p=2,r=1and p € J — ann(J), then
1+ J = (Zy X L) X (Zy X Ly) x Ly X (Zy)* = (Z3)> ™,

and for a;; € Zs,

a 12 T A1(541) T A1(2+5)

21 22 T A2(5+1) ce A2((A+5))

Ry = a(5)1 A(z)2 ay(s+1) A(5)(A+5)
A+l A2 0 QGG T A(5H1)(M5)
Ax+5)1 A+5)2 0 AA+5)(5+1) 0 AA+5)(M+5)

Proposition 3.7.7. If s=2t=1,A>1, p=2, char(R)=4, r =1 and p € J — ann(J)

and 1+ J = (Z)>**, then
(1) Ry ={(ai;) : 2979 | ay; : 1 < j < i < (A+5)} = Mrss)(Zo).
(7t) rank(1 + J) = A+ 5.

(iii) For A € Ry and a surjective ring homomorphism 1 : Ry — ((Z2)>™), End((Z9)>**) =

b(A).

(iv) Aut((Zg)5+’\) = GL(T(A+5))(F2).
(d) If s=2,t=1,A>1and char(R)=4, r > 1,p € J — ann(J), then,
L J = T X 2 X T x () = (Z) O x (Z)?,

and for a;; € Zs
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ant e A1(r(A+1) A1(r(A+1)+1) o N (r(r+3)
a21 T A2(r(A+1)) A2(r(A+1)+1) T A2(r(A+3))
Ry = A(r(X+1))1 te A (r(A41)) (r(A+1)) A(r(A41))(r(A+1)+1) te A(r(A4+1))(r(A+3))
200040401 0 20004D)+1)r(O+1) GO+ O+ T A1)+ (r(A+3))
2 A(r(243))1 co 2 A (r(A43))(r(A+1)) A (r(A43)) (r(A+1)+1) ce A (r(A43))(r(A+3))

Proposition 3.7.8. If s =2t =1,A > 1 and char(R) =4, r > 1,p € J —ann(J) and
1+J= (Zg)r()‘—’—l) X (Z22)2r,

(1) Ry = {(aij) : 2979 | a;; : 1 < j <i <r(A+3)} = Mynia)(Zo).
(7t) rank(l + J) = r(A+ 3).

(iii) For A € Ry and a surjective ring homomorphism 1) = Ry — ((Zy) Y x (Zy2)?T),

End((Zy)" ™) x (Zy2)") = ¢p(A).
(ZU) AUt((Zg)T()\+1) X (ZQZ)QT) = GL(T()\+3))(]F2).
(e) If s=2,t=1,\A>1and char(R)=p?, p=2,7 > 1, p € J —ann(J), then

L+ J =7 x T x (Z5)* = (Zo)™ x (Zg)™,

and
ai T Qa1(rx) A1(ra+1) T A1 (r(A+2))
21 T A(r)) A2(rx+1) T A2(r(A+2))
Ry = a(ra)1 e A(r2)(ra) @) ratl) 0 Q) (r(A+2) aij € Lo
200401 0 200041 QNN EARD) T Q)+ (r(A+2))
2ap042)1 T 200042)00) A2 A T Ar(A42))(r(A+2))

Proposition 3.7.9. If s = 2,t = 1,\ > 1 and char(R)=4, r > 1, p € J —ann(J) and
L+ J = (Zy)™ x (Z4)*, then
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(i) Ry = {(ai) : 2979 [ aj; : 1 < j < i Sv(A+2)} = Myoaia)(Z2).
(it) rank(l + J) = r(A +2).
(iii) For A € Ry and a surjective ring homomorphism
U Ry = ((Z2)"™ % (Za)™), End((Z)™ % (Za)*") = ¥(A).
(iv) Aut((Zo)™ x (Z92)*") = GL(r(r12))(F2).
(f) If s =2,t =1,\ > 1 and char(R)=p?, p =2 € J? then,
14 J =75 x 75 x 25 x (Z5) = (Zg)" ™2 x (Zy)",

and for a;; € Zs,

a1 U A1(r(A+2)) A1(r(A+2)+1) U A1(r(A+3))
a21 T A2(r(A42)) A2(r(A+2)+1) T QA2(r(A+3))
Ry = A(r(X4+2))1 te A (r(A42))(r(A+2)) A(r(A42))(r(A+2)+1) tee A(r(A42))(r(A+3))
200042411 0 2030042 +1)(r(0+2)  ArO+2)+1)rO+2)+41) T Ar(2)+1) (r(A+3))
2 Q(r(243))1 ce 2 A (r(A43)) (r(A+2)) A (r(A43)) (r(A+2)+1) T A(r(A43))(r(A+3))

Proposition 3.7.10. If s = 2;t = 1,A > 1 and char(R)=p*, p € J?, p = 2 and
14+ J = (Z2>r()\+2) X (Z4)r, then

(Z) R2 = {(Clij) A ‘ Qjj, VZ,j o1 S] < 1 < 7’()\ + 3)} = MT(A+3)(Z2>.
(it) rank(1 + J) = r(A + 3).
(iii) For A € Ry and a surjective ring homomorphism

¥ Ry — ((Zo)™ X (Zy)"), End((Zy)" 2 x (Z4)") = ¥(A).

(2'2}) Aut((Zg)T()‘“) X (Zzz)r) = GL(T(/\Jrg))(IFg).
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(g) Orif s =2t =1,A>1 and char(R)=p? p =2, p € (ann(J) — J?), then
14+ J =Z5 x Ty x T x (Zy)* = (Zy)" P2 x (Zy)",

and for all a;; € Zs,

an e A1(r(A+2)) A1(r(A+2)+1) o N(r(r+3))
az1 T A2(r(A42)) A2(r(A42)41) e A2(r(A+3))
Ry = a(r(ag2)1 e A(r(A+2)) (r(A+2)) ArO+2)rO+2)+1) r(A+2)(r(A+3))
2ap042) 411 0 200042 +1)r(0+2) GOt +1)r(O0+2) 41 T Ar(A2)+ 1) (r(A+3))
2ap043)1 0 203:(043))(r(A+2)) Ar(A+3)(r(A+2)+1) 0 Gr(A+3)(r(A+3))

Proposition 3.7.11. If s =2,t = 1,A > 1 and char(R)=p*, pe J , p=2and 1+ J =
(Zy)"O+2) X (Zy4)", then

(i) Ro = {(ayy) : 2979 [a;; : 1 < j < i < r(A+3)} = My (Zo).
(i1) rank(1 + J) = r(A + 3).
(iii) For A € Ry and a surjective ring homomorphism
Y Ry = ((Z2)" ) x (Zg2)"), Bnd((Zs) ™2 x (Zez)") = ¥(A).
fiv) Aut(Za) O x (Zn)) = GLipirssy (Fa).
(h) If s=2,t =1,A > 1 and char(R)=p?, p € ann(J) — J?, then

1+ J =7y x Ty x Ty x (Zy)* = 257,
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and for a;; € Zs,

ai a2 T A1(r+1) T A1(r(A+3))
az1 a22 T a2(r+1) T QA2(r(A+3))
Ry = a(ry1 a2 Q@) r+) Q@) (r(A+3))
A(r41)1 Ar1y2 o0 Q1) (r+1) A(r41)(r(A+3))
ArA+3)1 Ar(A+3)2 " AEOF3)(r+1) " ArO+3)(r(A+3))

Proposition 3.7.12. Ifs =2,t = 1,A > 1 and char(R)=p?, p € ann(J) — J*, p =2 and

1+J = Z;(HS), then
(1) Ry = {(ai;) : 2979 | ag; - 1 <j <i <r(A+3)} = Myass)(Za).
(7t) rank(l + J) = r(A+3).
(iii) For A € Ry and a surjective ring homomorphism

b2 Ry — (ZoO), End(Zy™Y) = ¢(A).

(iv) Aut(Z;(/H_S)) = GL(T()\+3))(IF2).

