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ABSTRACT

We ‘consider numerical ranges of a bounded linear oﬁerator on complex
Hilbert spaces. Many properties of the classical numerical range are
known. We investigate the properties of the g-numerical range in re-
lation to those of the Claséical numerical range. We also establish the
relationship between the g-numerical range and the algebra g-numerical
range. Furthermore, we extend the results of tﬁe classical numerical raﬁge
and g-numerical range to the C-numerical range and investigate how the
C-numerical range is an explicit generalization of both the classical nu-

merical range and g-numerical range.




Chapter 1

INTRODUCTION

During the last decades, the study of numerical range W (T') has attracted
attention of many Mathematicians and several results have been obtained.
These results are helpful in studying and understanding matrices and
operators. Among the main results is the convexity of the numerical range
as established in the classical Toeplitz-Hausdorff theorem [9, 17]. This set
function also has various generalizations. In our thesis we considered finite
dimensional linear maps on normed spaces, primarily we were concerned
with a generalized g-numerical range of a bounded linear operator in
complex Hilbert spaces. |

The first chapter is composed of the basic results which are used in the
subsequent chapters. Here we also present terminologies and symbols.
Some generalizations of the numerical range are also mentioned.

In chapter two we investigate the properties of the g-numerical range. We
show that some properties that hold for the classical numerical range also
hold for g-numerical range, that is, non-emptiness, closedness, convexity
among others. We also look at the relationship between the g-numerical

range and the algebraic g-numerical range.




In chapter three, we extend some results of the classical numerical range
and g-numerical range to the C-numerical range. Finally, we characterize
the C-numerical range as a generalization of both the classical numerical

range and g-numerical range.

1.1 Background Information

We first introduce some essential concepts involving definitions and other
useful notions used in the sequel.
Definition 1.1.1: An operator.

Is a mapping of a vector space X onto itself or to another vector space.

Definition 1.1.2: A linear operator.
Let X and Y be linear spaces. Then a function T : X — Y is called a
linear operator if and only if for all 2,22 € X and all scalars A\, u € K

we have

T(Azy + pzs) = AT (z1) + pT (z3).

Remark 1.1.3:
Operators on normed spaces, which are linear and continuous, are of
special interest in this study. The continuity is understood to be the
metric continuity given by the norm. Thus 7' : X — Y is continuous at

z, € X if for every € > 0 there exists §(z,, €) such that

IT(z) — T(z,)]| < € whenever ||z — z,|| < 6.




Definition 1.1.4: A bounded linear operator.
A linear operator T': X — Y is called bounded if and only if there exists

a constant M > 0 such that,

IT(@)| < Ml|(z)l vz e X.

Definition 1.1.5: Norm of a bounded operator.

Let T'€ B(X,Y'). Then the norm of T is defined as
IT]| = {supl|Tz||; = € D(T), ||=]| <1} = {sup||Tz|;z € D(T),z # 0} < oo.
That the supremum is finite follows from the fact that
IT@)] < M@ Ve eX, M2 0.

Definition 1.1.6: Inverse operator (771) .
Let X and ¥ be vector spaces, T : D(T) ¢ X — R(T) C Y a linear

operator, then the inverse operator (T!) of T is the mapping
T7': R(T) — D(T).

Theorem 1.1.7: Banach Inverse Theorem. |
Let X and Y be Banach spaces and T' € B(X,Y") which is bijection. Then
there exists 771 € B(Y, X).
Proof. [(10), pp 88-101].

Definition 1.1.8: A functional.

A functional is a mapping of a vector space into a scalar K(C,R).




Definition 1.1.9: A Linear functional.
f is a linear functional on X if f : X — C is a linear operator, i.e. a

linear functional is a complex-valued linear operator.

Definition 1.1.10: A bounded Linear functional.
A linear functional f is called bounded if and only if there exists a constant

N > 0 such that,
|f(z)] < N|(z)]] Vz e X.

Definition 1.1.11: Norm of a bounded Linear functional.

Let f : X — Ror C be a bounded linear operator on X. Then the

norm of f is defined as

T sup{%‘ff%w o}

Definition 1.1.12: The Dual space.

Let X be a vector space and X™ the set of all linear functionals on X.

X is called the dual space of X.

Remark 1.1.13:

The dual space X* of a normed space X is a Banach space whether or

not X is a Banach space.

Definition 1.1.14: An algebra.

An algebra A over X is a linear space together with an internal multipli-
cation of elements of A, such that

Vz,y,z € A;

(i) 2(yz) = (zy)z




(ii) x(y+z)‘::ﬂy+xz: (y+2)xr =yr + 22

(iii) Mzy) = Ay =z(\y), A e K

Definition 1.1.15: A normed algebra.

A normed linear space (A4, ||.||) over K is said tobe a normal algebra if A

is an algebra and

llzyll < llzlillyll, Yo,y € A

Definition 1.1.16: An Involution.

Let A be an algebra, a mapping A — A defined by z — z* is called an
involution on A if it satisfies the following conditions: Vz,y € 4, A € K

@) @+y) =" +y

(i) (A\z)* = Az*

(iii) (zy)* = y*=*

(v} 2% = i
Definition 1.1.17: A positive linear functional.

A positive linear functional is a linear functional on a Banach algebra A

with an involution that satisfies the condition
flzz™ ) >0 Vze A

Definition 1.1.18: A state.

A state on an algebra A, is a continous positive linear functional that




satisfies the Schwartz inequality,

If @y < f(z"2)f(y"y).

Definition 1.1.19: Inner product space.

An inner product space X is a complex linear space together with an

inner product (,) : X x X — C such that;

(i) (=9 = (y,2)
(i) Mz +py,2) = Mz, 2) +plz,2) cz,9,2€ X, € K
(iii) (z,z) >0, with (z,2) =0 = z = 0.

Definition 1.1.20: Hilbert space.

A Hilbert space is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.21: Hermitian operator.

Let H be a Hilbert space and D a linear manifold of H. The mapping
T :D — H is said to be Hermitian if

(Tz,y) = (z,Ty) V z,y€D.

Definition 1.1.22: Adjoint.

If T € B(Y,K), where Y, K are Hilbert spaces, then the unique linear
operator T* € B(K,Y) satisfying

(Tz,y) = (z,T*y) VzcYandyek




is called the (Hilbert space) Adjoint of T.

Definition 1.1.23: Self-adjoint operator.
A bounded operator T' € B(H) is said to be self-adjoint if T* = T.
Thus T is Hermitian and D(7") = H if and only if T is self-adjoint.

Proposition 1.1.24:
Let T € B(H) where H is a complex Hilbert space. Then the following

statements are equivalent.

(i) T is self-adjoint, i.e T = T™*.
(ii) (Tz,z) is a real number, for all x € H.
Proof. [(10), pp 400 |.

