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Abstract  
Building automatic speech recognition (ASR) systems is a challenging task, especially for under-
resourced languages that need to construct corpora nearly from scratch and lack sufficient training 
data. It has emerged that several African indigenous languages, including Kiswahili, are technologically 
under-resourced. ASR systems are crucial, particularly for the hearing-impaired persons who can 
benefit from having transcripts in their native languages. However, the absence of transcribed speech 
datasets has complicated efforts to develop ASR models for these indigenous languages. This paper 
explores the transcription process and the development of a Kiswahili speech corpus, which includes 
both read-out texts and spontaneous speech data from native Kiswahili speakers. The study also 
discusses the vowels and consonants in Kiswahili and provides an updated Kiswahili phoneme 
dictionary for the ASR model that was created using the CMU Sphinx speech recognition toolbox, an 
open-source speech recognition toolkit. The ASR model was trained using an extended phonetic set 
that yielded a WER and SER of 18.87% and 49.5%, respectively, an improved performance than 
previous similar research for under-resourced languages.  
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1 Introduction  
There is a common desire to maintain, protect, sustain, and revitalize native languages in many regions 
of the world where they are spoken.  Language is a means to transform and invigorate culture. On the 
other hand, technology has an impact on how individuals and groups communicate, acquire 
knowledge, and think. It benefits society and impacts how people communicate with one another 
every day. The development of language technologies may include process improvement, technology 
invention, innovation, or diffusion. Basic rule-based models of language technology have been 
replaced over time by more resource-intensive techniques like machine learning and deep learning. 
The requirement for resources such as text and speech corpora, phonemic-dictionaries and speech 
transcription datasets is critical for any viable voiced-based language-technology computer system. A 
requisite for developing such systems is adequate data to design and train models. Most indigenous 
African languages are categorized as resource scarce, meaning there is no adequate training data to 
build models that support African languages. Therefore, the indigenous languages are 
underrepresented in Artificial Intelligence with an impact of the speakers suffering from poor digital 
inclusivity, lack of participatory decision making, inequity and poor information access. 
 
To enhance the capacity of these languages and more so in the development of speech-to-text and 
text-to-speech systems, there needs to be a better understanding of the requirements for these tasks 
especially from a linguistic as well as a computing perspective. Methodologies have to be explored 
from best practices and harmonized to enable faster and accelerated development. This paper reports 
part of research activities carried out under Kencorpus Project (Wanjawa et al., 2022).  From a 
linguistic perspective, we investigated the phonemic representation of Kiswahili, an indigenous 
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African language that is widely spoken in Eastern Africa and parts of Central and Southern Africa. It is 
appreciated that pronunciation varies from one region to another and also varies depending on the 
context. The key research question therefore is; what phonemic set should be used to obtain the most 
optimum performance in speech to text systems?  As a tangible output of this we sought to create a 
comprehensive phonemic set to obtain better performances in Speech to text Systems. From a 
computational perspective, we sought to investigate the best practices for collecting and curating 
speech data to create a speech corpus, creation of a comprehensive words-phonemes dictionary for 
Kiswahili and the creation of transcription files. Further an investigation was carried out to bring forth 
the most suitable open-source speech to text libraries for processing such data, and also find optimum 
quantity and varieties necessary for development of a viable speech-to-text system. 
 
The rest of the paper is organized as follows: in Section 2, we discuss background work on 
transcription, Kiswahili language and Kiswahili phonemes, and related work on ASR systems. Then in 
Section 3, we discuss the methodology that includes the model adopted in building the Kiswahili ASR 
system. Section 4 presents the experiments that were conducted in the study when developing the 
Kiswahili ASR. Section 5 presents the results of the various models and discussions. Finally Section 6 
concludes the paper.  
 
2. Background  
2.1 Concept of transcription 
Transcription, in linguistics, is the conversion or transfer of audio files into written formats (Dresing et 
al., 2015; Bailey, 2008 as cited in Rincon, 2018; International Rescue Committee-IRC, 2018).  This 
conversion is normally done to ease communication.  Transcription also helps in converting audio files 
into written formats in order to be studied and analyzed (Rincon, 2018; McMullin, 2021).  As a special 
skill, transcription helps learners to become very successful writers thus improving on their writing 
and reading abilities (Deem et al., 1988).  Audio files that are normally transcribed during the 
transcription process include words heard by the transcriber. Transcription is also an integral stage in 
the creation of speech corpus normally used in speech-to-text systems. 
 
Transcription process is very cumbersome in that a transcriber may spend between 3-8 hours just 
transcribing one audio file (McMullin, 2021). Therefore, transcription tends to be complicated and 
time consuming (Spencer et al., 2006).  Transcription requires an oscillation between a realistic and 
possible representation of the audio files, thus any transcript will not fully represent the real interview 
situation (Dresing et al., 2015). That means some deviations and errors will normally occur.  The 
transcriber therefore needs to look for various ways of minimizing these errors (Spencer et al., 2006).  
Common samples of audio files that are normally transcribed include conversations, interviews and 
dictations among others (Dresing et al., 2015).  Though there are technologies that translate speech 
into written texts especially in the highly resourced languages such as English, as can be witnessed in 
YouTube or even smartphones, these technological resources do not effectively cover other low-
resource languages in Africa such as Kiswahili among other indigenous languages (Gelas et al., 2012).  
 
2.2 Transcription Typologies 
In order to develop effective transcriptions for use in speech to text systems for our selected case-
study Kiswahili language, there is a need for deeper understanding of the typologies and procedures 
for transcription. Transcription may be of the following three types: verbal/verbatim transcription, 
edited transcription, and intelligent transcription (Speechpad team 2013 as cited in Rincon, 2018).  
Verbatim means that the text is transcribed as heard by including all sounds/words spoken, laughs, 
background noise, jargons, broken or incomplete phrases and words included.  In this case, the 
transcript is purely a replica of the audio recording.  In the second type, edited transcription, some 
parts of the audio files are omitted while the intended meaning is not altered.  Such type of 
transcription tends to exclude speech errors, false starts and other sounds such as interjections among 
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others.  The transcriber picks only what is felt to be important.  This type of transcription is very 
prevalent in speeches, conferences and seminars among others.  The final type of transcription is 
intelligent transcription.  This is a special type where the transcriber tends to add personal pronouns 
and other omitted articles especially in the speeches that were done in a rush.  The grammar and 
other jargon are always written in standard form.  This kind of transcription is common with academic 
works. We selected the verbatim transcription approach. 
 
2.3 Transcription Procedures 
Transcription can be done by an individual or many individuals on one audio file or various files. 
Therefore, we may have single or parallel transcriptions (Spencer et al., 2006) that are done for 
purposes of analysis.  In single transcription, one person transcribes an audio file alone and then 
checks against the original as many times as possible.  On the other hand, parallel transcription 
requires that one audio file is transcribed by several transcribers.  Correction of places with 
disagreements is done thereafter.  Finally, additional checks of the entire transcript are done against 
the original audio file. In our case we selected a rapid method where we had many trained personnel 
singularly transcribe audios or texts and a few others check for quality on all the transcriptions. 
 