Case 3: If s =2,t =1,\ > 1 and char(R)=p?, then

1+J:{ZQQXZ;XZ;XZ;;XZ;X/\(Z;)A, or;
Lins X Lz X Ly X Ly X (Zp)*, if p £ 2,
and
75 x T < 7 x (Z5)*, or;
1+ J =13 Zy x 7 x 75 x 7 x (Z5)*, or;

Ty x T x Ty x Ty x 7 x (Z5)>, if p = 2.
(a) If s =2,t =1,A > 1 and char(R)=p*, p # 2, then

L+ J =20 x Z1 x Ly x Ly x T x (Z0) = (Z,)" Y x Zrs,

and for a;; € Z,,
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aii T A1(r(A+4))
az1 e A2(r(A+4))
R, = A(r(A+4))1 A(r(A+4)) (r(A+4))
Par(d4)+1)1 P Q(r(04-4)+1) (r(A+4))
Pa@E+s)1 P Ar(0+5)) (r(0+4))

A1 (r(A+4)+1)
A2(r(A+4)+1)

A(r(A4+4))(r(A4+4)+1)

A(r(A44)+1) (r(A+4)+1)

A(r(A5))(r(A+4)+1)

A1(r(A+5))
A2(r(A+5))

a(r()\+4)) (r(A+5))
A (r(A44)+1) (r(A+5))

A (r(A45)) (r(A+5))

Proposition 3.7.13. If s = 2,t = 1,A > 1 and char(R)=p®, p # 2 and 1 + J =

(Z,)rO+D x Zys, then
(i) By = {(ai) : p“9 [ aij; 1 <j < i <r(A+D)} = Miais)(Zy).
(it) rank(1 + J) = r(A+5).
(iit) For A € R, and a surjective ring homomorphism
¥ Ry — ((Z,)" X Z0), End((Z,)" ) x Z7,) = ¢ (A).
(i) Aut(Z,) O X Z7,) = GLiia sy (Fy)
(b) Orif s =2,t=1,\ > 1 and char(R)=p*, p # 2, then
L+ J =720 X Zlp X Ly x L x (Z0) = (Zy)"OF?) x (Zy2)™,

and for a;; € Z,,

ai T A1(r(2+2)) A1(r(A+2)+1) A1(r(A+4))
21 T A (r(2+2)) A2(r(A+2)+1) A2(r(A+4))
Rp = A(r(X42))1 A(r(A42))(r(A+2)) A(r(A42))(r(A42)+1) A (r(A42))(r(A+4))
Paea+2)+1)1 P aa+2)+1)(r(A+2))  G(r(A+2)+1)(r(A+2)+1) A(r(A42)+1)(r(A+4))
Paea+an Pa(r(A+4))(r(A+2)) A(r(A+4)) (r(A+2)+1) A(r(A44))(r(A+4))

Proposition 3.7.14. If s = 2,t = 1,A > 1 and char(R)=p®, p # 2 and 1 + J =
(Zp)r(A+2) % (Zp2)2r7

(1) By = {(ai) : p°7% [ a3 1 <j <i <r(A+4)} = Myaga)(Zy).
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(it) rank(1 + J) = r(A+4).
(iii) For A € R, and a surjective ring homomorphism
V1 Ry = (Z)" O % (Zy2)™), End((Z,)" 2 % (Zy2)™") = ¥ (A).
(iv) Aut((Zy)" O+ X (Z2)*) = GLi sy (Fy).
(c) If s=2,t=1,A>1 and char(R) = 8, then
L+ J =75 x Ty x Ty x (Zy)* = (Zo)" O x (Zy)™,

and for Q5 S ZQ,

an e A1(r(A+1)) A1(r(A+1)+1) T A1(r(A+3))
21 T A2(r(A+1)) A2(r(A4+1)+1) T A2(r(2+3))
Ry = A(r(A+1))1 ce A (r(A41)) (r(A+1)) A(r(A41)) (r(A+1)+1) ce A(r(A41))(r(A+3))
20041401 0 200D+ (1) GO+ O+ T A1)+ (r(A+3))
2ap0a3)1 T 203:(043))(r(A+1) Ar+3)rAED+1) 0 Gr(A+3) (r(A+3))

Proposition 3.7.15. If s = 2,t = 1,A > 1 and char(R)=p®, p = 2 and 1 + J =
(Zy)" O+ X (Z4)*", then

(i) Ro = {(a) : 297 [ ayys 1< J < i < r(A+8)) = Myuyoy (Zo).
(it) rank(1 + J) =r(A+ 3)..
(iii) For A € Ry and a surjective ring homomorphism
U Ry = ((Za)" Y % (Z2)™), End((Z)™ ) x (Z4)) = 4(A).
(i) Aut((Zs) Y x (Z4)*") = GL((r13)) (Fa).
(d) Orif s =2,t=1,\ > 1 and char(R)=p?, p = 2, then

14 J =74 x 7 x Zh x T x (Z5) = (Zy)" O3 x (Z,)",
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and for a;; € Zs,

a1
21

Ry = A(r(A+3))1
2a4(43)+1)1

2a((aray

Proposition 3.7.16. If s
(Zy)"O+3) X (Zy)", then

A1(r(A+3))
A2(r(A+3))

QA(r(A+3)) (r(A+3))

A1 (r(A+3)41)
A2(r(A+3)+1)

Q(r(A+3)) (r(A+3)+1)

2000 3)+1)(r(0+3))  Ar(A+3)+1)(r(A+3)+1)

2 A(r(A+4)) (r(A+3))

A(r(A44))(r(A+3)+1)

(1) Ry ={(ai;) : 2979 | ay; 1 < j < i <r(A+4)} = Myaga)(Zo).

(7t) rank(1 + J) =r(A+4).

(iii) For A € Ry and a surjective ring homomorphism

A1 (r(A+4))
A2(r(A+4))

A(r(A43))(r(A+4))
A(r(A43)+1)(r(A+4))

A(r(A44))(r(A+4))

2,t = 1,A > 1 and char(R)=p®, p = 2 and 1 + J =

Vi Ry — ((Z)™ ) X (Zy2)"), End((Zy)™ ) x (Zy2)") = 9(A).

(iv) Aut((Zg)T(/\Jrg) X (Z4)T) = GL(T()\+4))(]F2).

(e) Orif s =2,t=1,\> 1 and char(R)=p>, p = 2, then,

14 J =75 X Z5 x T x T X 7 x (Z5) = (Zy)™ ) x (Z,)",

and for a;; € Zs,

a11

21

Ry

Q(r(A+4))1
2 aG(a)+1)1

2a(-(2+5)1

A1(r(A+4))
A2(r(A+4))

A(r(A+4)) (r(A+4))
24360+ 0)+1)(r(A+4)

2 A(r(A+5)) (r(A+4))
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A1(r(A+4)+1)
A2(r(A+4)41)

A(r(A44))(r(A+4)+1)

A(r(A44)+1) (r(A+4)+1)

Q(r(A+5)) (r(A+4)+1)

A1 (r(A+5))
A2(r(A+5))

A(r(A+4))(r(A+5))
A (r(A4-4)+1)(r(A+5))

A (r(A+5))(r(A+5))




Proposition 3.7.17. Ifs = 2,t = 1, A > 1 and char(R) = 8 and 1+J = (Zy)" I x(Zy)",

then
(i) Ro = {(ay) : 2979 [ay; 1 < j < i <r(A+5)} = Mrais)(Za).
(i1) rank(1 + J) = r(A +5).
(iii) For A € Ry and a surjective ring homomorphism

¥ Ry — ((Z)™ ™ x (Z4)7), End((Z)" Y x (Z4)") = h(A).

(iv) Aut((Zg)T(AH) X (Z4)T) = GL(T()\+5))(]F2).

Case 4: If s =2,t =2, X > 1 and char(R)=p,then

Ly x T x I < T x (L), if p# 2;

p 7 “p
1+ J=1{ Z§ x Z} x (Zy)*, or;
i x T x 7 x (Z5)*, if p=2.

(a) If s =2,t=2,\ > 1 and char(R)=p, p # 2, then,
__ 1 T T r T\A r(A+4
L+ J =2 x 1 x Z) x ) x (Zp)> = (Z,)",

and for a;; € Zy,

ar a2 s A1(r+1) e A1(r(A+4))
21 22 T A2(r+1) T A2(r(A+4))
R, = a1 A2 0 AE)) A (r(A+4))
A(r4+1)1 A(r41)2 o Qrg)(r+1) A(r41)(r(A+4))
ArA4+4))1  Ar(A+4)2 OO F+4)E+1) " Qr(A44)(r(A+4))

Proposition 3.7.18. Ifs = 2,t = 2, A\ > 1 and char(R) = p, p # 2 and 1+J = (Z,)" Y,

then

(1) By = {(ai) - p“7% | ayy; 1 <J <t <r(A+4)} = Myaga)(Zy).