Definition 1.1.25: Normal operator.

A bounded linear operator T on a Hilbert space H is said to be normal

if it commutes with its adjoint i.e T7™ = T*T.

Definition 1.1.26: Unitary operator.
A unitary operator is a bounded linear operator U on a Hilbert space
satisfying: U*U = UU* = I, where [ is the identity operator.

This property is equivalent to the following:

(i) U preserves inner product on the Hilbert space, so that for all vec-

tors x and y in the Hilbert space H,

(Uz,Uy) = (z,y).




(ii) U is a surjective isometry (distance preserving map) i.e

<

Uz =)l = liz —y)ll-

Definition 1.1.27: Compact operator.

If H is a Hilbert space, then an operator T € B (H) is finite rank op-
erator if the dimension of the range of T is finite and compact operator
if for every bounded sequence (z,) in H the sequence (Tz,) contains a

convergent subsequence.

Definition 1.1.28: Orthogonal compliment.
Let X be a vector space, ¥ a closed subspace of X, the orthogonal com-

pliment of the subspace Y denoted by Y is defined as
Yi={zeX:z LY}.

Definition 1.1.29: Projection operator.
The concept of a projection operator P or briefly, projection P is defined
on a Hilbert space H where H is represented as the direct sum of a closed

subspace Y and its orthogonal compliment Y ' thus

H:Y@Yi

T=y+z, (yeY,zevt) (1.1)

Since the sum is direct, y is unique for any given z € H. Hence (1.1)
defines a linear operator

P:H—-H




M

T Yy=Fx

P is called an orthogonal projection or projection on H on?o Y. Hence
a linear operator P : H — H is a projection on H if there 15 a closed
subspace Y of H such that Y is the range of P and Y is the null space
of P and P/y is the identity operator on Y.

Note that in (1.1) we can now write
g=9y+z= P4+ (1P

This shows that the projection on & onto Y1 is I — P.
There is another characterization of a projection on H, which is sometimes

used as a definition:

Theorem 1.1.30: (Projection).
A bounded linear operator P: H — H on a\Hilbert space H is a projec-
tion if and only if P is self-adjoint (P* = P) and idempotent (P? = P)
Proof. [(10), pp 408 ].

Definition 1.1.31: (A positivity).

A projection P is said to be positive if
(Powm)> 0 -Ya & H.

Theorem 1.1.32: (Positivity, norm).

For any projection P on a Hilbert space H.

(i) (Pe,a) = ||Pall®.

(i) P> 0.




() IPI <1 |IPl=1 i P(H)# {0}

Proof. [(10), pp 410-411].

Theorem 1.1.33: (The product of projections).
In connection with products (composites)of projections on a Hilbert space

H ;the following two statements hold.

(a) P = PP, is a projection on H if and only if the projections .Pl
% and P, commute, that is, PP, = P,P;. Then P projects H onto
| Y =YiNY,, where Y; = Pj(H).

(b) Two closed subspaces Y and V of H are orthogonal if and only if

the corresponding projections satisfy Py Py = 0.

Proof. [(15), pp 414].

Theorem 1.1.34: (Sum of projections).

Let P, and P; be projections on a Hilbert space H. Then

(a) Thesum P = P+ P, is a projection on H if and only if ¥; = P (H)
and Yy = P,(H) are orthogonal.

(b) If P = P, + P, is a projection, P projects H onto Y = Y1 P Y.
Proof. [(10), pp 417].

Corollary 1.1.35: (Sum of finite number of projections).

If H is a Hilbert space, (M), are closed subspaces of H and (P,)?_, are

10




projections onto closed subspaces, then

i =1 ’ ; (1.2)

if and only if (M), are pairwise orthogonal and span H, that is, if and

only if for all z € H has a unique representation

r=x1+- - +z, wherez; € M; Vi =1,2,...,n.
This shows that the sum of a finite number of projections onto pairwise
orthogonal subspaces is itself a projection.

Definition 1.1.36:

Let H be a Hilbert space and T : H — H be a linear operator.

(i) The subset
YTy ={ € C: X[ —-T is not invertible}

is called the spectrum of 7",

(ii) The compliment C — v(T) is called the resolvent set of T.

(iii) The number
r(T) = sup{|Al : A € v(T)}

is called the spectral radius of 7.

(iv) A number A € C is called the eigenvalue of T if there is a non-
zero * € H such that Tz = Az; the vector z is then called an

eigenvector for T' corresponding to the eigenvalue .

11




Convex sets:

Definition 1.1.37: Convex sét.

Let X be a linear space. A subset M of the linear space X is convex if
for all z,y € M, and for any positive real number ¢ satisfying 0 <t < 1
we have

te+{(1—tye M.

Definition 1.1.38: Convex hull.
If M is a subset of a linear space X, then a convex hull M, represented
by conv(M) is the smallest convex subset of X containing M and it is

the intersection of all the convex subsets of X that contain M.

Remark 1.1.39:

The intersection of any convex subsets of X is also convex.

Definition 1.1.40: Span of M. Let M be a non-void subset of a
linear space (X, XK). The set of all linear combinations of elements of M

is called the space spanned by A/ and is represented by [M]. That is

M ={awxi+- 4oz, neN,z;eManda; €K i=1,...,n.

Special types of matrices:

Definition 1.1.41: Diagonal matrix.
The matrix D = [d;;] € M, is called diagonal if d;; = 0 whenever j # .
Conventionally, we denote such a matrix as D = diag(dyy,- - dp,) or

D =diag d, where d is the vector of diagonal entries of D.

12




Remark 1.1.45:
Neither the unitarily matrix U nor the triangular matrix 7%of the above

theorem is unique.

Definition 1.1.46: Unitarily diagonalizable matrix.
If A € M, is unitarily equivalent to a diagonal matrix, then A is said to

be unitarily diagonalizable.

Theorem 1.1.47: (The spectral theorem for normal matrices).
If A= lay] € M,, has eigenvalues M,..,,\,, then the following state-

ments are equivalent. Vi,j = 1,2,...,n.
(a) Ais normal.
(b) A is unitarily diagonalizable.

(€) Doiim lagl® = 200, I

(d) There is an orthonormal set of n eigenvectors of A.

Proof. [(13), pp 101].

Theorem 1.1.48: (The spectral theorem for Hermitian ma-
trices).
Let A € M, be given. Then A is Hermitian if and only if there is a
unitary matrix U € M, and a real diagonal matrix A € M, such that
A = U*AU. Moreover, A is real and Hermitian if and only if there is a
real orthogonal matrix P € M,, and a real diagonal matrix A € M, such

that A = P*AP.