Recording of audio files is first done before the transcribing process can commence.  There are best 
practices for recording files in readiness for transcription, which provide for the following 
considerations (Moore et al., 2017); first is what and why recording is being done and secondly a 
decision on whether to record either as audio or video.  Finally, the type of recording equipment for 
use that is appropriate for audio or video is considered e.g. smartphones, tablets, video or audio 
recorders.  There is usually a need for use of good microphones that are clearly linked to a video 
camera or audio recorder when recording in a very noisy environment.   
 
The transcription process can then follow after obtaining the audio recording.  This is generally a five-
step process (Moore et al., 2017).  First, you have to organize data into a corpus. This can be done by 
using Computer Assisted Qualitative Data Analysis Software (CAQDAS) packages such as Nvivo or 
Atlas.  This results in appropriate naming conventions for the data files.  The second step is to 
synchronize audio files to decide on which data file to use, then making a decision on what to 
transcribe.  It is always recommended that you do not transcribe the entire corpus. The fourth step 
requires the decision on the program to use for transcription e.g. CLAN, ELAN, Nvivo or Atlas. Finally, 
you create an initial transcription file in which details like prosody, gestures, pauses among others are 
not included.  However, it is also possible to do a fine transcription that includes symbols to represent 
multimodal features like intonation, stress, rhythm, gestures, gaze among others in the text form. In 
our case, the transcribers listened to audio clips using a media player, and typed out the text in a text 
editor. We adopted this approach as most transcribers were unfamiliar with software tools and was 
faster to use what is already known.  
 
2.4 Kiswahili language 
Languages in Africa just like other languages world over can be classified in terms of geographical, 
structural, functional and familial expositions (Mgullu, 1999; King’ei, 2010).  Kiswahili, also referred to 
as Swahili, tends to fall in all these classification categories.  Geographically, Kiswahili is an East African 
language standardized from the Ki-Unguja dialect.  Structurally, it is an agglutinating language that 
accepts affixations.  Functionally, the language is both an official and national language of Kenya and 
Tanzania, and is widely spoken in Democratic Republic of Congo, Mozambique, Somalia, Uganda, 
Rwanda and Burundi (Gelas et al., 2012).  Kiswahili is an official language of communication in the East 
African Community and African Union summit functions.  Kiswahili belongs to the Niger-Congo 
language family which is spoken by people who inhabit parts of western, central, eastern and southern 
Africa. Besides Kiswahili, the Niger-Congo family also includes: Yoruba, Igbo, Congo, Luganda, 
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Kinyarwanda, Makua, Isi-Zulu, Isi-Xhosa, Ndebele, Manding, Wolof, Kikuyu, Kamba and Nyamwezi 
among others (Webb et al.,2000; Singler, 2011). 
 
Kiswahili is also classified as a Bantu language spoken by about 100M people in the eastern and 
southern Africa with about 5M native speakers (Akidah, 2013; Gelas et al., 2012).  Other scholars give 
an estimate of about 150M speakers in the East African coast (Gangji et al., 2015). Kiswahili is 
considered as one of the indigenous languages in Kenya and Tanzania and also spoken in parts of 
Southern Africa.  It is also a taught subject in schools in Kenya and Tanzania, and now Uganda and 
Rwanda thus playing a key role in teaching in the education sector.  Because of its international 
recognition, the language is currently a very important language used for translation and 
interpretation purposes. 
 
2.5 Kiswahili Phonemes 
A phoneme is a fundamental unit of phonological structure, an abstract segment which is one of a set 
of such segments in the phonological system of a particular language or speech variety.  It is the 
smallest unit which can make a difference in meaning, distinguishing one word from another (Verma 
et al., 1989; Habwe et al., 2004; Massamba 2012; Mgullu 1999; Trask, 1996).  A phoneme is the 
smallest abstract unit of sound of a specific language.  For example, in Kiswahili, /t/ in taka and the 
initial ‘k’ in kaka are phonemes, since they make a difference in meaning in Kiswahili.  This smallest 
unit is not further divisible however it can act singly or in combination to form syllables, words and 
then sentences.   
 
Phonemes in any given language can appear as either vowels or consonants. The consonants vary both 
in number and examples.  However, there are similar or uniform phonemes across languages in the 
world.  Kiswahili language also has both the vowel and consonant phonemes and is one of the most 
documented African languages (wa Mberia, 2015). Kiswahili scholars tend to vary in their opinions 
regarding the number and examples of Kiswahili phonemes, especially the consonants.  
 
There are 5 Kiswahili vowels namely: /a, e, i, o, u/ (Ashton, 1951; Whiteley, 1956; Polome, 1967; 
Nchimbi, 1995; Mgullu, 1999; Habwe et al., 2004; Kihore et al., 2009; Obuchi et al., 2010) though other 
scholars indicate the presence of 5 vowel phonemes and 2 semi vowels /w, y/ (Akidah, 2013).  These 
Kiswahili vowel phonemes are phonetically presented as /i, ɛ, ɑ, ɔ, u/.  However, variations tend to 
emerge in the number of consonants together with their examples in Kiswahili.  Earlier linguists 
mentioned between 32-37 existing Kiswahili phonemes, both vowel and consonants.  Some of the 
listing and number of phonemes in Kiswahili according to various researchers is shown on Table 2.1 
below: 
 
Table 2.1 – Various Kiswahili consonant phonemes 

Research Consonants Total 
Ashton (1951) /p, b, m, w, mb, f, v, mv, th, dh, j, t, d, s, z, n, r, l, nd, nz, ch, sh, nj, 

ny, y, k, g, kh, gh, ng’, ng, h/ 
32 

Whiteley (1956) /p, p̔, b, m, w, mp, mb, f, v, t, t,̔ d, n, r, l, s, z, nt, nd, ch, chไ, j, sh, 
nj, ny, y, k, kไ, g, ng’, nk, ng, h/ 

33 

Polome (1967) /p, ph, b, t, th, d, c, ch, j (Ɉ), k, kh, g, f, v, th (θ), dh (ð), s, z, š, gh 
(ɤ), h, m, n, ny (ɲ), ng’ (ɳ,) l, r, w, y (j/) 

29 

Nchimbi (1995) /p, t, ch (ʧ), k, b, d, j (Ɉ), g, m, ny (ɲ), ng’ (ɳ), n, f, th (θ), s, sh (ʃ), h, 
v, dh (ð), z, r, l, y (j), w, gh (ɤ), mb, nd, ng, nj/ 

29 

Mgullu (1999) /b, ch (ʧ), d, dh (ð), f, g, gh (ɤ), h, k, l, m, n, ny (ɲ), ng’ (ɳ), p, r, s, 
sh (ʃ), t, th (θ), j (Ɉ), v, z, x (kh)/ 

24 

Habwe et al. (2004) /p, b, m, w, ƒ, v, th (θ), dh (ð), t, d, l, r, n, s, z, j (Ɉ), ny (ɲ), y (j), sh 
(ʃ), ch (ʧ), k, g, ng’ (ɳ), gh (ɤ), h/ 

25 
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Kihore et al. (2009) /b, ch, d, dh (ð), f, g, gh (ɤ), h, j, k, l, m, n, ny (ɲ), ng’ (ɳ), p, r, s, sh 
(ʃ), t, th (θ), v, w, y, z/ 

25 

Obuchi et al. 
(2010) 

/p, m, f, th (θ), t, l, n, z, ny (ɲ), sh (ʃ), k, ng’ (ɳ), h, b, w, v, dh (ð), d, 
r, s, j, y, ch (ʧ), g, gh (ɤ)/ 

25 

Akidah (2013) /b, b, m, f, v, θ, ð, t, d, n, ɲ, s, z, l, r, j, ʃ, k, g, ʧ, ɳ, ɤ, h/ 23 
 
Though it appears that there are many variations in the number and examples of Kiswahili consonants 
among Kiswahili scholars, the more agreeable number is 29 (Nchimbi,1995) as shown on Table 2.1.  
This number and confirmation by examples is supported by more scholars (Mwita, 2007; Choge, 2009; 
Okal, 2015).  These 29 Kiswahili consonant phonemes can be detected in Kiswahili words as provided 
in Appendix 1. 
 
