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Abstract

In this paper, we develope a (p, q)-binomial extension of the
Cozx-Ross-Rubinstein (CRR) model thereby enhancing its ap-
plicability in optimizing life insurance portfolios amidst noisy
observations. We utilize mathematical constructs designed to
mitigate the impact of financial perturbations, thereby enrich-
ing the existing model and laying a robust foundation for nav-
tgating uncertainties.
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1 Introduction

In the development of the (p, ¢)-binomial extension of the Cox-Ross-Rubinstein
model, the (p, ¢) formula for integral by parts has been a pivotal tool [12]. This
formula extends the traditional method of integration by parts, allowing for
more nuanced calculations in financial modeling, especially when dealing with
complex derivatives and integrals [8]. The (p,q) formula for integral by parts
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is formally stated as follows: Given two functions u(z) and v(z) that are dif-
ferentiable on an interval, the (p, q) formula for integral by parts is given by:
Ju(z)dv(z) = p-u(x)v(z) — q- [v(x)du(x), where p and ¢ are parameters
that modify the traditional formula, allowing for a more flexible approach to
integration. In the context of this work, this formula has been instrumental in
analyzing the dynamics of financial markets and in optimizing portfolio strate-
gies in life insurance. The flexibility offered by the (p, ¢) parameters allows for a
more accurate modeling of financial instruments, especially in scenarios where
market conditions are volatile or unpredictable [4]. The application of the (p, q)
formula for integral by parts in my work has enabled a deeper understanding
of the interactions between different financial variables. This understanding is
crucial for the effective management of life insurance portfolios, where risk and
return are closely monitored and optimized [26]. While the direct application
of this formula in [5] work on a ¢g-binomial extension of the CRR asset pricing
model is not explicitly detailed, the principles underlying this formula are in-
tegral to the mathematical structure of such financial models. The formula’s
role in handling complex integrals and derivatives is fundamental in financial
mathematics, particularly in the context of asset pricing and risk management.
Therefore, the (p, q) formula for integral by parts has not only been essential
for the mathematical rigor of my research but has also significantly contributed
to the practical applicability of the (p, ¢)-binomial extension [1]. This applica-
tion has enhanced the model’s capability to handle complex market scenarios,
thereby improving its utility in the life insurance sector [10]. This research
introduces a significant enhancement to the g-binomial extension of the Cox-
Ross-Rubinstein (CRR) model by integrating a novel parameter: noise. This
extension not only maintains the original polynomial complexity of the CRR
model but also significantly impacts financial modeling by adding flexibility
and realism. The noise parameter p, quantified using historical volatility data,
is integrated into the extended (p, ¢)-binomial CRR model [6]. This parameter
interacts with the existing ¢ parameter, influencing the risk and return profile
of investment strategies. The model’s derivation includes a comprehensive set
of equations, assumptions, and boundary conditions, ensuring a deep under-
standing of its theoretical foundations [22]. In contrast to the original CRR
model’s assumption of perfectly observable asset returns, the extended model
acknowledges the presence of noise in real-world observations [28]. This noise,
represented by the parameter p, is due to factors like measurement errors or
market fluctuations. The model’s formulation includes equations that enable
the calculation of optimal investment strategies under various constraints.
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2 Preliminaries and methods

Before we proceed with the main results, we introduce some preliminary con-
cepts and research methods that are essential in the sequel.

2.1 Binomial Extensions

The work of Ollerton and Shannon [14] introduced a generalized concept of
binomial coefficients, known as k-extensions. These extensions are represented
by (:1), where n, m, and ¢ are non-negative integers, and k is a product of
integers within a specified range. This concept extends the traditional bino-
mial coefficients by considering the arrangement of m objects into n cells,
each capable of holding up to ¢ objects. The study of [7] provided vari-
ous combinatorial interpretations of these k-extensions, which enhance the
understanding of generalized coefficients in the Cox-Ross-Rubinstein (CRR)
model. The unifying recurrence relations for these extensions are given by

3]: (:;): =7, fgi!c(:@:liy;, where k, n, and m are integers within their
respective ranges, and ¢ is a non-negative integer. Ollerton and Shannon
[14] further explored several properties of these k-extensions, such as diagonal
and row sum recurrence relationships, and their generating functions. These
generating functions are instrumental in deriving additional properties of the
k-extensions [2]. Notably, these extensions can yield diagonal array sums,
potentially leading to sequences analogous to generalized Fibonacci sequences
[12]. The exploration and development of these k-extensions, as detailed in this
study, not only broaden our understanding of generalized coefficients within
the CRR model but also open avenues for future research in the field. The
potential applications of these findings in various mathematical and financial
contexts underscore the significance of this research in advancing our theoret-
ical and practical knowledge [9].