(it) rank(1 + J) =r(A+4).
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(tit) For A € R, and a surjective ring homomorphism
Y Ry = ((Z,)" ™), End((Z,)"Y) = ¢(A).
(iv) Aut((Zy)" ) = GLi (v (Fp)-
(b) If s =2,t =2, > 1 and char(R)=p, p = 2, then
1+ J =Z x Zj x (Z5)* = (Za)™ x (Zg)™",

and for a;; € Zs,

ar T Q1(r)) A1(rA+1) T A1(r(A+2))
az1 T QAz(rx) a2(ra+1) T A2(r(2+2))
Ry = a(ra)1 e A(r2)(rN) AN A+ 0 AN (r(A+2))
2ap0401 0 2000400 AENEDEAD) T AN +D) (r(A+2)
2ap042)1 0 200042 ArOE2) (A T Ar(042))(r(A+2))

Proposition 3.7.19. If s = 2,;t = 2X\ > 1 and char(R) = p, p = 2 and 1 + J =
(Zy)™ x (Z4)*", then,

(i) Ry = {(aij) : 257% | ay; 1 <j <i<r(A+2)} = Myny0)(Zs).
(i1) rank(1 + J) = r(A + 2).
(iii) For A € Ry and a surjective ring homomorphism
Vi Ry = (Z2)™ % (L)), End((Z2)"™ x (Z32)*") = ¥(A).
(iv) Aut((Za)™ x (Z92)*") = GLr(r+2))(Fa).
(c) Orif s =2,t=2,A>1 and char(R)=p, p = 2, then,

14 J =75 x 75 x 75 x (Z5)* = (Zo)" ™ x (Zy)",
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and for a;; € Zs,

a11 T A1(r(A+2)) A1(r(A42)+1)
a21 T A2(r(A+2)) A2(r(A+2)+1)
Ry = ar(x42)1 " A(r(A+2))(r(A+2)) A(r(A+2))(r(A+2)+1)
2a¢0024)1 T 2000024 D)(r(042)  Ar(A2)+1) (r(A+2)+1)
2ap043)1 T 203:(043))(r(A+2)) A(r(A4+3))(r(A+2)+1)

A1 (r(A+3))
A2(r(A+3))

a(r()\+2))(7’(/\+3))
A(r(A42)+1)(r(A+3))

A(r(A43))(r(A+3))

Proposition 3.7.20. If s = 2,t = 2)X\ > 1 and char(R) = p, p = 2 and 1 + J =

(Zy) 2 X (Zy)", then,

(Z) Ry = {(aij) A | Qij : 1<7<1 < 7"()\ + 3)} = MT(/\+3)<ZQ).

(i1) rank(1 + J) = r(A + 3).

(iii) For A € Ry and a surjective ring homomorphism

V1 Ry — (Zo)" x (Z4)7), End((Z)" 2 x (Zy2)") = 1(A).

(iv) Aut((Zg)r(/H_Q) X (Z4)T) = GL(T()\+3))(F2>.

Case 5: If t = s(s+1)/2,\ > 1 for the various characteristics of R, then

1+ = { (Z3)° - (Z5)" x (2

for char(R) = p,

- { Ly X (Zy)* X (L5)* % (Z5)" % (ZS)AA? _
Ly X (Zp)* X (Zy2)* X (Zp)? x (Zp)*, ifp #2,

for char(R) = p*.

if p=2,

if p=2,

o { BB B B B2 =2
Ly X (L) x (Zy)* x (Zp)Y x (Z7),

for char(R) = p?, where v = (s* — 5)/2.
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(a) If t =s(s+1)/2,\ > 1 for char(R) = p and p = 2, then
L+ J = (Z)° x (Zy)" % (Zy)* = (Zo) ) x (Za)™

where v = (s* — 5)/2, and for a;; € Zs,

ail .. A1 (r(A+)) A1(r(Av)+1) T A1(r(A+7+s))
asy s a2(r(A+v)) A2(r(A+7)+1) T A2(r(A+y+s))
Ry = A+ 7 ArQHE))r+Y)) GO+ T Ay (r(Ay+s))
200411 T 200D () EAENFD AN FD) T A+ D) (r(A )
200yt T 200 t)) (r(AH) Ay +)) (P D) T Ayt s) (r(Ays)

Proposition 3.7.21. Ift = s(s+ 1)/2,A > 1 for char(R) = p and p = 2, 1 +J =
(ZQ)T(/\JHY) X (Z4)rs} where = (82 . S)/Q, then

(i) Ry = {(aij) : 2979 | a5 : 1 < J S i <r(A+ 7+ 8)} = My(agqss) (Z2).
(it) rank(1+ J) = r(A 4+ v+ s).

(iii) For A € Ry and a surjective ring homomorphism
V1 Ry — (Zo)" ™) X (Z4)"), End((Z)" ™) x (Z4)"*) = 1 (A).

(iv) Aut((Z2) ) X (Za)"*) = GLr(r445) (Fa).
(b) If t = s(s+1)/2,A > 1 for char(R) = p and p # 2, then,
L+ J = (Z0)* x (Z3)° x (Zp) x (Zp)* = 255+,

where v = (s* — s)/2 and for a;; € Z,,

ar a2 T A1(r+1) e A1(r(25+2+7))
asi a2 s A2(r+1) T A2(r(25+1+7))
Ry, = a(r)1 ()2 SRR TO (S VI () (r(25+7+7))
QA(r+1)1 QA(r+1)2 e Q(r4+1)(r+1) T A(r41) (r(254+24+7))
Alr2s+A )1 Ar2s+A+7)2 "7 Qr2s+A+y)(r+1) 7 Q(r(2s+24+9)) (r(25+2A+7))
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Proposition 3.7.22. Ift = s(s+1)/2,A > 1 for char(R) =p and p # 2 and 1 + J =

ZE TN where y = (s* — 5)/2, then
(i) Ry = {(aij) : p“" 9 [aij; 1 <j <i<r2s+A+7)} = My@siasy (Zp)-
(it) rank(1 + J) = r(2s + XA + 7).
(iii) For A € R, and a surjective ring homomorphism
W Ry — (ZIHV) End(ZI2H) = g (A).
(iv) Aut(Zy>*THV) = G L5 4 a1)) (Fp)-
(c) If t = s(s+1)/2,\ > 1 for char(R) = p? and p = 2, then,
Lo ] = 2 % () x (Z5)° % (Z5)" x (Z) = 25T,

where v = (s* — 5)/2, and for a;; € Zo,

a a2 T A1(r+1) T A1(r(14-2s+247))
21 22 T A2(r+1) T A2(r(14-2s4+14+7))
Ry = A(r)1 A(r)2 A1) A(r)(r(1425+247))
A(r4+1)1 QA(r+1)2 o Q) (r41) A(r+1)(r(1+2s+2+7))
A(r(1425+A+)1  A(r(142s+A+9))2  ~ " T Tt Qe (142542 +)) (r(14+25+A+Y))

Proposition 3.7.23. Ift = s(s +1)/2,A > 1 for charR = p*> and p = 2, 1 + J =

250D here v = (s2 — 5)/2, then
(i) Ry = {(aij) : 2979 | a5 : 1 < j < i <r(1+ 254+ A+ 7))} = My(yasiasy) (Za).
(it) rank(1+J) =r(1 4+ 2s + A+ 7).
(iii) For A € Ry and a surjective ring homomorphism
¥ Ry — (Z) End(Zy ) = ().
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(iv) AUt(Zg(H%HH)) = GLr (142542 4) (F2).
(d) If t = s(s+1)/2,\ > 1 for charR = p* and p # 2 and v = (s* — 5)/2,
L+ J =Z) x (Z0)* x (Z3x)* x (Zp) x (Zy)* = 2, < 778

and for all a;; € Z,,

ail cee A1 (r(14s+74+N)) A1 (r(14+A+v+25))
az1 tee A2(r(14s+v+N)) A2(r(1+A+v+25))
R, = Ar(tstrty)t 70 Ar(stx ) (r(1+s+7+2)) A(r(1+s+A+7)) (r(1+A+7+25))
Pa(r4s+r4+y)+1)1 " POA(r(14s+2+7)+1) (r(14s4+7+N)) A(r(14s+24+7)+1) (r(1+A4+v+2s))
p a(r(1+k+'y+2s))1 A a(r(l+/\+'y+28))(r(1+s+'y+)\)) a(r(1+)\+'y+2s))(r(1+k+'y+2s))