It is worthwhile to note that studies on Kiswahili consonant phonemes are still ongoing (Choge, 2009). 
In this respect, inclusion of other adapted words from other foreign languages like the Arabic language 
tends to further increase the number and examples of these phonemes. For instance, the word ‘kheri’ 
adapted from Arabic language gives us the phoneme /kh/.  Thus, we may also have this phoneme in 
the Kiswahili phoneme catalog: 
/kh/ = kheri 
 
It is important also to remember that Kiswahili consonant phonemes can be represented with one 
alphabet or compounded. This is referred to as single letter or diagraph presentation (combination of 
more than one letter but regarded as one phoneme) (Gelas et al., 2012).  In many cases Kiswahili 
phonemes, just like other phonemes among many languages world over, are normally represented 
with one symbol or alphabet as follows: /a, e, i, o, u/ for vowels and /p, t, k, b, d, j, g, m, n, f, s, h, v, z, 
r, l, y, w/ for consonants.  However, there are also consonant phonemes that are combinatory in 
nature. For example, /th, dh, gh, kh/ are Kiswahili phonemes that are derived from Arabic language 
(Treece, 1990; Baldi, 2012). Thus, consonant phonemes that appear to be compounded structurally 
or that are technically referred to as digraphs are normally regarded as one single phoneme if some 
two conditions are met.  These conditions (Trubetzkoy, 1969) are firstly, only those combinations of 
sounds whose constituent parts in a language are not distributed over two syllables, are to be 
regarded as the realization of single phonemes.  Secondly, a combination of sounds can be interpreted 
as the realization of a single phoneme only if it is produced by a homogenous articulatory movement 
or by the progressive dissolution of an articulatory complex. 
 
Though expositions of earlier studies regarding Kiswahili phoneme representation in the production 
of dictionary for NLP have been done, there are similarities and deviations from our research.  
According to Gelas et al., 2012, there are 36 Kiswahili phones namely: /BB, CC, DD, GG, JJ, LL, NN, RR, 
SS, TT, VV, XX, ZZ, a, b, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, u, v, w y, z/12.  These phonemes can be 
presented by words in Kiswahili as per the sample list shown in Appendix 2. 
 
2.6 Automatic Speech Recognition (ASR) systems 
In the last decades, several works have been conducted in order to aid the adoption of various natural 
language technologies within under-resourced languages.  Getao et al. (2006) developed a sentence-
based system to transcribe Kiswahili speech to text. The study included four distinct phases including 
the pre-processing level, the emission model, the lexicon model and the transcriber. At the pre-
processing phase, the scholars used the Mel-frequency Cepstral Coefficients (MFCC) to extract 
features from the speech signals. The emission model that identifies correspondences between the 
input speech features and a given phone was created using a multi-layer perceptron (MLP) neural 

 
1 https://raw.githubusercontent.com/getalp/ALFFA_PUBLIC/master/ASR/SWAHILI/lang/lexicon.txt 
2 https://github.com/getalp/ALFFA_PUBLIC/blob/master/ASR/SWAHILI/lang/nonsilence_phones.txt 
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network and trained using the back propagation algorithm. The model used spoken sentences as 
training data that included the acoustic signals generated when the sentences were read and a 
phonetic transcription of each segment within the acoustic signal. 
 
Additionally, the lexicon model contained the transcribed words, bigram probabilities, and the 
probability of each transcribed word coming at the beginning of a sentence. Lastly, the transcriber was 
created using the Viterbi algorithm to facilitate a recognizing function of the words within any 
particular spoken sentence. However, some of the evidenced challenges of the model developed by 
Getao et al. (2006) included its understanding of speech from only one specific speaker.  The research 
achieved a 43% word error rate (WER) that was significantly high.  The transcription speed and the 
training rate of the developed model was evidently low. The slow transcription speed resulted in the 
lexicon model containing limited vocabulary that may have also contributed to the high word error 
rate. 
 
In another study, Nimaan et al. (2006) developed an automatic transcription model for the Somali 
language whose data was first normalized due to multi-spelling variants for certain Somali words. The 
study’s acoustic model was developed using the LIA acoustic modeling toolkit. The researchers also 
developed a language model using Somali trigrams trained using the Somali textual corpus obtained 
from the CMU and LIA toolkits. The model contained 726,000 bigrams and 1.75 million trigrams of 
words in the Somali vocabulary and 189,000 bigrams and 996,000 trigrams of root forms in the Somali 
vocabulary.  Nimaan et al. (2006) utilized the LIA large vocabulary speech recognition system (Speeral) 
for speech decoding and obtained a 32% WER. However, after a spelling normalization the model 
obtained a 20.9% WER. Additionally, at the root level, the model obtained a 14.2% word-root error 
rate. 
 
Similarly, Biswas et al. (2019) in their study first had their audio files divided into fixed length files 
before being used as inputs into the recognizer and semi-supervised retraining. Based on research 
conducted by Yılmaz et al. (2018b) that established the significance of incorporating artificially 
generated text using long short-term memory (LSTM) in lowering the perplexity of language models, 
Biswas et al. (2019) also utilized a trained LSTM network on their Somali acoustic training 
transcriptions that realized an 11-million-word corpus. Additionally, the researchers utilized semi-
supervised training owing to past indications of its ability to improve performance of ASR models 
designed for under-resourced languages. Biswas et al. (2019) also developed a language model using 
the SRILM toolkit. The acoustic model, on the other hand, was created using the Kaldi speech 
recognition toolkit. The researchers established that while time-delay neural network (TDNN) used 
only half of the model’s parameters, it outperformed the CNN-TDNN-BLSTM with WERs of 50.95% and 
53.75% respectively. Additionally, that research also found that due to the availability of a large 
vocabulary set within the Somali language the incorporation of a semi-supervised training data 
improves performance of the ASR model. 
 
African nations are largely multilingual resulting in significant code-switching among speakers. Yilmaz 
et al. (2018a) developed a code-switching ASR for five languages out of the possible eleven South 
African languages. The language model utilized both monolingual and code-switched text resources 
that were then interpolated with an English monolingual language model to decrease transcription 
perplexities. The study used various neural network algorithms including TDNN and LSTM to develop 
the acoustic model. Since most South African languages are tonal, the extraction of pitch data as part 
of the acoustic features proved vital.  That research found that the consideration of pitch features 
reduced the WER by 1.7%, while adoption of a 5-gram language model decreased the WER by 2.2%. 
 