2.2 Properties of k-Extensions

In this section, we delve into the advanced properties of k-extensions, which
are pivotal in understanding the broader implications of our study [13]. These
properties are derived from the foundational equations and offer insights into
the behavior and characteristics of k-extensions in various scenarios.

(i). Property 1: Differentiation of the Generating Function
By differentiating the generating function Equation with respect to z,
we obtain an expression for g(k,n,q; ), which represents the differen-
tiated form of the generating function [15]: Here, T} (x) is defined as
4l byl
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(i). Property 2: Recurrence Relations in Terms of q
From Equation 77, we can establish recurrence relations [11] for g(k, n, g; x)
in terms of ¢:

glk,n,q;z) = Tj(x)"

q
= (T (@) + gt ")
= D O (2)(gh"a?)"

J=0

= Y Cig )" gk, j,q — 1; ).
=0

2.3 Fibonacci Sequence Generating Functions

This section explores the extended Fibonacci sequence generating functions,
which are a significant extension of the classical Fibonacci sequence. The
extended functions are defined as foklows: e | .

Let d(k,n,q;x) = > _, m!_b(";nm)qu =>,% m!_b(”;m%xm, for n > 0,
and d(k,n,q;z) = 0 otherwise. This formulation represents an extension of
the normal Fibonacci sequence as discussed in [16]. Substituting for n and
m > 0, we obtain:

i=l—a -

kg q k
—m—1
d(k,n,q;x) = <g> + Zlm!’b > C’fgi!c<n mmz' > x™
q m= q

= 1l—a+ Z i1t d(k,n — i — 1, q; @),

i=1—a

k k
where d(k,0,q;x) = X0 _om!™? (O;Lm) ™ = (8)1 = 1. The transformation of
q

the summation index to j = m —1 and then reverting to m using the boundary
conditions yields the results as shown above.
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2.4 Skorohod’s Theorem

Skorohod’s theorem, a pivotal concept in probability theory, provides a frame-
work for approximating sequences of random variables under certain condi-
tions. This theorem is particularly relevant in the context of financial modeling,
where discrete-time models often approximate continuous-time processes [17].
The theorem posits that for two sequences of random variables (X,,) and (Y},)
on a common probability space, if X,, converges almost surely to X and Y,, to
Y, and both sequences share the same distribution, then there exists a sequence
(Z,) with the same distribution as X,,, converging almost surely to Y, and be-
ing almost surely equal to X, for all but finitely many n [24]. In this research,
Skorohod’s theorem is instrumental in demonstrating the convergence of the
(p, ¢)-binomial model, an extension of the Cox-Ross-Rubinstein (CRR) model,
to the Black-Scholes model [19]. The Black-Scholes model, a continuous-time
model widely used in finance, is approached by the (p,q)-binomial model
through a sequence of random variables that converge almost surely, as per
Skorohod’s theorem [20]. This convergence is crucial in validating the (p, q)-
binomial model as a robust tool for analyzing insurance portfolios. The re-
search utilizes a specific version of Skorohod’s theorem applicable to the space
of cadlag (right-continuous with left limits) functions. This approach involves
constructing a sequence of (p, ¢)-binomial processes that converge almost surely
to a Brownian motion with linear drift, representing the continuous-time limit
of the (p, ¢)-binomial model. The convergence in the Skorohod space is piv-
otal in establishing the optimization conditions for the (p, ¢)-binomial model
under noisy observations [25]. The Skorohod space, denoted as D[0, 1], con-
sists of functions that are right-continuous with left limits. The convergence
in this space is defined as follows [23]: lim,, o0 SUP;ep 1) [Xn(t) — X (1) = 0,
almost surely, where X, (t) represents the sequence of (p, ¢)-binomial processes
and X (¢) the limiting Brownian motion. This convergence criterion ensures
that the discrete-time (p, ¢)-binomial model approaches the continuous-time
Black-Scholes model, thereby bridging the gap between discrete and continu-
ous financial models [21].