Proposition 3.7.24. If t = s(s +1)/2,A\ > 1 for char(R) = p* andp # 2, 1 + J =

Zy (s Trtd) "5 where v = (s* — s5)/2, then
(1) Rp = {(aij) :p°~% | aiy; 1< 7 <i<r(1+25+A+7)} = Mrarasiaiy (Zp).
(ii) rank(1 + J) =r(1+ 2s + X+ 7).
(iii) For A € R, and a surjective ring homomorphism
¥ Ry — (ZIH TN s 7Y, End(ZEH TN < Z05) = ¢ (A).
(iv) AUt(ZZ(HSMM) x Z;;i) = GLr(1125121) (Fp).
(e) If t = s(s+1)/2, A > 1 for char(R) = p®, p = 2 then
1+ J =75 x Zs X Zz—l x (Z5)° % (Zh)® x (Z5)7 x (Zg)/\ _ Z£(1+s+)\+’y)+l % Z;glJrs)*l,

where v = (s* — 5)/2, and for a;; € Zy, Ry =
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arl A1 (r(14+s+A+7)+1) A1(r(2+2s+A+7))
a1 A2(r(14+s+A+7)+1) A2(r(2425+2+7))

A(r(14+s+A+7)+1)1 A(r(14+s+A+7)+1) (r(1+s+A+7)+1) A(r(14s+A+7)+1) (r(24+25+214+7))
20((r(1+s+2t7)+1) 41D+ 20145+ A47)+1)+1) (r(1+s+A+7)+1) A((r(1+s+A+7)+1)+1) (r(24+25+A+7))

20a(r(2425+247))1 20 (r(24254+247)) (r(1+s+A+7)+1) Q(r (24254 A47) (r(24+25+A+7))
Proposition 3.7.25. Ift = s(s +1)/2,A > 1 for char(R) = p*, p =2 and 1 + J =

ZHT AR I where 4 = (52 — 5) /2, then
(i) Ry = {(aij) : 2979 [ ;s 1 < J<i<r(2+ 25+ A +7)} = Mriasiriy) (L)
(it) rank(1+J) =r(24+2s + A+ 7).
(iii) For A € Ry and a surjective ring homomorphism

W Ry — (ZyMH I s g D Bnd(zy TP s 0T = y(A).

02

(iv) Aut(Zy T ZETITY) = QL sag ey (F2).
(f) If t = s(s+1)/2,\ > 1 for char(R) = p* and p # 2, then
1+ J = Zha x (Z0)° X (Z)* x (Z)" % (Z;)A —_ Z;(s—&-)\-&-v) X Z;§1+8),

where v = (s* — s5)/2, and for a;; € Z,,

ail T A1(r(s+A4+7)) T A1 (r(14254+A47))
Q21 T Q21 (s+X+7) T A2(r(1425+A+7))
Ry, = Ar(str++D1 7 A+ +D(r(s+247)) T AN FD (r(1425HA+))
Pa((r(s+A+1)+1)+1)1 "~ PA(r(s+A+0)+ D)+ (r(s+A4+7)) " Q((r(s+A4+7)+1)+1) (r(1425+247))
Par@a+2s+2+7))1 T P a(r(1425+2+7)) (r(s+24+7)) T A(r(14254+247)) (r(14+254+24+7))

Proposition 3.7.26. Ift = s(s+1)/2,A > 1 for char(R) = p* and p # 2 and 1 + J =

Z;(s+k+v) % Z;gHS), where v = (82 —5)/2, then,

(i) By ={(ai) : p“7 |aij ; 1 <J<i<r(1+ 25+ A+79)} = Myrasiaty) (Zp).

74




(it) rank(1+J) =r(1 4+ 2s + A+ 7).
(iit) For A € R, and a surjective ring homomorphism

U Ry — (ZL) ) ) Bnd(Z5) < Z0)) = 4 (A).

(i) Aut(Zy0) x ZEE)) = GLyyagiaiy (Fy).

From the Propositions given above, the following Theorem summarizes the structure

of Aut(R*) for all the cases considered:

Theorem 3.7.1. The structure of the automorphisms Aut(R*) of the unit group R* of a
commutative completely primary finite ring R with mazimal ideal J such that J* = (0)

and J? # (0); and with the invariants p, k,r,s,t and X > 1 , is a direct product as follows:

(i) If s=2,t =1, > 1 and char(R)=p, then

(Zgr,l)* X GL(T()\+2))(F2), ory
Aut(R*) =2 (Zor—1)* X GLr(ra13)(F2), if p=2;
(Zpr—1)" x GLir(rg3)) (Fp), if p # 2.

(ii)If s = 2,t = 1,\ > 1 and char(R)=p?*, then

Zyr—1)* x GL (F,), or;
Aut(R*) = ( pr—1 (r(x+4)\Ep)s ot
uHE) { (Zypr—1)" X GLr(a12))(Fp), if p # 2.

and if p = 2 then,

(Zor—1)* x GL(xy5)(F2),  ifr=1andpe J—ann(J);
(Zgr—1)* X GLp(a43))(F2), ifr > 1 andp € J —ann(J);
o~ ) (Zor—1)* X GLGag2)(F2), or;
AUt<R ) o (Zgr 1) X GL(T )(FQ), pr - J2;
(Zar—1)* )(F2), or;
(Zyr—1)* ) (F2)

Zigr _y , ifp€ann(J)— J%

(iii)If s = 2,t = 1,\ > 1 and char(R)=p*, then

(Zp'r_ )* x GL r()\+5))(]F ), or;

A““R*)g{ (Zyr 1) X GLorsay(Fy), if p#2.
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and
Zar—1)" X GLG(\t3))(F2), o

(
Aut(R*) = (Zgr 1) X GL(T()\+4))(F2), or;
(Zogr—1)* X GL(a15))(F2), if p=2.
() If s = 2,t =2,A > 1 and char(R)=p, then

(Zpr—l) X GL )\+4))(]Fp)7 if p#2;
AU(R*) = (Z2r71> X GL(,,« )\+2))(F2), or;
(ZQT'_1>* X GL(T()\+3))(F2), pr = 2

(v) If t = s(s+1)/2,\ > 1 for the various characteristics of R, then

*\ AU (ZT— >* x GL (r(2+ +s)<F2) pr - 2;'
Aut(R") = 7 ;
“ ( ) { (Zpr—l) X GL (254+A+7)) (]F )7 pr 7£ 2;
for char (R) = p,

) Zor 1)* X GLytsasiris (Fa), if p = 2;
Aut(R*) ( 2r—1 . (142s+A+7) »ok ;
(&) { (Zyr 1) X CLgirasorsn)Fp)y i p#2,
for char(R) = p?, and,

(Zzul)* X GLT(2+25+>\+7) (FZ)a if p=2;
(ZpT'—l)* X GLT(1+25+A+7) (Fp)a if p# 2.

Aut(R") = {
for char(R) = p?, where v = (s* — s)/2.
3.7.2 Counting the Automorphisms of (1+4J)

Since the structure of Aut(14J) is a general linear group G'Lyx(14.5)(Fp), we need to count

them:

Definition 3.7.1. Let F be a field. Denote by rk(1+J) the rank of 1+ J, then, a general
linear group GLyy14.0)(F) is the group of invertible rk(1 4+ J) x rk(1 4+ J) matrices with

entries in F under matrix multiplication.

Clearly, GLypa+.0)(F) is a group because: matrix multiplication is associative, the
identity element is Ly4.); the 7k(1 + J) x 7k(1 + J) matrix with 1's along the main
diagonal and zeros elsewhere. If a € F, a # 0, then a - I+ is an invertible k(1

J) x rk(1+4 J) matrix with inverse a~ [rk(1+J)><rk(1+J In fact, the set of all such matrices
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forms a subgroup of G'L,i(14.)(F) that is isomorphic to F* =T \ {0}

For a prime p, IF,, is a finite field in all the cases, thus, it is immediate that G L.y (Fp)
has only finitely many elements. Now, suppose rk(1 + J) = 1, then G L0 (Fp) = F
has p — 1 elements.

Let rk(1+J) =2, and let M = ( CCL Z

and sufficient that ad # be. If a, b, c and d are all nonzero, then, we can fix a, b, ¢ arbitrarily

). Then for M to be invertible, it is necessary

and d can be anything but not a~'bc. This gives us (p—1)3(p—2) matrices. If exactly one
of the entries is 0, then the other three can be anything nonzero for a total of 4(p — 1)3
matrices. Finally, if exactly two entries are 0, then, these entries must be opposite each
other for the matrix to be invertible and the other two entries can be anything nonzero

for a total of 2(p — 1) matrices. So altogether we have:

p—1°(p—2)+4p—1)>+2(p—1)?
=(p-1D*((p—-Dp—-2)+4(p—1)+2)
= (-1 +p) = @*-1)P* - p).