For some West African languages, Gauthier et al., (2016b) used the Kaldi speech recognition toolkit to 
develop two ASR systems for Hausa and Wolof, with vowel length contrasts.  The study created two 
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acoustic models using two distinct techniques, deep neural networks (DNN) and the classical Hidden 
Markov Model and Gaussian Mixture Model (CD-HMM/GMM).  The language model, on the other 
hand, used trigrams.  The CD-DNN-HMM acoustic model with no incorporation of the vowel length 
details achieved WERs of 8.0% and 27.2% for Hausa and Wolof respectively.  This score was 
significantly lower than the acoustic models developed using the CD-HMM-GMM that achieved 13.0% 
and 31.7% WERs for Hausa and Wolof respectively.  The researchers established that the high WERs 
evidenced on Wolof was due to the high perplexity within the Wolof language model due to the 
presence of only two speakers in the test set in contrast to 10 speakers in the Hausa language model.  
The differences were also attributed to the presence of more unknown words in the Wolof language 
model than in the Hausa language model i.e. 5.4% and 0.19% respectively.  Additionally, the Wolof 
ASR lacked normalization of written words that affected the WER such as was evidenced through the 
low character error rate (CER) that is less sensitive to spelling issues.  That research evidenced slight 
improvement in the Hausa ASR upon the introduction of vowel length contrasts in the acoustic 
models.  The new Hausa acoustic model achieved a WER of 7.9% using the CD-DNN-HMM acoustic 
model and 12.9% using the CD-HMM-GMM.  However, there was a slight degradation of performance 
of the new Wolof acoustic model. 
 
In Eastern Africa, Mukiibi et al., 2022 developed an ASR system for Luganda using the Coqui Speech-
to-Text (STT) model3 whose core is a recurrent neural network (RNN). They built a language model 
using the Kenlm toolkit. Their system was based on Radio data and Mozilla common voice datasets 
for Luganda. Their best performing model got a WER of 33% on common voice data and 47% on radio 
data.  
 
Closest to this study is work done by Gelas et al., 2012 who developed an ASR model for Kiswahili 
using the Sphinx Train toolkit4 that is based on the Hidden Markov Model (HMM) acoustic model with 
37 predefined units. They trained a Kiswahili language model using the SRI5 language model toolkit. 
Their best performing system uses sub-word units for language modeling, getting a WER of 34.8% in 
all environments, and WER of 25.9% in good acoustic environment. We follow a similar methodology 
and improve on the Kiswahili phonemes dictionary and the language model.  
 
3 Methodology  
3.1 Data  
This research is based on data which was collected by the KenCorpus project (Wanjawa et al., 2022).  
The KenCorpus project collected Kiswahili text and speech data, among other languages, from across 
Kenya. The speech data collected in the project included interviews, conversations, stories, and news 
among others.  For Kiswahili, the KenCorpus project collected 2,585 Kiswahili text files and about 19 
hrs of Kiswahili speech.  We built a transcription corpus by utilizing both the collected text files and 
the speech files. Using the collected files, native speakers read out sentences to get text-voice pairs. 
Similarly, transcribers listened to the collected speech data and typed out what they heard. In the end, 
our corpus included both read and spontaneous speech corpora.  
 
The read speech corpus consisted of 150 Kiswahili documents and 324 code-switched tweets, some 
of which were translated to Kiswahili.  These texts were first cleaned (converted to lowercase, removal 
of punctuation marks and split into shorter sentences).  The shorter sentences were processed to 
enable us to get approximately 20-30 seconds of recording when they were read out.  The shorter 
sound clips were chosen for convenience of processing. 

 
3 https://stt.readthedocs.io/en/latest/Architecture.html  
4 cmusphinx.sourceforge.net/  
5 www.speech.sri.com/projects/srilm/  
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The research recorded 5,652 read out texts (sentences) that represented 26hrs 32min 37sec of speech 
data.   For the spontaneous speech, our corpus contains 119 utterances collected from native Kiswahili 
speakers in various community settings that represent 59min 13sec of speech data.   The total speech 
dataset of the project therefore was 27hrs 31min 50sec of speech data from 26 speakers (19 female 
and 7 male).  Table 3.1 summarizes the speech data that was built. 

Table 3.1: Speech Corpus statistics 

 Sentences Duration 
Read sentences 5,652 26 hrs 32 mins 37 secs 
Spontaneous speech 119            59 mins 13 secs  
Total   27hrs 31 mins 50 secs 

 
 
3.2  Choices made for Kiswahili Transcripts 
Though transcription methodology can be single or parallel (Spencer et al., 2006), we adopted the 
single transcription method in which many Kiswahili transcribers were provided with audio files to 
transcribe.  Each person transcribed an audio file on their own, then rechecked against the original 
source for as many times as was possible to get the best transcription, as also done by other similar 
research (Dresing et al., 2015).  Our choice of single transcription was convenient for the corpus size 
and the limited number of transcribers. 
 
Our research adopted the verbatim type of transcription to help in ensuring that Kiswahili words are 
enabled in the datasets.  This is because Kiswahili, just like other African indigenous languages, is still 
technologically under-resourced. Therefore, all aspects of parts of speech in Kiswahili need to be 
covered for the ASR system.   
 
3.3  Augmentation of the Kiswahili dictionary 
Though the 36 Kiswahili phonemes6 were applicable to our research (Gelas et al., 2012), we had 
modifications when doing the representations of the Kiswahili phonemes in the dictionary.  The first 
form of dictionary used was the basic form consisting of separation of the consonants and vowels with 
single spaces. For example, the word kaka would have a dictionary entry as k a k a.  This consonant 
separation exercise yielded 34 phonemes (29 consonants and 5 vowels) as supported by scholars and 
provided in Appendix 1 (Nchimbi,1995; Mwita, 2007; Choge, 2009; Okal, 2015). The basic form 
dictionary was a random baseline that proved deficient in correctly identifying phonemes in certain 
words. For example, the word ndoo with entry nd o o indicates that the double ‘o’ sounds are 
pronounced as two separate ‘o’ sounds. 
 
The second form of baseline dictionary used was a replica of the dictionary created by the African 
Languages in the Field: speech Fundamentals and Automation (ALFFA) project (Gelas et al., 2012). 
Unlike the basic form dictionary, the ALFFA dictionary yielded 36 phonemes. In comparison to the 
basic dictionary the ALFFA dictionary introduced three new phonemes /nz, kh, mv/ but omitted the 
/ny/. Similar to the basic dictionary, the ALFFA dictionary, our second baseline with reference to 
previous work, also proved deficient in correctly identifying phonemes in certain words such as those 
with the /ny/ consonant and double words. For example, the word abbey with entry a b b e y  indicates 
that the double ‘b’ consonant is pronounced as two separate ‘b’ consonants. 
 

 
6 https://github.com/getalp/ALFFA_PUBLIC/blob/master/ASR/SWAHILI/lang/nonsilence_phones.txt  

https://raw.githubusercontent.com/getalp/ALFFA_PUBLIC/master/ASR/SWAHILI/lang/lexicon.tx
t 
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Due to such limitations in the capturing of the entire Kiswahili phonemes, we built an augmented 
dictionary using the CMU Sphinx English dictionary as reference. English is a high-resourced language 
with extensive research that has ensured its NLP resources provide higher accuracies in language 
processing tasks. However, English and Kiswahili vary in how their consonants are sounded.  This 
resulted in some of the English phonemes being maintained in the Kiswahili dictionary, while others 
such as the consonant /x/ were removed.  Similarly, Kiswahili consonants lacking in the English 
language such as /ny/ were introduced.  We observed that significant language comprehension was 
needed to properly annotate the various Kiswahili words with their proper phoneme sequence to 
match their pronunciations within the audio files.  We applied different representations of the 
Kiswahili phonemes in the dictionary. This reference exercise yielded 40 phonemes that were utilized 
in the phonelist file (see Table 3.2 for the full phoneme list). The modifications on the dictionary 
representation experimentally resulted in better performance for the ASR system. 
   