2.5 Simple Continuous Theorem

The Simple Continuous Theorem, also known as the Continuous Mapping The-
orem, is a fundamental result in probability theory that gives conditions under
which a continuous function of a random variable is itself a random variable
with well-behaved properties. Formally, the theorem states that if X, is a se-
quence of random variables that converges in probability to a random variable
X, and g¢(+) is a continuous function, then g(X,) converges in probability to
g9(X). In other words, if X, is "close” to X, then g(X,) is "close” to g(X)
[3]. The Simple Continuous Theorem can be used to analyze the behavior
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of the (p, ¢)-binomial extension of the CRR model as the number of periods
increases to infinity. Specifically, the theorem can be used to show that as the
number of periods increases, the (p, ¢)-binomial model converges in probabil-
ity to the continuous-time Black-Scholes model, which is a widely used model
in finance. This result is important because it justifies the use of the (p, q)-
binomial model as an approximation of the Black-Scholes model, and enables
the application of well-established continuous-time methods for portfolio opti-
mization in the context of the discrete-time (p, ¢)-binomial model. We use the
Simple Continuous Theorem to show that the (p, ¢)-binomial model converges
in probability to the Black-Scholes model as the number of periods increases
to infinity. Specifically, the (p, ¢)-binomial model can be written as a sum of
independent and identically distributed random variables, and apply the Sim-
ple Continuous Theorem to each term in the sum. This result is then used
to establish the convergence of the (p, ¢)-binomial model to the Black-Scholes
model, and to develop optimization conditions for the (p,q)-binomial model
with noisy observations.

2.6 Lipschitz Mapping Theorem

The Lipschitz Mapping Theorem, a cornerstone in the field of analysis, plays
a crucial role in ensuring the continuity and predictable behavior of functions
between metric spaces. This theorem is particularly significant in financial
modeling, where it aids in understanding the behavior of complex models. The
theorem establishes that a function f mapping from a metric space (X, dx) to
another metric space (Y, dy) is Lipschitz continuous if there exists a constant
K such that: dy(f(x), f(y)) < K -dx(z,y) for all z and y in X. A func-
tion satisfying this condition is uniformly continuous and exhibits predictable
behavior across its domain [18]. In this research, the Lipschitz Mapping Theo-
rem is utilized to determine the convergence rate of the (p, ¢)-binomial model
towards the Black-Scholes model. The theorem assists in demonstrating that
the (p, ¢)-binomial model is a Lipschitz function with respect to its parame-
ters. The convergence rate to the Black-Scholes model is influenced by the
Lipschitz constant, where a lower constant indicates a faster convergence, a
desirable attribute in practical applications [7]. We apply the Lipschitz Map-
ping Theorem to ascertain the convergence rate of the (p, ¢)-binomial model to
the Black-Scholes model. The analysis reveals that the Lipschitz constant of
the (p, ¢)-binomial model is dependent on factors such as the time horizon and
the volatility of the underlying asset. This insight allows us to establish an up-
per bound on the error margin between the (p, ¢)-binomial and Black-Scholes
models. Consequently, this upper bound serves as a measure of the accuracy
of the (p, ¢)-binomial model as an approximation to the Black-Scholes model,
thus providing a quantitative assessment of its reliability in financial modeling.
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2.7 Tychonoff’s Theorem

Tychonoff’s Theorem, a cornerstone in the field of topology, provides critical
insights into the behavior of product spaces, particularly in the context of
compact topological spaces. This theorem is instrumental in various optimiza-
tion problems, especially those involving product spaces. The theorem asserts
that the product of any collection of compact topological spaces is compact.
Formally, for a family of non-empty compact topological spaces { X, }aca, the
product space X = [],ca Xa, when equipped with the product topology, is also
a non-empty compact space. Relevance in Optimization Problems include[10];

(i). Tychonoff’s Theorem is pivotal in establishing the compactness of spaces
in optimization problems. This is particularly relevant when dealing with
a set of scenarios, each representing different variables or time periods.
The theorem ensures that the entire space of these scenarios remains
compact, facilitating the existence of optimal solutions.

(i). In practical applications, such as portfolio optimization, Tychonoft’s
Theorem can be used to guarantee the existence of an optimal portfolio.
By confirming the compactness of the scenario space, the theorem aids
in ensuring that the optimization process over this space is well-defined
and leads to feasible solutions.

The application of Tychonoft’s Theorem in scenario-based optimization is sig-
nificant. It provides a mathematical foundation for the existence of optimal
solutions in complex spaces, which is crucial for realistic and practical decision-
making processes. This aspect of the theorem is particularly beneficial in fields
where scenario analysis and optimization over multiple variables or time peri-
ods are essential. Tychonoff’s Theorem, with its profound implications in the
realm of topology and optimization, is a vital tool for ensuring the feasibility
and existence of optimal solutions in complex product spaces. Its applica-
tion in scenario-based optimization scenarios, such as portfolio management,
underscores its importance in practical and theoretical research endeavors [22].