Claim 3.7.1. Evidently, calculating the size of GLyyq40)(F) by directly calculating the
determinant, then, determining what values of the entries make the determinant nonzero
is quite a tedious exercise and hence error prone. But one of the basic properties of
determinants is that the determinant of a matriz is nonzero if and only if the rows of the

matrix are linearly independent. Thus we have

Proposition 3.7.27. Let rk(1+ J) = n and 1 + J = Z, X --- X Z,. The number of
—_——

elements in GL,(F,) is [I}Zy(p" — p*).

Proof. Notice that e; = ez = ---e;pa4) = 1. We count the number of n x n matrices
A € R, whose rows are linearly independent. This is done by building the matrix A
from scratch. The first row can be anything other than the zero row, so, there are p™ — 1

possibilities. The second row must be linearly independent from the first row. Since there

77



are p multiples of the first row, there are p™ — p possibilities for the second row. Generally,
the 7" row must be linearly independent from the first i — 1 rows. There are p'~! linear
combinations of the first i —1 rows, so, there are p™ —p'~! possibilities for the i"* row. Once
we build the entire matrix this way, we know that the rows are all linearly independent
by choice. Also, we can build any n x n matrix whose rows are linearly independent in
this fashion. Thus there have
n—1
P =D@" =p) " —p") = kHO(p" - ")

matrices. O

In order to be exhaustive for all the structures of 1+ .J, we need to find all the elements
of GL,k(14.5)(IFp) that can be extended to matrices in End(14J) and calculate the distinct
ways of extending such elements to endomorphisms.

We define the following numbers:
ar = max{m : e, = e}, B = min{m : e,, = ex}.

Since e, = e, for m = k, we have the two inequalities ay, > k and [, < k.

Note that g1 = By = --- = B4, , so we have f; = -+ = B4, < Bay+1-

When e; = ej = -+ = e,414), for all 4, j then it follows that oy, = .

Suppose the e; are different, we can introduce the numbers e}, ¢;, d; as follows: Define
the set of distinct numbers {e;} such that {e;} = {e;} and €] < e, < -+,

Let I € N be the size of {e;}. So, €] = €1, €5 = €a, 11, , € = €,. Now define

/

d; = maz{m : e, = e;},c; = min{m : e,, = e;}.

Note that ¢; = 1, and d; = rk(1 4 J). Also, for convenience define ¢;41 = (rk(1+J)) + 1.
Now, for both of the considerations, the number of matrices say A € R, that are
invertible modulo p are upper block triangular matrices which may be expressed in any

of the following three forms:
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™11 *
mg1 - Maydy
mCQCQ
A=
Mdyey = Mdydy
mclq
0 Mg Mgy,
or
mipr Miz - MA(rk(1+J))
A: mOél].
magZ
0 Mo a1y) (rk(1+J))
mipg,
Mo,
0 k() By " TUrk(+T) k(1))

The number of such A is szz(lp“]) (p** — p*~1), since we require linearly independent
columns. So, the first step of calculating | Aut(1+ J) | is done.

The second half of the computation is to count the number of extensions of A to
Aut(l + J). To extend each entry m;; from m;; € Z/pZ to a;; € p* “ZL/p“Z if e; > ey,
or a;; € Z/p“Z if e; < e;, such that a;; = m;; mod p, we have p% ways to do so for the
necessary zeros (that is , when e; > e;) as any element of p*~%Z/p*Z works.

Similarly, there are p%—!

ways for the not necessarily zero entries (that is , when
e; < e;) as any element of pZ/p“Z will do.
Finally, the result below summarizes the order structures of the automorphism groups

of the units R* of the cube radical zero commutative completely primary finite rings for

all the characteristics of R.

Theorem 3.7.2. The order of the automorphisms Aut(R*) of the unit group R* of a
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commutative completely primary finite ring R with mazimal ideal J such that J* = (0)
and J?* # (0); and with the invariants p,k,r,s,t and X\ > 1 for all the characteristics of

R are as follows:

(i) If s =2t =1, A > 1 and char(R)=p, then | Aut(R*) |=

§0(2T71) HZ()\J"Z) (204, 72]@‘71) HT(A+2)(2€] )r()\+2 —ay H )\+2) (26 71)7‘()\+2) Bi +1 or;

o
o(2 1) T[T (200 —2k-1), ifp=2;

p(pr—1)- kﬂ”‘”( —pFh), ifp#2.
(ii)If s = 2,t = 1,\ > 1 and char(R)=p?, then

@(pr—l)-HZ(zilj(p“k —pk=1), " " or;
(" —1)- T (o —pF D) TN (pea ) r OO = T (pes = 1yrOF0 =841 £ 9,

and if p = 2 then, | Aut(R*) |=

(27 —1)- TN (200 —2k=1y r=1;
p(27—1)- '];(A;‘3)(2ak gk— 1)1—[r >\+3)(2e])r()\+3 —ay HT(A+3)(26 l)r A =Bitl s
(27 —1)- Z(:\;ﬂ)( 1) H; >\+2)(2e,)r(>\+2) aj; HT()\+2)(2eL 1)7“(A+2) Bitl o
(27 —1)- 221*?’)(2% 2k DI (20)r O [ (et yr O =8t - € g2,
(27 —1) 7];(:>\1+3)(2ak gk— 1)HT(>\+3)(2e,)r(>\+3) a; HT(/\+3)(2el 1)r(/\+3) Bitl  op:
(27— 1)- T2 (2 21, per.

where, when r = 1, then p € J — ann(J) and when r > 1, p € J — ann(J) and

T =ann(J) — J2

1wi)lf s =2,t = > 1 and char(R)=p-, then | Aut =
If 2 1,A > 1 and char(R)=p®, th Aut(R*

p(p" = 1)-TL ) (o —p= 1) [T} (per )9 [T (s 1) =B oy
r r(A+4 — r(A+4 e \T o r(A+4 e, —1\r _B8. .
e = 1) [ (o —p* )Hf:ﬁ (pes O+ 0= T (pei=1)yr Ot =5itd - yp p 229,

and | Aut(R*) |=

r r(A+3 o _ r(A+3 ej\r a; A+3 e;—1\r

@(2 _1) ()\ )(2 k 2k: 1) l |j( | )( ) (A+3) l [1( 1 )(2 1) (A+3)—8; +1 or;
r r +4 _ A+4 e;\r —; A+4 e;—1\r(A+ +

(,0(‘2 _1). ( )(jgak fgk 1) l |;( | )( ) (A+4)—a;y l IT( )(2 1) (A+4)—pB; 1 or;

‘,0(2T_1) ;(:\1‘5‘5) (2ak 2k—1) H;(_/\JFO)( 2€j )r()\+5 —ay H )\JFO) (26 —1)r(/\+5) BH—I pr =9,

(iv) If s =2,t =2,A>1 and char(R)=p, then | Aut(R*) |=

e = 1) TS o —pt ), if p#2;
@(2T_1) 7’()‘+2) (2ak 2’671) H;(:A1+2)(2ej)r()\+2)faj Hli)iJrQ) (26 71)r()\+2) Bi +1 or;
P 1) TLO (2o —21) IO (20O =a [ eyt i — o,

(v) If t = s(s+1)/2, A\ > 1 for the various characteristics of R, then | Aut(R*) |=

{ P2 = 1) Tk (2% = 2 I (2%) 2 Ty (2P, ifp = 2;
p(p" — 1) - T2 (pow — phh), if p #2,
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for char (R) = p, where wy = r(A+ v+ s).