Table 3.2: The 40 Phonemes used for the Kiswahili transcription dictionary 

Phoneme Sample word Dictionary for NLP 
AH  au    AH UH 
AA  maana  M AA N AH 
B bana B AH N AH 
CH  chakula  CH AH K UH L AH 
D dada  D AH D AH 
DH  dhana  DH AH N AH 
EH lete  L EH T EH 
EE mletee  M L EH T EE 
F  funga F UH NG AH 
G gonga  G OH NG AH 
GH  ghali  GH AH L IH 
HH  hali  HH AH L IH 
IH  imba  IH MB AH 
II miiko M II K OH 
JH  jana  JH AH N AH 
K kana K AH N AH 
KH  kheri  KH EH R IH 
L  lala   L AH L AH 
M maneno  M AH N EH N OH 
MB  mboga MB OH G AH 
N nina N IH N AH 
NG  ngoma NG OH M AH 
NG' ng’oa NG’ OH AH 
ND  ndizi  ND IH ZIH 
NY  nyayo  NY AH Y OH 
NJ  njia  NJ IH AH 
OH  ona  OH N AH 
OO  njooni  NJ OO N IH 
P  paka P AH K AH 
R rarua  R AH R UH AH 
S  sana S AH N AH 
SH shika  SH IH K AH 
T  tena T EH N AH 
TH thamani TH AH M AH N IH 
UH  ua    UH AH 
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UU  muungwana M UU NG W AH N AH 
V vuna  V UH N AH 
W  weka  W EH K AH 
Y yai   Y AH IH 
Z zeze Z EH Z EH 

 
 
3.4 Automatic Speech Recognition (ASR) Model for Kiswahili Language 
In our research we used CMU Sphinx speech recognition toolkit (CMUSphinx, 2022) to build the 
Kiswahili language ASR system.  The toolkit constitutes a speech decoder and acoustic model trainer 
that exploit packages including Sphinxtrain, Sphinx, and Pocketsphinx.  Sphinxtrain handles the 
acoustic model training for languages that is primarily based on the Hidden Markov Model (HMM) and 
the Gaussian Mixture Model (GMM).  The developed acoustic model is then utilized either by Sphinx 
or Pocketsphinx to convert speech signals into readable texts.  Pocketsphinx is a smaller version of 
Sphinx designed for low-resource projects, for instance, embedded systems. 
 
CMU Sphinx is used for two distinct phases – the model development phase and the speech 
recognition phase.  The architecture of CMU Sphinx that we used in this research is depicted on Fig. 
3.1 below. 

 
Figure 3.1 – CMU Sphinx speech recognition toolkit architecture (source: Reddy et al., 2015) 
 
 
CMU Sphinx-4 was also used in the evaluation of the developed acoustic model, language model, and 
the dictionary.  Unlike other decoders such as Pocketsphinx, Sphinx-4 is java-based with a high degree 
of modularity.  Sphinx-4 consists of three distinct sections, being the frontend, the knowledgebase 
and the decoder.  This is depicted in Fig. 3.2 below: 
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Figure 3.2 – Architecture of the Sphinx-4 system architecture (source: Pantazoglou et al., 2018) 
 
 
The frontend block includes the endpointer and the feature extractor that takes in speech and extracts 
significant features from the audio signals.  The knowledge base (dictionary, language model, and 
acoustic model) is used in the creation of a language HMM applied by the decoder block. 
 
The decoder, which performs the actual recognition, is the most significant block of the model.  It 
includes the graph reconstruction module that constructs the system’s language HMM.  It 
accomplishes this by first converting the knowledge base’s language model to an internal Sphinx-4 
understandable format.  This new language model in conjunction with the dictionary data and 
structural data from the acoustic model are then manipulated to develop the language HMM.  
The graph construction module’s output (language HMM) serves as part of the input to the search 
module that is then used to determine the pattern to be searched for within the speech data.  This 
search is done through token passing and the results occur at various levels e.g. at the phone or word 
levels.  This search is also highly dependent on the state output probability values computed for each 
feature vector input in the state probability computation module. 
 
The application module as used in this research was developed in Java.  It accepts real-time audio data 
collection, use of pre-uploaded audio existing in the system or uploading of audio files from the user’s 
device.  In either of these three options, the audio files are first pre-processed to conform to the CMU 
Sphinx required audio formats as detailed in Table 3.3 below.   
 

Table 3.3: Audio file characteristics for use with CMU Sphinx 

Audio parameter Value 
Format Wav 
Channels Mono 
Bitrate 16its 
Sampling Rate 16khz 
Encoding Little Endian 
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After the pre-processing, the system forwards the speech data to the Sphinx-4 recognizer. Though the 
frontend and decoder modules are pre-programmed by Sphinx-4, the knowledge base module 
(acoustic model, dictionary, and language model) are created by the user for their data.  The model is 
programmed to access the following files: the audio files, file_ids list, the transcripts, phone_list, and 
the phonetic dictionary, that are created by the user in the transcription process, as shown in Section 
3.5. 
 
3.5 Speech-to-Text (STT) Transcription process 
We adopted the following stages in processing speech-to-text from raw Kiswahili speech files, building 
an end-to-end system using guidance from other works (Dresing et al., 2015).  
Step 1 - Record the audio – in our case we used recordings in the existing Kencorpus project corpus 
(Wanjawa et al., 2022).  
 
Step 2 - Process the recordings, which we did using existing procedures adopted in other research 
(Moore et al., 2017).  This is done by organizing data into a corpus to indicate where the pairs of audio 
and text files are stored, deciding on what to transcribe and saving the final voice data into a WAV file, 
that conforms to the specifications on Table 3.1 above. 
 
Step 3 - Create a text file called file_ids.  In this created file, list the file_ids each on a separate line and 
then indicate its parent team folder, example: 
Speaker_1/0430_segment_1.wav 
Speaker_1/0430_segment_2.wav 
 
Step 4 - Create another text file called transcript.  Start transcription by first making a rough 
transcription in which details such as prosody and pauses are not included.  In this created file, 
transcribe each audio file in the order as per the file_ids of (3) above, for example: 
<s> words of segment 1 </s> (0430_segment_1) 
<s> words of segment 2 </s> (0430_segment_2) 
  
Step 5 - Create a text file called dictionary.  In this file, all the words in the transcript with their 
corresponding pronunciations are listed.  All duplicates are deleted, leaving only single instances of 
words.  Phonetic pronunciation of a word is indicated against each word.  The phonetic pronunciation 
is Capitalized.  In our case we adopted a standard Kiswahili phoneme representation scheme.  
Augment the dictionary, we also added a list of fillers as part of the dictionary.  This is the list of 
pauses/silence parts. 
 