14




Proof. ‘[(13’), pp 172-173].
Definition 1.1.49: Trace.
Let A = (ax)Vj,k = 1,2,...,n, be an n-rowed square matrix. Then

the sum of its eigenvalues equals to the trace of A, that is, the sum of the

elements of the principal diagonal:

i3
Z)\i =trace A = ai; + -+ Q.
i=1

Definition 1.1.50: Rank.
The rank of a matrix A is defined as the order of the largest square array

in A with a nonzero determinant.

15




1.2 Numerical Ranges

1.2.1 The Classical Numerical Range.b

Let H be a complex Hilbert space, T': H — H a bounded linear operator
and B(H) the set of bounded linear operators on H. For any T € B(H),
the set W(T') given by

W(T)={{Tz,z) :z € H,||z|]| = 1} (1.3)

is the classical numerical range of the operator T'.

In the casé of a matrix A € C™" which represents a linear operator
from C" to C", the numerical range can be thought of as the image of
the surface of the Euclidian unit ball in C" (a compact set) under the

continous transformation z — f(Az) i.e

W(A) = {f(Az) :x € C", f € (C")", f(z) ==l =1=]fl} (14)

f is defined based on the consequences of the extension form of the Hahn-

Banach Theorem i.e

Theorem 1.2.1: (Extension form of the Hahn-Banach Theo-
rem).
Let X be a real vector space, M a subspace of X and let p be a seminorm

on X. Suppose f is a complex-valued linear functional on M such that /

If(z)] <plz)Vz e M

16




Then 3 a bounded linear functional F' on X for which
(i) |F(z)| < f(z) V3 € X
(i) F(x) = f(x) Vze M

In other words, 3 an extension F' of f having the same property of f

Proof. [(11), pp 136].

Corollary 1.2.2 : Let w be a non-zero vector in a normed space X.
Then there exists a continous linear functional F', defined on the entire
space X, such that ||F'|| =1 and F(w) = |Jw||.

Proof. [(15), pp 150].

Corollary 1.2.3: If X is a normed space such that Flwy=0 VFe
X* then w = 0. ‘
Proof. [(15), pp 151].

Corollary 1.2.4: Let X be a normed space and M be its closed
subspace. Further, assume that w € X — M. Then there exists F ¢ X*
such that ||F|| = 1 and F(w) = [Jlw|| = 1.

Proof. [(15}, pp 151].

1.2.1. Properties of the classical humerical‘range W(T) :

For any T' € B(H);
(i) W(T') is non-empty.
(i) W(U*TU) = W(T), U is unitary operator on H.
(iii) W(T) lies in the closed disc of radius ||T|| centered at the origin.

17




(iv) W(T') contains all the eigenvalues of T"i.e A € W(T).

<

v) W(T*) = { : xe W(T)}.
(vi) W(I) = {1}, I is the identity of B(H).
(vii) W(aT + pI) =aW(T)+ «,8,€ K.

(viii) W(T) is a convex set (The Toeplitz-Hausdorff Theorem).

Proof. [14].

1.2.2 Other forms of Numerical ranges.
The ¢g-Numerical Range.
For any T' € B(H), the g-numerical range is defined
Wo(T) = {(Ta,9) s 2,y € H, (2,3) = (y,9) = 1, (z,9) =} (L5)

for g € C satisfying |g| < 1.

The Maximal Numerical Range and the §-Numerical Range.

These types of numerical range were introduced by Stampfli (16]. For any

T € B(H), the maximal numerical range is defined as

WoT) = {\: (T @) — A, |lzall =1, and |Tao| — |TI}. (1.6)

18




Whereas the -numerical range is given by

W5(T) = closure {(Tz,z) : x € H,||z|| = 1, ||Tz|| > 6} . - (1.7)

However, by considering a matrix A € C"", Chi-Kwong Li [4] defines

these numerical ranges as
Wo(T) ={2z"Az: z € C",z’z =1, ||Az| = LA} - (1.8)
and §-numerical range by

Ws(T) ={z"Az: z € C"z"z =1, ||Az| > 6}. (1.9)

The Algebra Numerical Range and the Spatial Numerical Range.

Let X be a complex normed algebra with unit. Denote by X* the set of
all bounded linear functionals on X. The algebra numerical range of an

element a € X is defined by

Vie) ={f(a): fe X", fI)=1=|f]}. (1.10)

It is well-known that V'(a), [3] is a compact convex subset of the complex
plane.

Let X be a complex Banach space and B(X) the Banach algebra of
bounded linear operators on X. For 7' € B(X), the spatial numerical

range is given by
Vol T) = {f(Tz) :x € X, f € X*, || fll = |l = f(z) =1}.  (1.11)

19
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The algebra and spatial numerical range of an operator are closely con-
nected. We have ‘o

V(a) = conw Viy(T) | o (1.12)

where conv denotes the closed convex hull, [3].

The k-Numerical Range, c-Numerical Range and C-Numerical

Range.

For k € {1,...,n}, Halmos [7] introduced the k-numerical range of T €
C™*™ defined by

k
Wi(T) = {Z z;1T; : T1, ... Ty are orthonormal vectors in C"} .
i=1 '

(1.13)
Wi (T') is convex, [2].
For areal vector c = (cy,. .., c,), Westwick [18] introduced the c-numerical

range of T defined by

n = :
W(T) = { Z ciz;Tz; : z1,...x, are orthonormal vectors in C"} .
i=1

(1.14)
W.(T) is convex (i.e Westwick’s convexity theorem), [18].
Replacing ¢ in W.(T') above with C' = diag(cy,- -, c,) where C' € C™*™,

the c-numerical range is C-numerical range which can also be denoted by

We(T) = {tr(CUTU") : U € unitary)}. : (1.15)
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This set was introduced by Goldberg and Straus [5]. The convexity of
We(T) does not always hold for C € C™™. o

Remark: For any T € B(H) the k-numerical range, c;numerical
range and C-numerical range can also be expressed respectively as:
k
Wi(T) = {Z(Tﬂ% ;) : Z1,...x; are orthonormal vectors in H }
- (1.16)
where k € {1,...,n},

n

WolT) = {Z ci{Tz;,z;) - z1,. ..z, are orthonormal vectors in H
=1

(1.17)

where ¢ = (¢1,...,¢,) is a real vector,-and

We(T) = {Z ci{Tz;,x;) : z1, ...z, are orthonormal vectors in H

i=1
(1.18)
where C' = diag(ci,- -+, ¢,) is a complex vector. This set can also be
expressed as
We(T) .= {tr(CUTU) : U € B(H) is unitary} . (1.19)
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1.3 Review of Related Literature.