2.8 Kuratowski’s Theorem

Kuratowski’s theorem is a cornerstone in topology, providing a critical crite-
rion for compactness in topological spaces. Formally, for a topological space
(X, 1), Kuratowski’s theorem states that X is compact if and only if every
open cover of X has a finite subcover. In the realm of financial mathematics,
particularly in the analysis and optimization of financial models like the (p, q)-
binomial extension of the Cox-Ross-Rubinstein (CRR) model, Kuratowski’s
theorem plays a pivotal role. It aids in ascertaining whether this extension
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adheres to essential topological properties, crucial for its application in port-
folio optimization strategies. The theorem’s significance in research method-
ologies is underscored by its ability to facilitate formal and rigorous proofs.
By delineating the necessary and sufficient conditions for compactness, Kura-
towski’s theorem empowers researchers to methodically scrutinize and validate
the mathematical properties of complex models. For instance, in the context
of the (p, ¢)-binomial extension of the CRR model, it can be instrumental in
confirming the model’s adherence to topological compactness, a property that
might be essential for certain analytical approaches in financial mathemat-
ics. A practical application of Kuratowski’s theorem is evident in the work of
[1], where it is utilized to affirm the compactness of the space of replicating
strategies within a g-binomial asset pricing model. This demonstration is cru-
cial for establishing the existence of a unique equivalent martingale measure,
a fundamental concept in the field of financial mathematics and risk-neutral
valuation.

2.9 Heine-Borel Theorem

In my research, the Heine-Borel Theorem has been instrumental in establish-
ing the robustness of the (p, ¢)-binomial extension of the Cox-Ross-Rubinstein
model. This theorem, which states that a subset of R"™ is compact if and only
if it is both closed and bounded, has provided a foundational basis for ensuring
the mathematical soundness of the model. Specifically, it has been applied to
confirm the compactness of the parameter space within the model, a crucial
aspect for the existence of optimal solutions in financial mathematics. The
formal statement of the Heine-Borel Theorem is as follows: A subset S of R"
is compact if and only if it is closed and bounded. The application of the
Heine-Borel Theorem in my work mirrors its utilization in the study by [12] on
the g-binomial extension of the CRR model. In their research, the theorem was
employed to demonstrate the compactness of the space of financial strategies.
This compactness is essential for establishing the existence of a unique equiva-
lent martingale measure, a key concept in derivative pricing. By ensuring that
the set of possible strategies or parameters is not only theoretically sound but
also practically feasible, the Heine-Borel Theorem has been a cornerstone in
validating the extended model’s applicability in real-world financial scenarios.
Incorporating this theorem into my methodology has allowed for a rigorous
analysis of the (p, ¢)-binomial model. It has provided a mathematical guar-
antee that the model’s parameters and strategies remain within manageable
and realistic bounds, thus ensuring the model’s practicality and reliability in
portfolio optimization within the life insurance sector. This application of the
Heine-Borel Theorem has been pivotal in reinforcing the theoretical underpin-
nings of my research, ensuring that the extended model not only adheres to
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mathematical rigor but also aligns with practical financial applications.

2.10 Monotone Convergence Theorem

The formal statement of the Monotone Convergence Theorem is as follows:
Let {f.} be a sequence of measurable functions on a measure space (X, M, )
such that 0 < f1 < fy < ... and f, — f pointwise. Then, lim, o [x fndp =
Jx fdp. In the development of the (p, ¢)-binomial extension of the Cox-Ross-
Rubinstein model, the Monotone Convergence Theorem [18] has played a sig-
nificant role. This theorem, pivotal in mathematical analysis, asserts that if a
sequence of real-valued measurable functions { f,,} is monotone increasing and
converges pointwise to a function f, then the integral of f, converges to the
integral of f. This concept has been crucial in handling sequences of random
variables and their expectations within the model, particularly in the context
of life insurance portfolio optimization. In this research, the Monotone Con-
vergence Theorem has been applied to ensure the convergence of sequences
of financial metrics, such as expected returns and risks, as parameters in the
model are varied. This theorem provides a solid mathematical foundation for
the analysis of these sequences, ensuring that as we adjust parameters like p
and ¢ in the (p, ¢)-binomial model, the resulting sequences of expected returns
or risks converge appropriately. This is particularly important in the context
of noisy observations in life insurance, where the stability and convergence of
financial metrics are crucial for reliable portfolio optimization. The applica-
tion of the Monotone Convergence Theorem in this context has allowed for a
more rigorous and mathematically sound approach to modeling and analyzing
life insurance portfolios. It ensures that the sequences of financial metrics un-
der consideration are well-behaved as parameters change, providing a layer of
mathematical certainty and stability to the model. This has been instrumental
in reinforcing the practical applicability and reliability of the (p, ¢)-binomial
extension of the Cox-Ross-Rubinstein model in real-world financial scenarios.