Step 6 – Create a text file called phone_list.  In this created file, all the phones available in the 
dictionary are listed without duplicates. 
 
Step 7 – Create a language model using CMU Sphinx toolkit (SRILM – SRI Language modelling toolkit) 
and associated coding and expose it to the files created in steps (1 to 6).  This enables us to obtain the 
readout of performance metrics from the model. 
 
Sample of Kiswahili Transcription process 
Shown below is an example of the step-by-step process of transcription as described in Section 3.5 
above, from raw speech files to final transcripts using the document processing and then the CMU 
Sphinx toolkit: 
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Step 1 use existing sound file existing on the KenCorpus dataset (Wanjawa et al., 2022) such as 

filename 0430_swa.MP4 
 

Step 2 Process the audio file by deciding on the length of sound to use (which is not the entire 
content of the file).  Save the file in WAV format e.g. 0430_swa_segment1.wav 
 

Step 3 Create the file_ids text file: 
Speaker_1/0430_segment_1 
 

Step 4 Create the transcript text file for the identified section of the 0430_swa_segment1.wav 
audio file such as the sample shown below: 
<s> juu ya kitanda alilala mgonjwa ambaye kwa miezi saba sasa hajapata ashekali 
alizingirwa na walokole wakimuasaa Mterehemezi tena anakaribia kuwa mauti tofauti 
yake na maiti ilikuwa moja tu, uhai, sura yake iliyokuwa nzuri miaka ayami iliyopita sasa 
ilikuwa inatisha </s> (0430_swa_segment1) 
 

Step 5 Create a dictionary for NLP using the Kiswahili phoneme representation (from Table 3.1), 
resulting into the following partial dictionary for NLP for Kiswahili language: 
juu  JH UU 
ya  Y AH 
kitanda  K IH T AH ND AH 
alilala   AH L IH L AH L AH 
mgonjwa M G OH NJ W AH 
uguzwe  UH G UH Z W EH 
nilijizuia  N IH L IH JH IH Z UH IH AH 
 

Step 6 Create a phone_list – the document containing all the phones available in the transcript 
without duplicates (from Table 3.1) and any fillers, for instance: 
AA AH B CH D DH EE EH. 

Step 7 Use CMU Sphinx toolkit (SRILM) to create a language model and use the documents from 
the above processes to train and test the STT model 
Get the test results in terms of performance metrics (WER, SER) 

 
 
4. Experiments 
We did our experiments from a baseline as a starting point and progressively changed the settings to 
determine the performance of the ASR over various experimental settings.  The experiments done are 
described below.  All our experiments followed the processes shown on the flowchart of Fig. 4.1 
below, with the different parameters being described against each experimental setting. 
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Figure 4.1: Flowchart for ASR of Kiswahili language (source: author) 
 
 
The pseudocode for the STT showing the interaction of input files and CMU Sphinx toolkit is shown 
in Fig. 4.2 below. 
 

1 Start  
2  Create audio files for training (.WAV) 
3  Create audio files for TESTING (.WAV) 
4  Process training audio file to create 4 other files: file_ids list, transcript, phone_list, 

phonetic dictionary (training set files) 
5  Process testing audio file to create 4 other files: file_ids list, transcript, phone_list, 

phonetic dictionary (TESTING set files) 
6  Use CMU Sphinx toolkit (SRILM) to create language model  
7  Use CMU Sphinx toolkit to train a training acoustic model based on the training 

language model and training set files 
8  Use CMU Sphinx toolkit to test the TESTING acoustic model based on the language 

model and TESTING set files  
9  Use CMU Sphinx toolkit to calculate the Word Error Rate (WER) and Sentence Error 

Rate (SER) of the TESTING set files 
10  IF there is evaluation set THEN create evaluation set files (similar to steps 5) else 

Stop 
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11  Use files in 10, together with those from 5 (training + evaluation set files) on 
CMU Sphinx to do train the new data files (step 7), then test the new data files 
(steps 8 and 9) 

12 Stop  
 
Figure 4.2: Pseudocode for ASR of Kiswahili language 
 
 
4.1 Experiment 1 – 1 speaker, basic dictionary 
The first experiment utilized a training set having one female speaker and 14min 50sec of speech data. 
The test set had 1 female speaker with utterances corresponding to 4min 20sec of speech data.  The 
dictionary used for this experiment was the basic dictionary described in Section 3.3.  The settings on 
the acoustic model were 8 Gaussian Mixtures and 2,000 senones.  There was no evaluation set.  The 
testing and evaluation metrics used were word error rate (WER) and sentence error rate (SER). 
 
4.2 Experiment 2 – 1 speaker, ALFFA dictionary 
In this experiment, the training and testing sets from Experiment 1 were maintained, with only the 
dictionary being changed.  The dictionary used for this experiment was the ALFFA dictionary described 
in Section 3.3.  We maintained all other settings of Experiment 1.  The purpose of this experiment was 
to evaluate the effect of change of dictionary on the acoustic model performance. 
 
4.3 Experiment 3 – 3 speakers, Augmented dictionary 
This experiment used a training set consisting of 1 female and 2 male speakers and 1hr 22min 15sec 
of speech data.  The testing set consisted of 1 male speaker with utterances equaling 20min 11sec of 
speech data.  The dictionary used for this experiment was our new augmented dictionary described in 
Section 3.3.  We maintained all other settings of Experiment 1.  The purpose was to evaluate the effect 
of changing the dictionary to one that incorporates the missing phoneme representations evidenced 
in the ALFFA and basic dictionaries on the acoustic model performance.  
 
4.4 Experiment 4 – 5 speakers, Augmented dictionary 
This experiment used a training set of 4 males and 1 female with 5,337 speech files of 3hrs 33min 
57sec as speech data.  The testing set consisted of 2 male speakers with utterances equaling 1hr 15min 
49sec of speech data.  The dictionary used for this experiment was our new augmented dictionary.  
We maintained all other settings of Experiment 1.  The purpose was to evaluate the effect of the 
addition of more speakers (voice variations) and audio hours on the acoustic model performance. 
 
4.5 Experiment 5 – 26 speakers, Augmented dictionary 
This experiment used the entire KenCorpus Kiswahili speech dataset of 26 speakers and 27hrs 31min 
50sec of speech data.  Out of this full dataset, our training set consisted of 10 females and 4 males 
with utterances corresponding to 17hr 30min 52sec of speech data.  The testing set consisted of 6 
females and 2 males with utterances corresponding to 9hrs 43min 46sec of speech data.  The 
dictionary used for this experiment was the augmented dictionary.  We maintained all other settings 
of Experiment 1.  The purpose was to evaluate the effect of the addition of more speakers and audio 
hours on the acoustic model performance. 
 
A new addition to this set, which is a key difference from the previous four experiments, was the 
introduction of an evaluation set that consisted of 3 females and 1 male corresponding to 17min 12 
sec of speech data.  The purpose was to evaluate the effect of the change in on the gaussian and 
senone parameters on the acoustic model performance.  The full setup of the experimental 
parameters are shown on Table 4.1 below.   
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Table 4.1: Parameters set for Experiment 5 

Set Female Male Duration 
Training 10 4 17:30:52 
Testing 6 2 09:43:46 
Evaluation 3 1 00:17:12 
Totals 19 7 27:31:50 

 
The first model for this experiment 5 (5a) had a training set with the baseline 8 Gaussian Mixtures and 
2000 Senones for 10F/4M (17:30:52).  The trained model was then tested on the test set that had 
6F/2M (09:43:46).  We then tested the effect of an evaluation set on the performance of our base 
system.  We used the initial training set but changed the Gaussian Mixtures and Senones parameters 
as follows: 16 Gaussian Mixtures and 2500 senones.  This trained model (5b) was then tested using 
the evaluation set 3F/1M (00:17:12), which turned out to provide the best performing model of all the 
experiments done.  
 