Toeplitz [17] in 1918 proved that W (T') has a convex outer boundary and
Hausdorff [9] in 1919 showed that the intersection of every line with W (T')
is connected or empty. It is from the conjecture of these two that gave rise
to the result of the classical Toeplitz-Hausdorff Theorem [(8), 1967]. Tt is
remarkable for it states that the image of the unit sphere in C" (a hollow
object) is a compact set in C under the quadratic form z — (Tz,Z).
Since then various generalization have been considered ranging from finite
dimensional to infinite dimensional linear maps on normed spaces. Sadia
[14] showed that W (T') is identical to V(7). Stampfli [16] introduced the
maximal numerical range W,(T") and the d-numerical range W5(T') of the
bounded linear operator 7. He [16] proved the convexity of W,(T) on a
Hilbert space. Whereas, the convexity of Ws(T'} on a Hilbert space was
proved by Agure [1]. However, the convexity of both sets of the numerical
ranges on a general Banach space is still open.

Agure [1], considered V5(T') for T € B(H), where B(H) is a unital algebra

and called it the algebra §-numerical range, i.e
Vs(T) =closure { f(T) : f(I) = ||f|l=1 and f(T"T)>é&%}. (1.20)

Having proved that both sets Ws(T') and V5(T') are convex, he [1] showed

that the two sets are actually identical. i.e

Ws(T) = V5(T) YT € B(H).

22
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Halmos [7] in 1964 introduced the k-numerical range W), (T') of T' € B(H)
and its convexity was proved by Berger [2]. Then Westwick [£8] considered
the c-numerical range W.(T') of T € B(H). While Goldberg and Straus
[5] in 1977 introduced and studied the C-numerical range W¢(T') of T' €
B(H). Westwick [18] proved that W¢(T') is always convex for C € R”
(i.e for C' a Hermitian) but‘left open for a complex C.

Therefore the purpose of our study is to further extend the properties
of W(T) and W,(T), in particular the convexity property to W(T) for
a complex C and determine how W¢(T')} is a generalization of both the
classical numerical range, and the g-numerical range of a Hilbert space

operator 7T

23




1.4 Statement of The Problem.

Let H be a Hilbert space, T : H — H a bounded linear operator and
B(H) the set of bounded linear operators on H. VT € B(H), we inves-
tigate the properties of W (T'). In particular, we confirm that W, (T) is
convex. We also establish that the other properties of W(T') in section
(1.2.1) are also true for W,(T'). Furthermore, we investigate the rela-
tionship between W,(T") and the algebra q-nuinerical range. Finally, we
extend properties of W(T') and W,(T) to W¢(T) and investigate how
We(T) is a generalization of both W(T') and W,(T').

1.5 Objectives of The study.

The main purpose of this study was to:

e Investigate the properties of W,(T'). In particular, to confirm whether
W,(T) is convex and establish whether the other properties of W (T')
are also true for W (T).

e Investigate whether W, (T') is related to the algebra g-numerical

range V,(T).

e Extend the properties of W(T') and W,(T) to W (T'), and finally
show how the W¢(T') is a generalization of both W (T') and W,(T)
VT € B(H).
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Chapter 2

THE ¢-NUMERICAL
RANGE

Introduction.

In this chapter we investigate the properties of the g-numerical range.
We show that some properties that hold for W(T') in section (1.2.1) also
hold for W,(T'), for example non-emptiness, closedness, convexity among
others. We also look at the relationship between the g-numerical range

W,(T) and the algebra g-numerical range V,(T).

2.1 Properties of g-numerical range.
For any T' € B(H), we recall the definition of g-numerical range as

Wy(T) = {(T=,y) : 2,y € H, (m,2) = (u, ) = 1, {z,9) = ¢}

for g € C satisfying |g| < 1.
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-

(i) Wo(T) # 0.

(ii) Wo(T) is unitary invariant i.e W,(U*TU) = W,(T) for all unitary
operator U € B(H).

(iil) W,(T) lies in the closed disc of radius ||T|| centered at the origin i.e
for e C, {]A < [T}

(iv) Wy(T') contains all the eigenvalues of T i.e A € W,(T).
(V) Wo(T*) = {X: X e W(T)}.
(vi) Wo(I) = {q}, I is the identity operator € B(H).

(vil) Wy(al +BT) = a{q} + BW,(T), I is identity operator € B(H) and
a, B € K.
(viii) W,(T) is a convex set.

Proof.
(i). To prove that W,(T) # 0.
Since T' is an operator on H # 0.

Take z,y € H : |[z]| = [lyll = 1, (z,y) = g. Then

Wo(T) = {(Tz,y) : z,y € H,(z,7) = (y,9) = 1, (z,9) = q} # 0.
(ii). To prove that W, (U*TU) = W,(T) for all unitary operator

U € B(H).
We need to show that

W, (U"TU) € W,(T) (2.1)
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and thatv

¢

WQ(T) C W (U*TU). (2.2)

To prove (2.1).
Let A € W (U*TU) for some UT € B(H), where U is unitary.
Then 3 z,y € H with ||z|| = |ly|| = 1, (z,y) = q such that

(UTU)z,y) = A.

Thus
| A= {(UTU)z,y) = (TU=, Uy)
Ta,king Uz =z, Uy =y, with lz1]] = [l ll =1

we see that

(@1, 31) = (Uz,Uy) = (U*V)z,9) = (z,9) = ¢
and that
A= TUz, Uy = (T%1,95)
= X € W(T).
Thus W, (U*TU) C W, (T).

Next to show that W,(T) C W,(U*TU).
Let A € W,(T). Then,3 5,y € H with ||z = [loall = 1, (z1,51) =

q
such that

Py =X
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Then since U is unitary, we have
(Tz,y) = TUU 2, UU™y)

Taking U™z = x,,U*y = y; with ||z1|| = |lin]| = 1,

we see that
(z1,91) = Uz, Uy) = (U V)z,y){z,y) = ¢

and that ‘
(TUU*z, UU™y) = (TU=1, Uy,)
= ((U"TU)z1,91)
= A € W,(U"TU).
Thus W,(T) C W, (U*TU)

(iii). To show that W (T) lies in the closed disc of radius ||T|
centered at the origin i.e {|A| < ||T||}. -
Take A € W,(T), then 3 z,y € H,(z,z) = (y,y) = 1,{z,y) = ¢

such that ‘
A= (Tz,y)

= A = [Tz, v)| < |IT|lllyll < TNl /lly]l-

Since |||l = [lyll = 1, we get

AL < |IT-
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Thus the result i.e we(T) = sup{|A] : A € W, (T} .

(iv). To show that WQ(T) contains all the eigenvalues of 7T i.e
A e W(T).

Let T: H — H (H, a finite dimensional Hilbert space):

Tz = Xz with ||z|]| = ||yl = 1, {(z,9) = ¢ Vz,y € H.