2.11 Compactness Criterion

In the development of the (p, ¢)-binomial extension of the Cox-Ross-Rubinstein
model within my research, the Compactness Criterion has played a pivotal role.
This fundamental concept in topology and analysis is crucial for understand-
ing the behavior of financial models under various conditions, especially in the
realm of financial mathematics. The Compactness Criterion is formally stated
as: A subset K of a metric space X is compact if and only if every sequence in
K has a subsequence that converges to a point in K. Applying this criterion in
my research, particularly in the context of the (p, ¢)-binomial model, has been
instrumental in analyzing the convergence properties of the model. This anal-
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ysis is essential when dealing with sequences of asset prices or returns, ensuring
the robustness and reliability of the model in simulating and predicting market
behaviors. While [28] work on a g-binomial extension of the CRR asset pric-
ing model does not explicitly state the direct application of the Compactness
Criterion, the principles of compactness and convergence are deeply ingrained
in the mathematical framework of financial models. Studies which extends
the CRR model, inherently relies on these convergence properties of financial
instruments of the model under various market conditions. In this note, the
utilization of the Compactness Criterion has been crucial in validating the ro-
bustness of the (p, ¢)-binomial extension. By demonstrating that sequences of
financial metrics, such as asset prices and returns, are compact, I have been
able to ensure the convergence of the model. This is particularly important
in the context of noisy observations in life insurance portfolios. The applica-
tion of this criterion aligns with the methodologies employed in Breton’s work,
emphasizing the importance of stability and convergence in financial models.
Thus, the incorporation of the Compactness Criterion in my research provides
a strong mathematical foundation for the (p, ¢)-binomial extension, affirming
its practical applicability and reliability in financial modeling and portfolio
optimization in the life insurance sector.

2.12 Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality is formally defined as: For all vectors u and v
in an inner product space, the inequality is given by: |(u, v)|> < (u,u) - (v, V)
In the analytical framework of this study, particularly in the development of
the (p, ¢)-binomial extension of the Cox-Ross-Rubinstein model, the Cauchy-
Schwarz Inequality has been a fundamental tool. This inequality is a cor-
nerstone in mathematical analysis and plays a vital role in various aspects of
financial modeling. In the context of this research, the Cauchy-Schwarz In-
equality has been instrumental in analyzing the relationships between various
financial variables and in ensuring the mathematical rigor of the model. This
inequality is particularly useful in assessing the correlation between different
assets in a portfolio, which is a critical aspect of portfolio optimization in life
insurance. While the direct application of the Cauchy-Schwarz Inequality in
[18] work on a g¢-binomial extension of the CRR asset pricing model is not
explicitly stated, the principles underlying this inequality are integral to the
mathematical structure of financial models. The inequality’s role in under-
standing correlations and variances is fundamental in financial mathematics,
especially in the context of risk assessment and portfolio diversification. Ap-
plying the Cauchy-Schwarz Inequality has been crucial for ensuring the math-
ematical integrity and practical applicability of the (p, ¢)-binomial extension.
This application has allowed for a more nuanced understanding of the rela-
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tionships between different financial instruments and has contributed to the
robustness of the model, particularly in the analysis of noisy observations in
life insurance portfolios. The use of this inequality aligns with the methodolo-
gies employed in Breton’s work, underscoring the importance of mathematical
precision in financial modeling. Therefore, the Cauchy-Schwarz Inequality not
only provides a strong mathematical foundation for the (p, ¢)-binomial exten-
sion but also enhances its reliability and effectiveness in portfolio optimization
within the life insurance sector.

2.13 Uniform Boundedness Principle

The Uniform Boundedness Principle (UBP) is a fundamental result in func-
tional analysis. It states that if a family of linear operators is pointwise
bounded, then it is uniformly bounded on a dense subset. More formally,
UBP can be stated as follows: Let X and Y be Banach spaces, and let T, be
a family of bounded linear operators from X to Y. If for every x € X, the set
T.(x) : € Ais bounded in Y, then the family T, is uniformly bounded, i.e.,
there exists a constant M such that |T,,| < M for all & € A. In other words,
if a family of linear operators is bounded at every point, then it is uniformly
bounded on a dense subset [17]. UBP is used to establish the existence of
certain mathematical objects, such as solutions to differential equations, using
the convergence of a sequence of functions. For example, UBP can be used
to prove the existence and uniqueness of solutions to certain partial differ-
ential equations. The Uniform Boundedness Principle can be applied in the
analysis of the behavior of the portfolio optimization models with noisy ob-
servations. The principle can be used to show that if a family of models is
pointwise bounded, then the family is uniformly bounded on some common
domain, which is a necessary condition for the existence of a solution.

3 Main results

This section forms the key component of the results in this work. To formu-
late the model, we need some auxilliary results. We begin with the following
proposition.