 
5.  Results and Discussions 
5.1  Speech-To-Text (STT) Transcription model 
The performance of the various models tested for Speech to text (STT) transcription as per the 
experiments done is shown on Table 5.1 below.  The gender indicator provided for the speakers is 
either female (F) or male (M). 
 
Table 5.1 – Results of Kiswahili ASR model with different experimental settings 

Model No. of 
speakers 

at 
Training 

Training 
Time 

(H:M:S) 

No. of 
speakers 

for 
Testing 

Testing 
Time 

(H:M:S) 

Acoustic 
model 

settings* 

Has 
evaluation 

set 

WER % SER % 

1 1F 0:14:50 1F 0:04:20 8/2,000 N 100.0. 100.0 
2 1F 0:14:50 1F 0:04:20 8/2,000 N 93.00 100.0 
3 1F/2M 1:22:15 1M 0:20:11 8/2,000 N 53.47 86.8 
4 1F/4M 3:33:57 2M 1:15:49 8/2,000 N 30.21 47.7 

5a 10F/4M 17:30:52 6F/2M 9:43:46 8/2,000 N 20.10 52.3 
5b 10F/4M 17:30:52 6F/2M 9:43:46 16/2,500 Y 18.87 49.5 

*(Gaussian Mixtures/senones) 
 
Experiment 1 – This experiment yielded an acoustic model with a WER of 100% and a SER of 100%.  
These low results were attributed to overfitting through the use of the same speaker for both the 
training and testing of the model.  It was also observed that the dictionary used during the training 
was poorly crafted and led to limitations in the ability of the system to effectively understand the 
pronunciation of certain Kiswahili words spoken.  
 
Experiment 2 – This shift to a new dictionary format resulted in a WER of 93% and a SER of 100 %.  
While the WER and SER were still evidently high, we observed that a better dictionary could slightly 
improve the model’s accuracy, despite the speaker being the same in both the training and testing 
stages. 
 
Experiment 3 – We observed significant improvement with WER of 53.47% and a SER of 86.8%.  We 
attribute improvement over Experiment 1 and 2 due to improved variation of speakers through the 
addition of two male speakers for the training and also an unseen male voice for the testing as well as 
the use of the augmented dictionary that had a wider array of phonemes. These new phoneme 
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representations ensured that most Kiswahili words and their pronunciations were captured, realizing 
better identification of Kiswahili words spoken. 
 
Experiment 4 – We noted significant improvement with an acoustic model performance with WER of 
30.21% and a SER of 74.7%.  While the acoustic model generated from this phase could effectively 
decipher a wide range of male voices when used within the ASR prototype, female voices evidenced 
poor transcription within the prototype.  Additionally, it was evidenced that some of the audios were 
in wrong speaker folders which could have substantially lowered the chances of evidencing a WER of 
below 30%.  CMU Sphinx requires audios to be correctly segregated according to speakers for ease of 
decoding the features of a particular speaker since voice features significantly vary between speakers. 
The performance improvement can also be attributed to the increase in audio hours as increased 
training data have been previously shown to improve machine learning models.  
 
Experiment 5 – Model 5 generated during this experiment was the best performing model.  Unlike 
that of Experiment 4, this model could effectively decipher a wider range of both male and female 
voices.  We observed WER and SER of 20.1% and 52.3% respectively in experiment 5a before 
incorporating the evaluation phase with the evaluation data.  These results are attributed to the 
increased number of voices in the training set that ensured the generated model was not overfitting 
towards specific voices or their features and consequently pronunciation of Kiswahili words. 
 
The settings of this final model of Experiment 5, incorporating the evaluation data (experiment 5b), 
was observed as the best combination of settings that could effectively accommodate a variety of 
speaker voices as input.  This good performance is attributed to the higher number of senones that 
led to the model having a higher discrimination capability for spoken words.  Nonetheless, we observe 
that when too many senones were used on a small corpus it would usually lead to the model being 
less generic to identify unseen speech, leading to a higher WER on unseen data.   
 
A speech to text (STT) model with 16 Gaussian Mixtures and 2,500 senones, trained with both male 
and female voices over a training time of 27hrs 31min 50sec and exposed to an evaluation set of 17 
minutes 12 seconds of both male and female voices, was observed as being the most optimal model 
that achieve the best performance where WER was 18.87% and SER was 49.5%. 
 
 
5.2  Sample Transcription using the STT model of Experiment 5 
Table 5.2 provides the sample results for the tests obtained when using our final speech-to-text (STT) 
model with the settings of experiment 5b.  The test was done by a speaker not initially trained or 
tested during model creation and fine tuning.  The decoded transcripts show highly accurate STT 
transcription.  We note that the recognizer failed to transcribe some words within the speaker’s 
speech, while other words were heard but wrongly decoded.  These errors are shown as bold text on 
the ‘transcript as per model’ column. 
 
Table 5.2 – Actual and Decoded transcriptions from the developed STT model 

No. Actual Transcript (as per the audio file) Transcript as per the model 
1 katika mwanamke bomba wiki hii 

tunamuangazia sharon chebet ambaye ni 
nahodha baharini chebet ana umri wa miaka 
ishirini na nane anasifika pakubwa kwa kazi 
yake 

katika mwanamke bomba wiki hii 
tunamuangazia sheria ubeti ambaye ni 
nahodha baharini bata ana umri wa miaka 
ishirini na nne anafika pakubwa kwa kazi yake 

2 wakulima wa mpunga eneo la nyando 
wanataka wadau kuwapa mbolea kukuza 

wakulima punga eneo la nyando wanataka 
wadau kuwapa mbolea kuzaa ndimu 
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kilimo wanapania kuboresha kilimo chao 
kufuatia muingilio wa serikali 

wanapanya kuboresha ndimu chao kufuata 
muingilio wa serikali 

3 waziri wa utalii najib balala ahimiza jamii 
kuweka hatua madhubuti waziri balala haswa 
asisitizia kulindwa kwa simba humu nchini 
anasema idadi ya wanyama hawa 
imeendelea kupungua sana 

waziri wa utalii waji balala ahimiza jamii 
kuweka hata madhubuti waziri balala haswa 
kasisi kulindwa kwa simba humu chini 
anasema idadi ya wanyama uawa 
imeendelea kupungua sana 

4 mamlaka ya mazingira yatishia kufunga 
vichinjio kadhaa huko bungoma vichinjio 
hivyo vinadaiwa kukosa kuweka usafi wa 
kiwango cha juu 

miaka ya mazingira yatishia kufunga vichinjio 
kadhaa huko bungoma vichinjio hivyo 
vinadaiwa kukosa kuweka usafi mlango juu 