Then,

<T¢,y> = (A\z,y) = \q
= |Ag| = Mgl < <7

= X € W, (T).
(v)- To show that W, (T*) = {X.: A € W(T))}
WQ(T*) = {(T*QZ, y) :z,y € H, <.’ZI, $> - <y1 y> =1, <$7y> = q}'

={{z,Ty) : z,y € H,(z,z) = {y,y) = 1, {z,y) = q}
= {Ty,2): z,y€ H {z,2) = {,9) =1, {z,9) = q} -
— (XA eW,(T)}.

(vi). To show that W, (I') = {q}, I is the identity operator € B(H).

WQ(I) = {<]T7 y> : <$s $> - <y7y> =1, <:E,y> - Q}

={{&.y) 12,y € H,(z,9) = ¢} = {q}.
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W,

(vii). To show that
Wo(al + BT) = a{q} + BW,(T)
where [ is identity operator € B(H) and o, 3 € K.
Wo(al+6T) = {{(e] + fT)z,y) : z,y € H,{z,2) = (y,y) = 1,(z,y) = ¢}

= {(alz + fTz,y) : 7,y € H, (z, ) = (v,9) = 1,(z,9) = q} |

= {{ez,y) + (BT)z,y) : x,y € H,(z,2) = (y,9) = 1, (z,y) = q}
=H{afe,y) zy € H{z,z) = (y,9) =1, (z,y) =q} +
1B8{Tz,y) : z,y € H,(z,7) = (y,9) = 1,(z,y) = ¢}

= a{q} + BW,(T).

(viii). To show that W,(T) is a convex set.

We would like to point out that this proof follows from the argument
of Halmos [8]. Here need to show that the intersection of every line
with W, (T') is connected or empty.

Suppose T' is a bounded linear operator on the Hilbert space H.
Suppose A and p are distinct points of W,(T). We desire to show
that the line segment [\, u] lies entirely in W,(T).

We have unit vectors z and y with

A= (Tx, y) and p=(Ty,x). (2.3)
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These vectors are linearly independent (else A = ;). Hence

(T'z,y) # (Ty,z).

If {z,y} are linearly dependent, then since they are unit vectors,
one could be written as a multiple of the other. Since, moreover,the

factor should have to have absolute values of 1, it could follow that

(Tz,y) = (Ty, ), a contradiction.

Two preliminary reductions simplifies the proof:

e If A = p, this is trivial.
Now let A # p. Then

1 a,eC:ar+F=1 and a+puB=0. (2.4)
It suffices to prove that [0, 1] is induced in
Wo(aT + BI) = aW,(T) + fq. (2.5)
The reason is that if
a(Tz',y') + Bg =t forz?, Y G.H,
then

a(Tzh,y') + Bg = t(ar + Bq) + (1 — t)(ap + Bq)
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=atA+ (1 — thau + Bq
= atA+ (1 — t)u] + Bq.

There is no loss of generality in assuming that A = 1 and p = 0.

Then (a + 3) = 1.

Write T' = T1 + 475, with 77 and T, Hermitian.

Since (Tz,y)(= 1) and (Ty,z)(= 0) are real, it follows that the
imaginary parts i.e (Thz,y) and (Thy, =) vanish. Replaéing z and y
by Az and Ay respectively where |A| = 1, we have that (T'z,y) and

(T'y, z) remains the same i.e
(Tz,y) = (Thz, \y) = \*(Tz,y) = (Tz,y).
Analogously (T'y, z) remains (T'y, sc) and (Tyz,y) becomes
(ToAz, My) = I\ (Tea,y) = (Thz, y).
There is no loss of generality in assuming that (Tyz,%) is purely

imaginary.

We may then proceed by putting
h(ty=tz+(1—t)y 0<t<1 (2.6)

and assert that A(t) # 0.

Since

{Teh(t), (1)) = (Ta(tz + (1 — t)y), tz + (1 — t)y)
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= (Totz + To(1 — t)y,tx + (1 — t)y) + (To(1 — t)y, tz)+
(T - thy, (1 — thy)
= tY(Toz,2) + (1 — 1) [(Toz,y) + (Toz,y)"] + (1 — 52 {Tay,y)
=t} (Tyz, z) + 2t(1 — t)Re(Toz,y) + (1 — t)*(Tay, y).

Since (Thz,y) (and hence (Thx,z), {Thy,y)) is purely imaginary, we
see that

(Tah(t), h(£)) = 0 V¢ (0 < ¢ < 1).
It follows then that
(Th(t),h(t)) = t*(Tx, z)+2t(1—t)Re(Tz,y) +(1—-t)*(Ty,y) (2.7)

is real and lies entirely in W,(T') V¢ (0 <t < 1).

i.e when ¢ = 0, then

(Th(t),h(t)) = (Ty,y)
and when ¢ = 1, then

(Th(t), h(t)) = (Tz,z).

The function )
_ (TR(®), h(t))
1A(E) 112

is continous on the closed interval [0,1]. Hence the range of the

(2.8)

function contains every number in the unit interval [0, 1].
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2.2 The relationship between the ¢-Numerical

Range and the Algebra ¢-IN umer}cal Range.

Let H be a complex Banach space and B(H) the set of bounded linear
operators on H. For VT € B(H), ¢ € C : |g| < 1, the algebra ¢-

numerical range is defined by

Vo(T) = closure {f(T) : f € B(H)", f(I) = (z,9) , IfI £ 1, f(T"T) = (Tz, Ty)}.
(2.9)

Vo(T) is a convex set. To show this, let A\;, Ay € V,(T"). We shall show

that |

‘a)\l +(1—ajr € 'V:;(T‘) (0<a<l). (2.10)

Now A1, A2 € V,(T) implies that 3 functionals f;, fo € B(H)* such that
HT) =X\, fo(T) =X fi={z,y) fa={(z,y)

A <1, (D <=1, and A(T*T) = (Ta, Ty), f2(T°T) = (Tx, Ty).

Define f in B(H)* by

F(T) = afa(T) + (L — ) fo(T). (2.11)

We demonstrate that f is a bounded linear functional such that

FD) = (@,9) Ifl <1 and F(T°T) = (Ta, Ty)
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ThusV 61,5 € C, 0 < a <1,

<

[ (BT + BoT2) = afi (BiTh + BoTo) + (1 — a)fe (51T1 + B2T3)

= afi(5iT1) + afi(BT2) + (1 — o) fo( 1 T1) + (1 — a)Baf2(T2)
= afifi(Th) + af15:(T2) + (1 — @) f25.(Th) + (1 — @) B2 fo(To)
=B {afi(T1) + (1 - o) o(T1)} + B {afi(T2) + (1 — ) fo(T2)}

= i f(Th) + B2f(T2) = fis linear.
Now letting
F@T)=(Tz,y) Vz,y € H : (z,2) = (y,9) =1, {z,9) = ¢

it is clear that

1) = (z,y).
From the definition (2.11), we have
[F(D)] = 1ofi(T) + (1 — a) fo(T)]

< al AT+ (1 - )| fo(T))
<ol AT+ 1 - )| £NIT)
< (a+1—a)|T| (since | fill < 1,]Ifoll < 1)

S PEEY = 1T (2.12)
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K 8

Taking sups. both sides of (2.12) : ||T]| < 1, we obtain

7 <1

Also from definition (2.11), we see that
HTT) = afi(T°T) + (1 = ) o(T°T)

=afi(T™T) + fo(T7T) — afo(T7T)
= A(T"T) = (Tz, Ty)
s Ty = T, Ty).
It follows that f as defined aboveis a bounded linear functional satisfying
fF)=(z,y), Ifl €1 and f(IT"T) = (Tz,Ty).
Hence f(T') € V4(T'), implying that V,(T') is convex.