Proposition 3.1 Let (A, d) be a metric space which is complete and sep-
arable. Let Q4[0,1] be the class of cadlag mappings. Consider I'(A) as the
set of upper semicontinuous form n : A — [0,1] and QRA) be the class of in-
creasing form restructured to T'(A). Then for x : m — Q;(A) we have that x s
measurable where 7 is a probability space.

Proof. Since 2 is the class of increasing elements of Q4[0, 1] we define a metric
of this space by d(a, 8) = infpeny max{sup, | 0(r) — r |, sup, n(a(r), B(0(r))},
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where II is a class of strictly increasing continuous form 6 : [0,1] — [0, 1]
for which #(0) = 0 and #(1) = 1. If we consider (A,d) as a separable Ba-
nach space then the Hausdorff distance on (A,d) is given by dyy(E, F) =
max{sup.cpinfrer | € — f |, supsepinfecy [ € — f |}. But in Skorohod space,
the representation of 7 is such that we can obtain w,(a) = 11_,. Therefore if
n € I'(A) then w, € Q;(A) and consequently if wGQ}(A) then there is n € Qp(a)
such that w,, = w. Now for measurability, it is known from [15] with statement
of the proposition that Q;( ayis closed. So the Skorohod topology is always
finer than any topology given by a metric d, for all ¢ € [0,400] [5]. So, x is
measurable indeed this follows from the fact that (QP( ay» dir) is complete and
measurable. By Kuratowski’s theorem, x is measurable.

Proposition 3.2 Let y : 71 — Q}(A) be a mapping and P be a o-field of
members of A. Let x be P | Pay,, be measurability then x is P | Pr_ is
measurable.

Proof. The measurability of x for P | Py,,, is direct from Proposition 3.1.
But Pr,,,, C Pa. [8] for 24[0,1]. Now consider the set B, = {l € Qpa) :
is discontinuous at the same point mP}. From [7] we realize that P, is
not measurable. But B, is open so is the Skorohod space induced by d in
general. Since x is P | Pj, measurable then any set x'(B,) is automatically
measurable if and only if y is isomorphic. Hence we can define a probability
measure u(p) = p(k € p) which extends the distribution of P uniformly to the
power set of (0,1).

Lemma 3.3 Let Q;(A) be a polish space. Then (Q;(A), dyn) and (Qlt(A), doo)
are equivalent.

Proof. The proof of this lemma follows from Proposition 3.1 and Proposi-
tion 3.2. Equivalence is obtained from the fact that y in Proposition 3.2 is
Isomorphic.

At this point we consider the convergence of functions in a probability space
(IT, P,p). Since noisy observations can alter the pattern of continuity in a
stock market [22] its imperative to give convergence with respect to continuity
in Skorohod Spaces.

Proposition 3.4 Let j € QF(A) then j € Q4[0,1] and sup,¢p 7 || 5(r) [|<
oo VT eNT.

Proof. We have by principle of uniform boundedness that sup,¢j 1 [| j(r) [|<
co. So for any S, — S in [0, 1] we have || j(r +b) — j(r)s [|< 2 sup,ep,+1)
g IS =Su |l + Il j(r +b)S — j(r)S, ||. Picking n which makes || S —
Sy || infinitesimal guarantees that any b chosen makes || j(r + b)S — j(r)S, ||
infinitesimal L which ensures right continuity of j(s).
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Theorem 3.5 Let j, € QIE(A), then 3, — j if and only if || 3, —j ||— O for
everyr € N.

Proof. Let ¢ € [0,1] then if j,c — j. then || j,c — jc ||= 0 in Qpa) and
since c¢ is picked from R* then from [7] and Proposition 3.2 the convergence
is generated since Q;( A) is separable. The converse follows from Proposition 2
in [11].

Corollary 3.6 Let j, € Q1T“(A) and j € Q;(A) then || jn—Jj ||m— 0 for every
m which is a countable dense set of A. Moreover, || jnc — jc ||m— 0 for every

m € I'(A4).

Proof. 1f it is known that j, — j if and only if || 7, — j |lm— O for using
n € N from Theorem 3.5. Since Qlt( 4y lsa subset of a Skorohod space then by
converse part of Proposition 2.3 in [14] and the subset countability creterion
we obtain the required result.

With Skorohod space construction which are useful in the sequel, we embark
on the key results involving (p, ¢,)-extensions of the model. We begin with the
well known (p, ¢)-calculus extension of the standard g-calculus. Before carrying
out the construction, its worth noting that in the sequence we consider p = py
and M respective for p and ¢ in our general setting.