{ (27— 1) - T2 (200 — 9k, ifp=2
P(p" = 1) - T2 (o — ph ) T (o)~ TI (po )P if p # 2,

for char(R) = p? where vi = r(A+~+2s+1). And,

P27 = 1) - TIZ, (2% = 287 ) T2, (299) 209 T2, (20 1) 2Pt if p = 2;
o(p" = 1) - TIE, (p™ — PP ) T (p9 )0 TI2, (poi = )= Ptt df p # 2.

for char(R) = p3, where v = (s> —38)/2, vy = r(A+7+25+2), v3 = r(A+v+2s+1).
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3.8 Units of Power Four Radical Zero Commutative finite Completely Primary
Rings

In [83], we constructed some classes of power four radical zero commutative completely

primary finite rings and determined their unit groups. In this section, we give detailed

recap of the same constructions, demonstrate the structures of the unit groups whose

automorphisms are determined in the next section.
3.8.1 Rings of Characteristic p

For any prime integer p and a positive integer r, let Ry = GR(p",p) be a Galois ring of
order p" and characteristic p. Suppose U,V and W are finitely generated Ry-modules
such that dimp U = s, dimp,V = t and dimp W = X and s +¢t + A = h. Let
{uy,ug, ..us},{v1,ve, .. 0.} and {wy,wy,...wy} be the generators of U,V and W respect-
ively so that R = Ry & U &V @ W is an additive abelian group. Further, assume that
s=1,t=1,A=h—2, so that R:RO@ROU@RO'U@Z?;fROwj and pu = pv = pw; =
0,1 <j <h—2.0On R, define multiplication as follows:

(ro, 71,72, -, Th) (S0, S1, S2, -, Sn) = (7080, T0S1 + 7150, T0S2 + T2S0 + 7181, ToS3 + r3Se +
182 + 1281, ..., ToSh + TS0 + 7182 + 1281). It is easy to verify that the given multiplication

turns R into a commutative ring with identity (1,0, ..,0).

Proposition 3.8.1. [83] The ring R of the above construction is completely primary, of

characteristic p and

A
J = RQU (&) Rov (&) ZR[)/LU]‘,

Jj=1

A
J2 = Rov (&) ZR[)/LU]‘,

j=1
A

J3 = Z ngj,
j=1

J* = (0).

Lemma 3.8.1. [83, Proposition 3] Let R be the ring constructed above and J be its
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Jacobson radical. Then if p # 2,
R* = 7y oy X Ly X (Z0)N.
3.8.2 Rings of characteristic p?

For any prime integer p and positive integer 7, let Ry = GR(p*", p*) be a Galois ring of
order p? and characteristic p?>. Suppose U,V and W are finitely generated Ry-modules
such that dimg, U = s, dimgr,V =t and dimp,W = X and s+t+ X = h . Let {uy, ..., us},
{v1,...,v} and {wy,...,wy} be the generators of U,V and W respectively so that R =
RoU®V @W is an additive abelian group. Further, assume that s = h—1,t =1, A =0, so
that R can be expressed as R = RO@Z;’; Rou; ® Rov, where pu; # 0,p*u; = 0,1 < j <s
and pv = 0. On R, define multiplication as follows:

(ro, 71,72, ey The1, Th ) (S05 S15 82y ooy She1, Sh) = (7“030+p2?7;:11 TiSj,70S1+71505 -, T0Sh—1+
Th—1S0, ToSh+ThS,) Where T, 5, € R,/pR,. It is easy to verify that the given multiplication

turns R into a commutative ring with identity (1,0, ...0,0).

Proposition 3.8.2. [83] The ring R constructed is completely primary of characteristic

p? and

J=pRy® Z Rouj ® Rov,

j=1
J? = pR, @pz Rou; ® Ryv,
j=1
J3 =p Z R()Uj,
j=1
J* = (0).

Lemma 3.8.2. [83, Proposition 5] Let R be the ring constructed and J be its Jacobson

radical. Then

R* = Ly X (Zp)* x (Z)?,

P

for every prime integer p and positive integer r.
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3.8.3 Rings of characteristic p?

For any prime integer p and positive integer 7, let Ry = GR(p*", p*) be a Galois ring of
order p®" and characteristic p®. Suppose U,V and W are finitely generated Ry-modules
such that dimg, U = s, dimg,V =t and dimp,W = X and s+t + X = h. Let {uy, ..., us},
{v1,...,v} and {wy,...,wy} be the generators of U,V and W respectively so that R =
RoU®V ®W is an additive abelian group. Further, assume that s =h—1,t=1,A =0,
so that R can be expressed as R = R, @Z?;ll Rou; & Rov, where , p*u; # 0,p*u; = 0;1 <
j < sand pv=0. On R, define multiplication as follows:

(ro, 71, T2, -, Tho1, ) (S0, 51, 52, -, Sh—1, Sn) = (7050, 70514180, -, T0Sh—1+Th—150, ToSh+
ThSo + ij_:ll 7:5;) where 7;,5; € R,/p*R, and 74,5, € R,/pR,. 1t is readily verified that

the given multiplication turns R into a commutative ring with identity (1,0, ...,0,0).

Proposition 3.8.3. [83] The ring constructed is completely Primary of characteristic p?

and

J=pRy® Z Ryu; @ Ryv,

j=1

J? = p*Ry @pz Rou; @ Rov,
j=1

J? = pRyv,

J = (0).

Lemma 3.8.3. [83, Proposition 7] Let R be a ring constructed and J be its Jacobson

radical, then its group of units is characterized as follows

R Ligr 1 X Ly X Ly X Zfl X ZLg X Ly X (ZS)S_la ifp=2;
- Zpr_l X Z;Q X Z;Q X Z;Q X (Z;2)87 pr # 2

3.8.4 Rings of Characteristics p*

For a prime integer p and a positive integer 7, let By = GR(p*,p*) be a Galois ring of
order p* and characteristic p*. Suppose U,V and W are finitely generated Ry-modules

such that dimp,U = s, dimp,V =t and dimp, W = X and s+t + X = h. Let {uy,...,us},
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{v1, ..., v} and {wy,...,wy} be the generators of U,V and W respectively so that R =
Ry U@V W is an additive abelian group. Further, assume that s = h,t =0, A = 0 so
that R = R, Z§:1 R,u; where pu; = 0,1 < j <s. On R, define multiplication as follows:

(ro, 71,72, ..., Th) (S0, 51,52, .., 5h) = (7080, 7051 + T1S0, ., ToSh + Thso) whereT,5; €

Roy/pRy; 1 < i,7 < h. This multiplication turns R into a commutative ring with identity

Proposition 3.8.4. [83] The ring constructed is completely primary, of characteristic p*

with Jacobson radical such that

J=pRy® ZRouj,

7=1
J2 = p2R07
J3 = p3R07
J'=(0).

Lemma 3.8.4. [83, Proposition 9] Let R be the ring described by the construction above.

Then
R* o~ ZQr,l X ZQ X Z4 X ngl X (Z;)S pr = 2,’
| L1 X Ly X (Zy)® if p# 2.
Theorem 3.8.1. The structure of the units R* of the commutative completely primary
finite ring R of characteristic p, p*, p3, p* with mazimal ideal J such that J* = (0) and
J? £ (0), with the invariants p,r,s,t,h and X\ where p € J, is a direct product of cyclic

groups as follows:
(i) If the char(R) = p, then,

R* = Zy_y x Ly x (L) 1 p # 2.

(ii) If the char(R) = p?, then,

R* 2 Ly X (L) X (Zp)°

85



(iii) If the char(R) = p3, then,

112

B { Diyr 1 X Ty X Ty X Ty~ X Ty x T x (Z5)*7Y, if p=2;

Zyyr—1 X Ly X Ly X (Z75)*, ifp#2.

(i) If the char(R) = p*, then,

R o Dgr 1 X Ty X Ty X Z5H x (Z5)* if p=2;
o Zp'r',l X Z;3 X (Z;)s 'pr 7é 2.

3.9 Automorphism Groups of the Units of Power Four Radical Zero Com-
pletely Primary Finite Rings
We explicitly describe Aut(R*) by completely characterizing the structure and order of

the automorphism groups of the units whose structures are given by Theorem 3.8.1.
3.9.1 Endomorphisms of 1+ J and their properties

We form R, which is a set of matrices given by R, = {(a;;) : p* % | a;j; 1 < j < i <
rk(1+J)}, where a;; € Z,, for all the cases considered and determine the endomorphisms
say E, = ¢(A) from that description.

Case 1: If the characteristic of R = p # 2, s = 1,t = 1 and A = h — 2, then,
1+J= Z;’\ X L. Clearly, e; = --- = ¢,y = 1 and e(\41 = -+ = e;(a41) = 2 so that for

a;j € Ly, Ry is given by

ai T Q1(r)) A1((rA)+1) T A1(r(A+1))

a2 tet A(r)) Az((ra)+1) te A2(r(A+1))

R, = a(ra)1 e A(rA)(ra) A ((rA)+1) T A(rA)r(A+1)
Pa(rn+1)1 ccr PA(rN)41)(rA) AN+ () +1) T (A +1) (r(A+1))
Pa+1)1 0 PArOA+1)(rA)  ArO+0))((rN)+1) 0 Qr(A+1)(r(A+1))

Proposition 3.9.1. If the characteristic of R = p, s = 1,t =1 andp # 2, 1 + J =

Z;)‘ X Ly, then
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(i) By = {(aiy) : p°9 [ aij; 1 <j < i <r(A+ 1)} = My (Zy).
(it) rank(1 + J) = r(A+1).
111) For A € and a surjective ring homomorphism
For A€ R, and h h
VR, — (Z;’\ X Zz’;g), End(Z;)‘ X Z;z) =(A).
(iv) Aut(Zi) x ) = G L)) (Fp).