It is clear that f is not a state on B(H).

Now to establish the relationship between W, (T') and V,(T'), we first
seek to show that

W,(T) C V,(T). ‘ (2.13)

To establish this,
Let A € Wy(T), then 3 2,y € H, |lzl] = [lyll = 1, (z,y) = g

(Tz,y) = A.
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Define f in B(H)* by
A(T) =(Tz,y), f(I"T)=(Tz,Ty)VT € B(H).  (2.14)

We show that f is a linear functional in B(H)* satisfying

f(I) = (‘Iay>v ”f” =L

To show that f is linear,

we let a, 3 € C, Ti,T» € B(H), then

f (T + BT3) = ((oTh + BT3)z, y)
= {aTiz,y) +.(ﬁT2$,y)
= a(Tiz,y) + B{Tez,y)

=af(T1)+ Bf(Tx) = fis linear.
From (2.14), it is clear that
fI) = (z,y).

Also we have

IF(D)] = [Tz, y)| < (Tl = [T

= |FDN 2T (since |zl = |lgll = 1) (2.15)
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Taking sups. both sides of (2.15) IT =1,
=7l <1

So that
A= (Tz,y) = (T) € Vi(T).

= Wo(T) C Vy(T).

However, the reverse inclusion i.e V,(T') C W,(T), does not hold.
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Chapter 3

EXTENSION OF W(T) AND
Wy(T) TO We(T)

Introduction.

Tt is not surprising that some results on W (7") and W,(T) can be extended

to the C-numerical range which is defined by
We(T) = {Z ci{Tx;,%;) : iy - - ., T, Orthonormal vectors in H} (3.1)
=1 ‘ :

for VT € B(H), with C, a k-tuple of nonzero (in general, complex)
numbers ci, .. .,¢,. From these extended results, one can interprete the
set C-numerical range as a generalization of both W(T") and W,(T'). This

is explicitly established in this chapter.
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3.1 Properties of C-Numerical Range.

<

For any T € B(H) , C, a K-tuple of non-zero (in general, complex)
numbers ¢y, -+, ¢pn, and {z; : 1,...,2,} an orthonormal subset of H;
(i) We(T) # 0.

(ii) We(T') is unitary invariant i.e We(U™TU) = We(T) for all unitary
operators U € B(H). ’ ‘

(iii) We(T') lies in the closed disc of radius k||T'|| centered at the origin
e {]A] < KT}
(Where we denote k =, |¢;] = 1).

(iv) We(T') contains all the eigenvalues of T' i.e A € W(T).
(v) We(T*) = {}: X € We(T)}.
(vi) We(I) = {3, e}, I is the identity operator € B(H).

(vii) Welal +6T) = a Yoi ci+BWe(T), I is identity operator € B(H)
and «a, 3, € K.

(viil) We(T) is a convex set.

Proof.
(i). To prove that W (T') # 0.
Since T is an operator on H # 0, also {x;}; being an orthonormal subset

of H, and C is a non-zero k-tuple complex numbers, it follows that

Wel(T) = {Z ci{Tx;, ;) © T4y . . ., Ty orthonormal vectors in H} £ 0.

=1
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(ii). To prdve that Wo(U*TU) = We(T) for all unitary operator
U € B(H). v o
We need to show that

We(U™TU) € We(T) (3.2)
and that
WolT) € Wo(UTU). (33)

To prove (3.2)
Let A € Wo(U*TU) for some unitary U € B(H),

then 3 {z;}; an orthonormal subset of H such that

(U TUz, ) = ¥ c{TUz;, Uzy) = A,
=1 =1
Taking Uz; = vy;, with |ly;|| = 1, we have
= Z»Ci<TU-’Ei, Uz;) = Z ci{Tyi, ys)
i=1 =1

= AE Wc(T)

Thus

We(U'TU) C We(T).

Next to show that

We(T) C Wo(U*TU).
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Let A € Wg (T)’, then 3 {z;}; an orthonormal subset of H such that

Lo

_—
== Zg(Tﬂ:i,xi) = X
i=1
Since U is unitary, we have

i=1 i=1
Taking U*z; = y; with ||y:|| = 1, we obtain

" k
> a(TUUz:, UU sy = > c{U*TUwy, yi)

4=} i=1
= A€ We(U'TU).

Thus
We(T) C We(UTU).

(iii). To show that Wg(T') lies in the closed disec of radius k||T|
centered at the origin i.e {|A| < k||T|}. | |
(Where we denote k =37 | |c;| = 1).

Let A € W¢(T), then there exists {z;}] an orthonormal subset of H
such that |

X = Z ci{Tx;, zi)
i=1

= |A\ = 1ZCi<TfEia$i>] < |1 T ||4]] Z lci
< Tzl 3 le
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(But Izl =1, 3l = 1)
NI

Thus the result i.e wy(T) = sup {|A] : A € We(T)}.

(iv). To show that W (T') contains all the eigenvalues of T
Let T': H — H (for H a finite dimensional Hilbert space):

Take A € W (T') such that
n n
A=k, 0<6=1 Y =1
i=1 i=1

and for {z;}; an orthonormal subset of H, then

i ci{Tzi, z;) = i i, T) = A
=1 i=1
- Z Cz'/\z<xm mz)
=1
=1

= All eigenvalues ); are a linear combination in the set W (T').

(v). To show that We(T*) = {A: X € We(T)}.
We have

We(T™) = {Z T xi, ;) : ||zl| = 1}

=1
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=2 {Z ci{xs, Txs). : |lz:]| = 1}
= {ZMT%%‘) Nzl = 1}

— [X: X eWo(D)}.