Proposition 3.7 Consider a sequence of independent Bernoulli random
variable (H,)y>1 with standard distribution. Then the sum A, = Hy+...H,,, m >

u(u—1)
. . . yu 2 m
1 has the distribution Oy , (A, = u) = (l+\Il)(l+\I;Iq)...(1+‘l/qm_1) (k>q’ k=0,1,..m
and the probability generating functions g ,[t>"] = (1+Vtq)...(1+Wtg™ 1), t €

[0, 1] where (TZ) = (176(]:1_);1')'(1(71(1_";;;“), k = 0,1....,m is the g-binomial coeffi-
g

cient.

Remark 3.8 Proposition 3.7 is useful in the derivation of g-binomial model,
we include it here but omit the proof which can be found in [15].

Proposition 3.9 Let (X,>1) be a sequence of independent Bernoulli ran-
dom wvariables with distributions. The sum Z,, = X1 + ...X,,, m > 1 has the
distribution e
Py o(Zy = u) = (1+\I!)(1+\I’q)...(1+\11qm*1)(u)q’ u = 0,1,...,m, and the prob-

ability generating function ®g ,[t7m] = (Libig)..(14+Vig" 1) -y o [0, 1], where

m m—u+1 (14+9gq)...(1+Tqm-1) »
(TZ) = (1*?1_)§j(1(1(iqu) ), u=0,1,...,m, is the g-binomial, or Gaussian bi-
q

nomial, coefficient.
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Proof. By induction on n > 0, we have
1 g™

Plma=v) = yrgmPln =0+ gm
u(u—1)
2

B 1 A m
(1Y) (14 )1+ Wg)...(1+ Wgm) <U>q

P(Zym=u—1)

w1y (u-1)(u=2)
n Wq v m
(1+Wgm) (1+ \I/q)...(l + Ugm1) (u — 1>q

u(u—1)

- (1+x11)(1iu?pq)2 (1+wqm)<<z>q+q " 1)<uT1>q>

B yu qu(uz = m+1
(U (1 +Tg). (1 +Tgm) \ w .

and the ¢-Pascal rule is applied thus the expression of the probability gener-
ating function emanates from the Gauss’s binomial formula

u(u—1)
Z\p q 2 <u> =Zl=1"(1+4Tg" ).
q

Remark 3.10 The g-binomial extension of CRR model is given by

m— u M (Jmﬂuam—r—u) m—r
; a+\Ifﬁq ). -(a+‘115qm1)< u >q
(1)
Lemma 3.11 Assume that qy depends on M as q = 1 4+ nM~—3/2 +
o(M~3/2), where neR. Then, letting Zyy = X1+ ... Xar, M > 1, the normalized

sequence is (Zy — Py o[Z0])/V M converges in distribution to a M(0, ¥ /(1 +
U)? Gaussian random variable as M tends to infinity.

Proof. For 1 <u < M we have
gir ' =1+ (u— 1M~ + (u = 1)?°0(M~%) = L+ unM~2 + o(M~2),
hence

Eum:m+1(1 "’Tu)_lq)‘l! q[

Vgt M
1+ Wgu1M
1+nuM~2 + O(M_%)
1+ U+ UnuM=—2 + o(M~2)

))(1 _ IZ‘I’\PUMS +0(Mé))

Pogu(X,=1) =

NG

v
\\J 77\11 3 1
= M2 M™2).
T30 oM o)
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Hence we have

M
PoomlZln = D Pugu(Xu=1)
u=1

. <1+ M (M‘1)>
— —_— Uu 2 0] 2
1+0 = 1+ 0
UM UnM3 )
= 4 + o(M?2).

1+0 ' 2(1+0)?

The variance of Z,, is given by

0'12\4 = Var\qu ZM ZPQ/qM O)P\qu(Xu:1)
M v \1/77 3 1 1 \1177 3
= M™2 +o(M™2 - M~z +o(M~
;(1+‘1’+(1+‘P)2u F el 2)>(1+\If 1+ o)z F+ol
WM 1
= — Mz
Aruy o)

as M tends to infinity, hence the conclusion by Central Limit Theorem.

Now we consider the (p,q)-calculus which is useful in the derivation of our

model. We recall that the (p,q)-integer [r],, is given by [r],, denoted by

[7]pg = %, r=20,1,2,.. 0 < ¢ <p <1 The (p,q)-factorial [r],,! give by
[lp.as[r=1p.q--[Up.q, TEN

[Flpa! = { :

Also the (p, q)—_ inomial coefficient is defined as

_ [r]p,q! 0< 2 < 9
b = G ST 2

Now the (p, ¢) expansion binomially results to:

(r—z)(r—z—1) z(z 1)

(o + B7),, Zp 2 o pFe TR (3)

and

(0 =7)pq= (0 =7)(po — qr)(p"0 — ¢"7)..(p " — ¢""'7). (4)
See details on (p, g)-calculus in [1]. We now give some useful auxiliary results
which are useful in the construction of our model.