Case 2: If the characteristic of R = p?, s =h —1,t =1and A = 0, then 1 + .J =

Zf,’" x Z;3. Clearly e; = - = ey, = L and ey, 41 = - -+ = €y(s12) = 2 50 that for all a;; € Z,,
ai T ai(2r) 1(2r+1) T A1(r(s+2))
a21 T Az (2r) Aa2(2r+1) T A2(r(s+2))
R, = a(2r)1 e a(2r)(2r) acr)((2r)+1) A(2r)r(s+2)
Paery+n1 0 PA(2r)+1)(2r)  G(2r)+1)((2r)+1) T G((2r)+1)(r(s+2))
Pa(r(s+2)1 = PO(r(s+2))(2r) O(r(s+2))((2r)+1) " Q(r(s+2))(r(s+2))

Proposition 3.9.2. If the characteristic of R = p?>, s = h—1,t = 1 and A\ = 0,

L+ J =2y x 75, then
(i) Ry = {(ai;) 1 p"~9 [ay; 1 <j<i<r(s+2)} = Mi(ss2)(Zy).
(7t) rank(1+ J) =r(s+ 2).
(iii) For A € R, and a surjective ring homomorphism
U Ry — (22 X 23), End(ZY x 173) = 1p(A).
(v) Aut(Z2 x 715) = GLy(s12)(Fp).

Case 3. If the characteristic of R =p3,s=h —1,t =1and X\ =0,
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(a). Whenp =2, 14+J = Z31""xZ3" ' xZ5. Inthiscasee; = ey = - = €pppsy = 1,

€3qrs—r = " = Clypspr = 2 ANA €oypsir = - = €lqpstar = 3. S0 for all a;; € Zy, Ry =
all ) al(‘u,) o« s . a/l(’l}) o« o . a/l(u))
A (24-rs—r)1 to A(24rs—r) (1) te A(24rs—r)(v) te A(24rs—r)(w)
20((24rs—r) D)1 T 20(@24rs—r) D)) T 20(@24rs—r)+1) () T G((24rs—r)+1)(w)
2a(l+rs+r)l T 2a(1+7‘8+7‘)(ﬂ) T 2a(1+rs+r)(v) T A(14rs+r)(w)
da(1rstr+nl 0 AQ(trstr) () T 20((A4rser) 1)) 70 G((Lrstr) 1) (w)
4a(1+rs+2r)1 to 4a(1+rs+2'r)(,u) to 2a(1+rs+2'r)(v) to A(14rs+2r)(w)

where py=2+4+rs—r,v=14+rs+rand w=14rs+2r =rank(l + J).

Proposition 3.9.3. If the characteristic of R =p*,s =h—1,t =1and A =0, p = 2,

1+ J =737 x 27! x 7%, then,
(i) R ={(ay) : p“~ | ay; 1 <j <i<1+rs+2r}={Mairsi2r)(Z2)}.
(ii) rank(l + J) =14 rs+ 2r.
(iii) For A € Ry and a surjective ring homomorphism

VY Ry — (Z3T57" x Z3 ' X Zg), End(Z51"7" x 737 x 7%) = ¢(A).

(iv) Aut(Z5t"5" x 231 X Z%) = GL14rsior(F2).

(b). Whenp#2,1+J = Z;gs+2), then e; = ey = -+ = €,(512) = 2. Therefore, for all
aij - Zp,
ar s air A1(r+1) te A1(r(s+2))
21 te A2y A2(r+1) te A2(r(s+2))
Rp - ar1 e Ayry Qr(r41) e QA (r(s42))
A(r+1)1 tee A(r+1)r Q(r4+1)(r+1) T A(r+41)(r(s4+2))
Ar(s+2n1 "0 A@r(s+2)r  A@r(s+2)(r+1)  *° A(r(s4+2))(r(s4+2))
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Proposition 3.9.4. If the characteristic of R=p%,s =h—1,t =1 and A =0, p # 2,
1+ J =25, then,

(i) Ry ={(aij) : p*"% | ai; : 1 < j < i <r(s+2)} = My(st2))(Zy).-
(i1) rank(1 + J) = r(s + 2).
(iii) For A € R, and a surjective ring homomorphism

Vi Ry — (28, Bnd(ZE)) = (A).

(iv) Aut(Zys™") = GLy(ss)(F,).

Case 4: If the characteristic of R=p* s=h,t =0, A=0

(a). when p =2 and 1+ .J = Z5*! x Zy x Z;;l, thene; = - =¢e 511 =1, €510 =2
and finally €,543 = -+ = €;51r41 = 3, and it follows by definition that for a;; € Z,,
a11 T A1(14rs) T A1(2+rs) T A1(1+rs+r)

A(14rs)1 co A(147s)(14rs) T A(14rs)(24rs) T A(14rs)(14rs+r)

R 2a(2+rs)1 U 2a(2+r5)(1+rs) T 2a(2+rs)(2+rs) T A (24-rs)(1+rs+r)

2 = .
4a(3+rs)1 U 4a(3+rs)(1+rs) T 2a(3+rs)(2+rs) T A (34-7s)(1+rs+r)
4a(1+rs+r)1 U 4af(l+rs+r)(1+rs) T 2a((1+rs+r)(2+rs) o Q(14rstr)(14rs+r)

Proposition 3.9.5. If the characteristic of R = p*, s = h, t = 0, A\ =0 p = 2 and

1+ J =75 x ZL, x Zi;!, then
(i) Ro = {(ay) : p“9 [ay; 1 < j < i< 14715471} = Mayrern(Zo).
(i) rank(1 +J) =14rs+r.
(iii) For A € Ry and a surjective ring homomorphism
Y Ry — (Z5+ x Tl x Z037Y), End(Z5 " x Zhy x Z571) = (A).
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(’l’U) AUt(ZSSJrl X ZQQ X Zgg_l) = GL1+7«S+T<]F2).

(b): When p # 2 and 1+ J = Z;° X Zys then e; = -+ = e,s = 1 and €541 = -+

er(s+1) = 3. Thus for all a;; € Z,,

a1 ce a1 (rs) QA1(rs+1) s A1(r(s+1))
as1 e a2(rs) A2(rs+1) T A2(r(s+1))
R, = 2%5)1 o 2CL(rs)(rs) A(rs)(rs+1) " A(rs)(r(s+1))
P as+1y1 c 0 DTA(rs41)(rs) A(rs+1)(rs+1) " A(rs+1)(r(s+1))
pza(r(s-i-l))l T p2a(r(s+1))(rs) A(r(s+1))(rs+1) " Q(r(s+1))(r(s+1))

Proposition 3.9.6. If the characteristic of R = p*, s = h, t = 0, A = 0 p # 2 and
L+ J =27 X Zs, then

(i) By = {(ai) : p“™9 [ ai; : 1 < j < i <r(s+ 1)} = Mp(srn))(Zy)-
(it) rank(1 + J) =r(s+1).
(iit) For A € R, and a surjective ring homomorphism
Y Ry = (27 X L), End(Z," % Zys) = P(A).
() Aut(Zy® % Zys) = G Ly(s11)(Fp).
Consequently, we give the structure of Aut(R*):

Theorem 3.9.1. The structures of the automorphisms Aut(R*) of the unit groups R* of
the commutative completely primary finite ring R of characteristic p,p?, p® and p* with

maximal ideal J such that J* = (0) and J* # (0), with the invariants p,r,s,t,h and X

where p € J, are characterized as follows:
(i) If the char(R) = p, s=1,t =1 and A = h — 2, then, for all p,

Aut(R*) = (Zp'r_1>* X GL(T()\+1))(F],).
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(ii) If the char(R) = p*, s=h —1,t =1 and A = 0 then, for all p

Aut(R*) = (Zp'r_l)* X GL(r(s+2))(Fp)~

(i) If the char(R) = p3, s=h —1,t =1 and A = 0 then,

* Lgr )* X GL r(14-rs+2r (F2) pr =2;
Aut(R*) = ( 2r—1 (r(14rs+2r)) » b ’
U ( ) { (Zpr_l)* X GL(T(5+2))<FP), if p 75 2.