(vi). To show that We(I) = {3, c}, I is the identity operator
€ B(H). ‘ 4
We have

We(l) = {ZGL Iz;, x;) Hm ]wl}
{Zq {53, Hrzl—l}

B

(vii). To show that We(ad +8T) = a > | ¢;+BWe(T), I is identity
operator € B(H). |
v T € B(H),

Welal + BT) = {2”: ci{(ad + BTz, z;) : ||z = 1}

=1

= {(Z colx; + z BT s a5y ¢ sl = 1}

g==1

:a{Z@(I%-’” H%H-l}—kﬁ{z Tz, 23) ||z H—l}
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= z (s BWc(T>
i=1

(viii). To show that W¢(T') is a convex set.
The convexity of Wg(T) (for T normal) holds if and only if the eigenvalues
of T are collinear on the complex plane.
To show this, let us take arbitrary t, s € Wg(T) and 0 < a < 1. Then

we have

n
fes {Z ci{Tz;, ;) : (;);—, are othornomal vectors in H} ,
i=1 )

5 == {Z ci{Tyi, i) : (¥i)i—; are othornomal vectors in H} .
i=1

Denote by K the n-dimensional subspace of H spanned by vectors ey, .. ., én.

Let P € B(H) be the orthogonal projection from H to K. Then we have
t € Wpecp/x(T) and s € Wp-cp/x(T)
Here C is taken as an ordered vector so that
He = Ue [6],

where

He: a class of Hermitian matrices depending on C' and

Uc : a class of matrices, Uc = conv {UCU* : U € unitary}.

From the spectral theorem for Hermitian matrices [(13), pp 172-173],
we have

POPIK =C € Hermitian.
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Thus Wpe-cp/x (T } is equivalent to the c-Numerical Range that was intro-
duced by Westwick [18] and whose convexity holds [18,19]. '«

Whence we have

at + (1 - 04)5 & WP*CP/K(T) Q Wc(T)

Conversely, if W¢(T') is a convex complex plane, then there exists eigen-

values of 7" which are collinear.

46




3.2 Therelationship between the C-Numerical

Range and the Algebra C—Nume;iqal Range.

Let H be a complex Banach space and B(H) the set of bounded linear
operators on H. For VT € B(H), the algebra C-numerical range is
defined by

Vo(T) = closure {f(t) L f e BAHY, f(D) =|Ifll =1, A(T"T) = Z@HT%IP} :

i=1

Ve(T) is convex. To show this, let Ay, Ay € Vo(T'). We seek to show
that

0[/\1 -+ (1 o Ol))\z € Vc(T> (0 S (83 S 1)
(Here we consider 0 < ¢; <1, >0 jci=1). °
Now A1, As € Vo (T') implies that 3 functionals fi, fo € B(H)* such

that

AT) =X, H(T) =2, A[HI)=1=|Al f0I) =1=]1l

and

ATT) = alTzl* >0 f(T"T) = cllTw|* >0
i=1 i=1

Define f in B(H)* by

f(T) = afi(T) + (1 - a) f(T). (3.4)
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We demonstrate that f is a positive linear functional satisfying the con-

<

dition
fh=Ifll=1

VB3,3€C, 0<a<l,

F (BT + BT) = afy (BT: + BaT) + (1 = a)fy (BiTs + 5oT)

= afi(BTY) + afi(BeTs) + (1 — ) (BT + (1 — ) fo(Th)

— afiBi(T) + afiBa(Th) + (1 — ) oBi(Th) + (1 — 0)Bafa(Th)

= B {eh(T) + (1 — ) AT} + B {afu(To) + (1 — @) fo(To)}
| — BT+ Baf (Ty)

= f s linear..

It is clear from the definition that f is positive. That is,
f(TT) = afi(T™T) + (1 — ) fo(T*T)

= ofs(T*T) + fo(T™T) — afo(T*T)

= (T"T) = Zcz'HTﬂci“2 = 0.
=1

Now f(I) = afi(I) + (1 —a)fo(I)

=a+l—a=1 | (since (1) = fo(I) =1)

Thus ‘
FIy ==L (3.5)
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Next we show that

1Al = 1.

From the definition of f, we have
M) =M+ A -)f(T) (0<a<])

= [A(D)] = [«hi(T) + (1~ ) fo(T)|

< ol AN+ @ = LI
—(@+1-a)(IT)  (since Il = /2]l = 1)
| = 1F(T)| < IIT].

(Taking sups. both sides : ||T|| = 1), we have

Ifll < 1.

Also from (3.5) »
L= [f(D] < IFMHI = 1A

= [[fll > 1.

From (3.6) and (3.7) we have

7l = 1.

(3.6)

(3.7)

It thus follows that f as defined above is a positive, linear functional

satisfying
1Al =1=r{).
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Hence

(T CVe(T) = VQ(T) is convex. =

We then show that Wg(T') is identical to Vo(T') VT € B(H) i.e
We(T) = Ve(T).

First we show that

Wel(T) C Ve(T). (3.8)

Let A € Wo(T), then 3 (z;)7, othornomal vectors in H

and0<¢ <1, Yo g=1:
Zcz(sz,xz) = A\
i=1 E

Define f in B(H)* by

n

F(T) =3 elTonm), fTT) =3 alTwll’, VT € B(H)  (39)

=1

We show that f is a state in B(H)".
To show that f is linear,

we let o, 8 € C, Ti1,T, € B(H), then

n

faT + pT) = Z ail(aTy + B12)z;, z:)

=1

== Z ci(olexi, '7;2'> + z C; <,8T2$Z‘, LUL'>
i=1

i=1
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=a Z ci(Tixy, ;) + B i ci{Tzx;, ;)
. ' i=1 =1
=af(Th) + Bf(Tz)

= f is linear.

From (3.9) it follows that f is positive.

Next we show that
FU) =|fll =1, Ian identity operator € B(H).

From (3.9), we have

IF(T) =1 a(Tzi, z3)]|
i=1

< Y allTlld® < 3o elTl - for sl = 1

= |fMI<IT|| (since Y e;i=1, 0< ¢ <1).

i=1

Taking sups. on both sides of (3.10), we obtain

1A <1

‘We also have

f(f):ZCz'U%l’i) =i

= 1=l < IFIITN = I £II-
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' So that
1< || fll- (3.12)

From (3.11) and (3.12), we have
1Al = 1.
Thus A = f(T) as defined in (3.8) is contained in Ve(T)

= We(T) C VC(T)'.

To show the reverse inclusion i.e
Ve(T) € We(T).

We assume that A € Vo(T') and A & We(T) and derive a contradiction.
Since A € Vo(T), it follows that 3 a state f in B(H) such that

fT)=X and f(T'T) = ¢|Talf>.
g

Since W (T) is convex, by rotating T', we may assume that

ReWo(T) <Rel—a, a>0. (3.13)

Let G = {(%)7:1 othonormal vectors in H and ReZ c{Tz, z;) > ReX — %, a>0

=1

(3.14)

The set G is non-empty because if it is not, then for all (w;);-, othonormal vectors in H,

we shall have

} |
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n

o
R (Tz;,z;) < Rel — —, . e |
eéq( i, ;) < Re 5 oz>Ok (3.15)

But since f is a weak*-limit of convex combination of vector states
y

Ve>0, 3N =N(e):Ym>N,

|fm(T) — F(T)] <e.