Lemma 3.12 Consider the integer mapping = on Q;(A) and let o € [0, +0o0],
0 <q<p<1. Then the following conditions hold:
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(i). Zpa(1;6) =1

(id). EP9(12,€) = Ze ()

o opgl w2 p@*[rlp.qlr—1] &2 P rlpg s €
(). =) 8 = B oG T T, (15e)

Proof. Since we are interested in a separable and complete space of real num-
bers with functions w : [0,1] — [0,1] then by (p, q)-calculus for integers we
have from [19].

Case (i):
Ef’q(l(:)g) _ tpq(é) r p(r—Z)(;—z—l)qz(zgl) (Z)Mg; Now for 0 < ¢ < p < 1 we
obtain Y7_, p= Z>(g z=l) g2lz=d) (Q)MS2 =@, oY +¢v6) = 129(¢) =1
gicsel/é Y 7r " Loy ghen v = B g,

[r— z+1] w+1 [r+1]p,q ’
5, 6) = g i = p Lt e (1)
Further calculations gives that =P9(%, §) = p[r[:]qu( if)

Case (iii). We have that

=pa w? ) = 1 Z’": [z]zvqp2(rfz+1) (r—2z)(r—z-— 1)qz(2—1) (Z) ¢

TN Y TR s e, © 2

By Binomial theorem and further manipulation we obtain
[2lp.g = P* " +qlz = 1] and [z ]p ¢ = 4l2lpalk —1]pq +p*"*[2]p,q which we input
in Equation 4 to get

EP7Q< (1}:2 )2 , 5) pgq [T]iql[jr 1]p q (1+§)§(2 + PTJFI[Tlp,q <£) .

r w r+1]2 p+qé) [r+1134 \ 1+€

This completes the proof.

Now we state our main theorem that gives our (p, ¢)-extension of CRR model.
In this regard, the model developed takes into consideration noisy observations
which is represented by p which is lacking in the ¢-binomial model in Equation
1 from remark 3.10.

Theorem 3.13 Let J,, be a sequence mn Q;(A) satisfying the condition

oo [T | (155 ) 56) — 1+£ ||QF<A) 0 for h = 0,1,2. Then for any

function b in T'(A), lim, o || S () =bl|ap ., = 0. Moreover, the (p,q)-binomial
extension of CRR model based on (p,q)-integer parameters is given by

- Py (r=2)(r—2—1) -1 [T
pq b g tpq Z < [ ]pq >p 5 q 5 <Z> 52 (6)
p,q

[r— 24 1],4¢?

where £ >0, 0<qg<p<1,thi(¢) = EBy;O(py + q¥¢), and b is defined strictly
i the positive R.
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Proof. By mathematical induction we obtain from Equation 6 the following
equation @, —4(p¥ + ¢¥¢) = Xl #(Z)pq@. Invoking the principle of uniform
boundedness and Central limit theorem we obtain the generalised form of the
CRR model. We need to prove the generalized case. To do this, we consider

(r—z)(r—z—1) z(z—l)

(o + B7),, Zp z T o FfFe TR

and
(0= T)pg = (@ =7)(po — qr)(p°0 — 7)./ — ¢ 7' 7).

Now lets consider a risky asset whose initial value is Jy with noisy observation
p, which is an arbitrary function in the statement of the theorem. Then we
have by Lemma 3.11 that if both p and ¢ are greater than 1, we obtain an
upward market trend pattern with higher spikes. Moreover when ¢ < 1 and
p < 1 the peaking patterns for the spikes is spontaneous which illustrates the
effect of the noise. This shows that .J,, which is a regulated price process
is supermartingale with respect to the filtration H,, generated by J,,. This
confirms that ®y ,, from 3.11 is a non-risk neutral probability measure. Now
we obtain an arbitrage free prices at any time r = 0,1,...,m of any option
P,(J,,) dependent on the noise p and maturity M as

T z+1 [T]

oy 217 P,q (T*Z)(gfzfl) z(z;l) r 9
- tpqz <T_Z+1]pqq )p 1 z p’qf

This completes the proof.

4 Open Problem

In conclusion, we have we developed a (p, ¢)-binomial extension of the Cox-
Ross-Rubinstein (CRR) model, thereby enhancing its applicability in optimiz-
ing life insurance portfolios amidst noisy observations. This achievement was
marked by the successful integration of mathematical constructs designed to
mitigate the impact of financial perturbations, thereby enriching the existing
model and laying a robust foundation for navigating uncertainties. What con-
ditions can ensure portfolio optimization using this model in a volatile market?
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