(iv) If the char(R) = p*, s =h, t =0, A =0 then,

Zor_1)* X GL(14rssr (Fa), if p=2;
Aut(R*) = ( 2r—1 (I+rs+r) vk ,
(e ( ) { (Zpr_l)* X GL(T(S+1))(IFP), ’pr 7§ 2.

3.9.2 Counting the Automorphisms

It is worth noting that the method of counting the automorphisms of 14 .J as general linear
groups is similar to the one employed for the cube radical zero commutative completely
primary rings. However, we discuss the properties of some special subgroups of Aut(1 +
J) = GLypa+5)(Fp). These are:

(1). The special Linear group SL,;a+,)(Fp): The determinant function given by
det : Ger(1+J) (]Fp> — IF;,

is a homomorphism. It maps the identity matrix to 1 and it is multiplicative as desired.

Now, SL,1+)(F,) is the kernel of this homomorphism. Thus,

SLuns)(Fp) = {M € GLor1)(Fy) | det(M) = 1§

Proposition 3.9.7. Denote by rk(1 + J) the rank of (1 + J). Then, the number of
elements in SLya40)(F,) is given by:
(rk(1+J))-1

| S L4 (Fp) [= (( H (prk(HJ) - pz)) /(p— 1))

=0
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Proof. Consider the homomorphism det : G'Lyxa45)(Fp) — Fy. This map is surjective,
that is, the image of G Lyx(14.7)(F,) under det is the whole space IF 5. This is true because,

for instance, suppose rk(1 + J) = 4, the matrix

a 0 - 0
01 - 0
00 --- 1

is an invertible rk(1+ J) x rk(1 + J) matrix of determinant a. Since SL,j(14.5)(Fp) is the

kernel of the homomorphism, it follows from the First Isomorphism Theorem that

GLka+)(Fp) /S Lty (Fp) = F.

Thus,

rk r i
| G L4 (Fp) ‘ I (- (P R — pt)

(2). The Centers of Aut(1+ J) and SL,x117)(Fp):

Proposition 3.9.8. Z(GLkan(Fp)) = {a- Lirarsy | a € Fy} and Z(SLopay ) (Fy)) =

{(l Irk 1+J) |CL€IF UJFJ)}

Proof. For M to be in Z(G Lyy+.)(Fp)), it must commute with every N € G L4y (Fp).
In particular, M commutes with every elementary matrices. Multiplying M on the left by
an elementary matrix corresponds to performing an elementary row operation; multiplying
M on the right by an elementary matrix corresponds to performing an elementary column
operation. Thus for instance, multiplying the i** row of M by a gives the same matrix as
multiplying the i’ column of M by a. This implies that the matrix M is diagonal. Then,
since swapping the i'® and j** rows of M gives the same matrix as swapping the " and
4% columns of M, it implies that the i** and j** entries along the diagonals are equal for

all 7 and j. Therefore, M must be a multiple of I,4147). Finally, it is easy to see that all
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nonzero multiples of I 4117y do commute with all N € G L,14.5)(Fp). So, the proposition

is proved for Z(G L1+ (Fp)). The proof for Z(SLyki45)(Fp)) is similar. O

Remark 3.9.1. As a result of the process of counting and the fact that | Aut(Zyr—1) |=

o(p" — 1), we give the following result:

Theorem 3.9.2. The orders of the automorphisms Aut(R*) of the unit groups R* of the
commutative completely primary finite ring R of characteristic p, p?, p®, p* with maximal
ideal J such that J* = (0) and J? # (0), with the invariants p,r,s,t, h and X where p € J,

are characterized as follows:

(i) If the char(R) =p, s=1,t =1 and A = h — 2, then, for all p,

r(A+1) r(A+1) r(A+1)
‘ Aut(R*) ’_ (p — 1) H (pa’“ —pkil) H (pej)r()”rl)*aj H (pei*]-)?“()ri*l)*ﬁi‘i’l'
k=1 j=1 i=1

(ii) If the char(R) = p*, s=h —1,t =1 and X\ = 0 then, for all p

r(s+2) r(s+2) r(s+2)
| Aut(R*) |[=o(p" — 1) - T] (™ —p"") T (o)t ] (pet)riet2 At
k=1 j=1 i=1

(iii) If the char(R) =p®, s =h —1,t =1 and XA = 0 then, | Aut(R*) |=

@(27”_1) ’lc-&-vis:2r(20”C 2k—1) HJ1+71"3+2r(2eJ)(1+rs+2r) o H;U:1(2ei_1)w_ﬁi+la ifp — 27.
p(p" = 1) TS (e —ph ), if p# 2,

where w = (1 +1s+ 2r).

(iv) If the char(R) = p*, s =h, t =0, A\ =0 then, | Aut(R*) |=

Jj=1

(27 1)L (2 = 2b ) [T (20 (v mes T (et yuedd i — 3,
r r(s+1 o — s+1 e;\r(s —a; r(s+1 e, —1\r(s —B. .
e(p"—1)- k(—+ )( —p" 1)1_[;(—+ )( yristh=e HiSl+ )(p Trs =Bt p £ 2,

where w = (1 +rs+r).
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CHAPTER 4
SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATIONS

4.1 Summary of findings

This study was set up with an objective of characterizing the automorphisms of the unit
groups of square radical zero, cube radical zero and power four radical zero finite commut-
ative completely primary rings. This has been done in a number of steps by considering
the classes of the rings separately. We began by describing the structures of the unit
groups R* whose automorphisms were desired. Owing to the structure of 1+ J which is a
subgroup of R*, we developed a set of square matrices R, whose order is the rank of 1+ .J
in all the cases considered. From R, we identified all the endomorphisms of 1+ .J and spe-
cified which endomorphisms are the automorphisms of 1+ .J. Since elementary abelian p—
groups are also [F,, vector spaces, the groups of automorphisms of such p—groups are groups
of invertible linear transformations. Thus, we found that Aut(1 + J) = G L4 (F,) for
the p—group 1+ J whose rank is 7k(1 4+ J). But the unit groups of the classes of the
finite completely primary rings considered is given by R* = (Z,_;) x (1 + J) where
ged(p"—1,| 14+ J|) =1. Since Aut(Zyr_1) = (Zyr—1)*, we established that the structure
of Aut(R*) = (Zpr—1)* X GLya40)(F,) for each 14 J. Moreover, we discussed some
properties of three subgroups of Aut(1+ J), that is SL,ra40)(Fp), Z(GLyga+0)(Fp)) and
Z(SLyia+0)(Fp)). In particular, by the First Isomorphism Theorem, we proved the rela-
tionship between | G L1+ (Fp) | and | SLyxa+.)(Fp) | We noticed that since each R* of
the classes of the rings studied had different ranks, the automorphisms Aut(R*) obtained
yielded unique structures for every particular case.

Finally, we counted the number of automorphisms of R*, that is | Aut(R*) | . Since
Aut(Zr 1) = (Zpr1)*, | Aut(Zyr 1) |= @(p" — 1) where ¢ is the Euler's phi- function. A
natural problem in group theory is to determine all the possible ways of representing a

given group as matrices, so we then counted the number of automorphisms of (1 4 .J) for
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the various cases exhaustively by using the the invertible matrix approach and considered

all the possible extensions.

4.2 Conclusion

After a number of considerations from our results, for instance, the ranks of 1 + J, the
values of p and e; for all i, we developed both the structure and order theorems for the
automorphisms of the units groups R* of the classes of finite rings in question. These
considerations contributed to the different structures and orders of Aut(R*) for each
particular case. This indeed generalizes the classification and the properties of these
finite rings up to isomorphism. The main results of this study have been captured in

Theorems 3.5.1, 3.5.2, 3.7.1, 3.7.2, 3.9.1 and 3.9.2.

4.3 Recommendations

The classification of finite rings still remains an open problem. Several tools, ideas and
geometrical properties of finite rings can still be explored in order to contribute towards
this endeavour. In particular, a block triangular matrix approach can be used to charac-
terize automorphisms of p—groups. Thus our research leaves some gaps worth a study.

Therefore, for future research, we recommend that the following studies can be attempted:

(1) Automorphisms of unit groups of local rings whose index of nilpotence of the Jacobson

radical is greater than four.

(2) Effect of Automorphisms of the unit groups of finite rings to the rate of convergence

of random processes.
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