5 mwanamume yeyote yule mwenye pesa ana 
ugonjwa wa kutamani kila kiumbe ambacho 
ni cha jinsia tofauti naye yaani wanawake 

mwanamume yeyote yule mwenye pesa ana 
ugonjwa wa kutamani kila kiumbe choo ni cha 
jinsi tofauti naye wanawake 

6 wadau wataka elimu kuhusu athari za ngono 
ifunzwe shuleni wanafunzi wengi hawajui 
haki zao iwapo watadhulumiwa hafla ya 
kuhamasisha jamii yafanyika mjini kakamega 

wadau wataka elimu kuhusu athari za ngono 
ifunzwe shuleni wanafunzi wengi hawajui 
haki zao iwapo watahurumia hafla ya 
kuhamasisha jamii yafanyika mjini kakamega 

7 buriani bingwa wa sanaa  msanii charles 
bukeko amezikwa kwao kaunti ya busia  
marehemu alijulikana na wengi kama papa 
shirandula  atakumbukwa na wengi kwa 
mchango wake katika sanaa alikuwa mmoja 
wa wasanii maarufu wa runinga ya citizen 

biriani bingwa wa sana msanii chai mkeka 
amezikwa kwao kaunti ya mbuzi marehemu 
alijulikana na wengi kama papa shirandula  
atakumbukwa na wengi kwa mchango wake 
katika sana alikuwa mmoja wa wasanii arufu 
wa runinga 

8 mashaka ya linturi seneta aelekea 
mahakamani kuzuia kukamatwa na 
kushtakiwa hii ni kuhusiana na tuhuma za 
jaribio la ubakaji hotelini nanyuki seneta 
linturi atuhumiwa kujaribu kumbaka 
mwanamke huko 

mashaka ya vizuri seneta aelekea 
mahakamani kuvua kukamatwa na 
mshtakiwa hii ni kuhusiana na tuhuma za 
jaribu la ubakaji hotelini nyuki seneta vizuri 
hudumiwa jaribu kumbaka mwanamke huko 

9 chagua jibu ambalo si sahihi kulingana na aya 
ya pili madini huwa na faida chungu nzima 
katika bara la afrika pekee 

changaa jibu ambalo hii kuungana na aya ya 
pili madini huwa na faida chungu mzima 
katika bara la afrika 

10 mashujaa zaidi watuzwe katika hafla za 
kitaifa kichwa kinachofaa ufahamu huu ni 
siasa mbaya siku ya mashujaa siku ya 
madaraka lengo la mashujaa 

jaa watuzwe katika ghafla za kitaifa kichwa 
kinachovya kufahamu huu ni sasa mbaya siku 
ya shujaa siku ya madaraka shujaa 

 
 
We note that existing automatic speech recognition (ASR) systems perform significantly better for 
high-resourced languages than for under-resourced languages. We observe significantly low WERs for 
English language of up to 5.1% (Kurata et al., 2017).  English is assumed to be the most effectively 
handled language for ASR systems. On the other hand, under-resourced languages such as Somali, 
Hausa and Wolof have been observed to have WERs that are as low as 14.2%, 7.9% and 27.2% 
respectively, under different model training and testing conditions (Nimaan et al., 2006; Gauthier et 
al., 2016). Our WER of 18.87% for the low resource language of Kiswahili is therefore very good when 
compared to ASR performance of other low-resource languages.  This is a good starting point and we 
believe that more training data in low-resource languages can improve such ASR performance even 
further. 
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The transcription process is very cumbersome, time consuming, and involves errors and deviations 
(Spencer et al., 2006; Dresing et al., 2015; McMullin, 2021).  Our research also experienced the same 
challenges.  One could take many hours, even a whole day, doing one transcription.  This was due to 
the fact that some audio files were very long. Others were not very audible therefore the transcribers 
had to replay them many times when listening.  It was also realized that many of the recorded audio 
files especially from the Coastal region of Kenya had the infusion of both the standard Kiswahili and 
coastal dialects that some transcribers used to the standard Kiswahili were not very familiar with.  
Some of the interviewed persons were also speaking very fast.  In addition, in some instances, 
environments where recordings were taking place were somehow noisy. The long audio files had many 
pauses, and some had code switching and code-mixing influences. 
 
 
6 Conclusion 
This paper presents the phonemic representation and transcription of Kiswahili in the development 
of a speech corpus to train an ASR model for the language.  The speech corpus contains 27hrs 31min 
50sec of read out sentences and transcribed spontaneous speech. Besides, the study also discusses 
the addition of four new phonemes to the standard phonetic to accommodate the nuances in 
Kiswahili.  The ASR model was trained using the phonetic set from Section 3.5.  This yielded an initial 
WER and SER of 18.87% and 49.5%, respectively. Further research demonstrated that, in contrast to 
the initial training corpus, which was skewed toward male voices, advances could be made by 
integrating varied voices, especially female voices.  The corpus's expansion to include female voices 
led to some improvement in model performance.  Thus, for enhanced transcription, it is crucial to 
have a broad demographic in the voice corpus and complete phonemic representation of words within 
under-resourced languages. 

The transcription process was not devoid of challenges including time-consuming transcription of 
lengthy speech files, some of which were inaudible due to noisy backgrounds.  Besides, the infusion 
of both the standard Kiswahili and coastal dialects in the speech files, with some containing code 
switching, and fast speaking speakers exacerbated the transcription challenges.  Strategies to 
circumvent some of these challenges included chunking the speech files into smaller lengths of one 
minute and below, using speakers located within their native language communities rather than in 
cosmopolitan areas, and managing the recording environments so that the resulting speech files were 
within permissible noise levels. 

In general, this study highlights the numerous steps, peculiarities, and complexities in the transcription 
of Kiswahili in order to create a high-quality speech corpus for training an ASR model for any such 
under-resourced language.  
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Appendix 1 
 

Table A1 – The 29 Kiswahili consonant phonemes and example words 
Phoneme   Swahili word 
/b/ = bora    
/ch (ʧ)/ = chakula   
/d/ = dada   
/dh (ð)/    = dhambi   
/f/  = fua 
/g/ = gari 
/gh(ɤ)/  = ghala  
/h/ = haraka  
/j (Ɉ)/    = jana    
/k/ = kata    
/l/  = ladha  
/m/ = mkate 
/mb/ = mboga  
/n/ = nina    
/nd/ = ndoo   
/ng/ = ngoma  
/ng’(ɳ)/    = ng’ombe 
/nj/ = vunja  
/ny (ɲ)/ = nyanya   
/p/ = paka   
/r/  = ramba 
/s/  = sasa    
/sh(ʃ)    = shamba   
/t/  = tena    
/th(θ)/  = thamani  
/v/ = vaa 
/w/ = weka   
/y (j)/    = yai 
/z/ = zaa 

 
 
 

Appendix 2 
 

Table A2 – Selected List of Kiswahili phonemes used in ASR 
Kiswahili  Phoneme Presentation NLP Word 
alimuona  a l i m u o n a 
alimwahidi  a l i m w a h i d i 
alingara  a l i GG a r a 
alinggara  a l i NN a r a 
aliniambia  a l i n i a BB i a 
aliniandikia   a l i n i a DD i k i a 
Alionyesha a l i o n y e SS a 
aliowaacha  a l i o w a a CC a 
alipoanzisha  a l i p o a ZZ i SS a 
Zorah z o r a h 
Zoya z o y a 

 