Also we can find M = M(e) such that for all m > M, the following
inequality will hold.

|f(T*T) — fT™ T <e.

Take €< -;—‘ (3.16)

and n > maz(N, M)

Since
Fun(T7) = Zci(sz-,mi) 0<¢ <1, and Zcz- =14
=1 =1
we have
o
efm(T) e;cx T4y T) e 5
— Re fn(T) < Re) — % (3.17)
But
fm<T} = f(T) — €

so that

Ref,(T) > Ref(T) — .
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Thus
Ref,(T) > Rel—¢ (since f(T)=)\). = (3.18)

From (3.18) and (3.19) we have

Re)\——e<Re)\—%

=i > — (3.19)

which is a contradiction.
Therefore A € Wc(T') implies that XA & Vo(T') and hence
A € Vo(T) implies that A € We(T'). Thus

Vo(T) € Wo(T). (3.20)

(3.8) and (3.20)
= Vo(T) = We(T).
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3.3 (C-Numerical Range as a generalization
of both the Classical Numerical Range

and ¢g-Numerical Range.
3.3.1 (C-Numerical Range as a generalization of the
Classical Numerical Range..

For T € B(H), with C, a k-tuple of nonzero (in general, complex) num-

bers ¢, ..., ¢,, we recall the C-numerical range as the set
i T
Wel(T) = {Z ci{Tz;,z;) : x4, . .., 2, orthonormal vectors in H}
=1 '

If C consists of just one number, say ¢; = 1, then it reduces to the classical

numerical range,

W(T) = {(Tz,2): z€H,|z||=1}.

3.3.2 (-Numerical Range as a generalization of the

g-Numerical Range.

We assume that the Hilbert space H has a finite dimension n. Let p
be an orthogonal projection in a subspace K(H) of H and H,, designate
the range of p. One significant property in this section is presence of
an orthonormal basis. (An orthonormal basis for H is by definition an

orthogonal system (z,) such that x, are basic vectors in the sense that
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(zx,xy) are orthogonal projections in K(H) of rank 1. The orthogonal
dimension of H (i.e the cardinal number of any of its orthonormal bases)
will be designated by dimg (gy. Furthermore, the inner product on H will

be denoted by
<,.’ > = (<’ >) :

We shall fix a unit vector € in H and denote by e the orthogonal projection
ece to the one-dimensional subspace spanned by €. More precisely, for a
fixed orthogonal projection e in K(H) of rank 1, H is given as the set of
all ex, z € H. Also, for all z,y € H we have that

(z,y) = (z,y)e.

We now choose an orthonormal basis {¢1,...¢,} for H, which is to be

held fixed for the rest of this section. We shall denote
61 = €za Jort=1,...,m

Fvidently,

p=er+...4+e,

Definition 3.3.2.1:

For any complex number ¢ with |¢| < 1 and 7' € B(H), we shall define
the set

pWi(T) = {tr{Tz,y) : z,y € H, (z,2) = (y,y) =p, (z,9) = qp}
(3.21)
where p € K(H) is the rank n projection.
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Remark 3.3.2.2:

Suppose that vectors z,y € H satisfy

(z,7) = (y,9) = p, (2,9) = qp - (322)

where ¢ € C, |q| < 1.
Let us put

Ty =€, Wi =Ceay fordi=1,... m

We shall show that

{'Tl"'vxn) yla"‘zyn}

is linearly independent set of a Hilbert space H. Namely, for 4,j =

1,...,n, we have

<xz’7 xj) = e <xa $>66j,5 = €eeiPlrje = 52',3'6

and analogously
{vi,y5) = bize.
Also, the condition
{z,y) =qp

implies that
(Tiyi) = €ceif{T,Y)€cje = €cciqPecsc = G0 je.

From this we deduce that z;,y; € H and it holds that

(i, 25) = (Y, ¥5) = 0ij, (Ti,y;) = qbsy  fori,j=1,...,n.  (3.23)
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Where 6, ; is the Kronecker delta defined by

0 ©1#]

1 i=3j

Vij=1,...,n, {z,z;) =&; =

Let us now suppose that

Z QT + Zﬁi?ﬁ = 0 for some oy, 3; € C.
i=1 i=1

(3.24)

Multiplying this equality on its right-hand side by z; and then by y; (and

by using 3.23) we get,

Z 0 s e Z ,()’zym:z ==}
==k i=1

= Y ai+ ) Big=0
=1 =1 )

=a;+54=0 (Taking Z a; = o; and Zﬁz = Bi)
i=1 =1

and

Z 04T Y + Z Biys-y; = 0
=1 =1
=% Z a;q + Z Bi =0
§=1 =

=o,q+ 0 =0 (Taking Zai = q; and Zﬁi =8 )
: i=1

g=]

from which it follows that
a(1—|g?)=0,i=1,...,n.
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Hence,

oy =0, and thus G; =0, 1 =1,...;%

Therefore,

{Zi- Zny Y1---,Yn}

is a linearly independent set in H.

Remark 3.3.2.3:

Observe that when n = 1, the condition

(z,z) = (y,4) = €1, {z,¥) = qe

is equivalent to the fact that z and y are unit vectors of Hilbert space H

such that

(z,y) = q.

Moreover,

tr{Tz,y) = (Tz,y)

So the set pW(T') is the g-numerical range W (T) VT € B(H).

Remark 3.3.2.4:

The condition
(z,z) =(y,y) =p

obviously implies

{x — pz,z — pzy = {y — py,u—py) = 0 ie z =pz and y =1y,
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So we have

(T'z,y) = p(Tz,y)p.

Furthermore, for every n L H, we get

(Tz,y)n = p{Tz,y)pn = 0.

Therefore, (T'z,y) can be regarded as an operator-acting on the n-dimensional

space H,.

Remark 3.3.2.5:
The definition of the set pW2(T') does not depend on the choice of the
rank n projection p € K(H). Hence the set pW(T) can be written as
W2(T), and when n=1, then we have W, (T'), which is the g-numerical
range W,(T) of the operator 7' € B(H). ‘

Lemma 3.3.2.6:

For any ¢ € C with |¢| < 1, p € K(H) the rank n projection, then there
exist x,y € H such that

(z,2) = (v, 9) =p, (z,9) = qp
and by the definition of pW7(T), it implies that pW(T') # 0.

Proof:

Let {u,...,u,} be an orthonormal set of the Hilbert space H. We define

v; = qui+ V1 —1q)%upnys fori=1,...,n.
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Then we get

<

(viyv5) = (G + /1= 1aPunss, qus +v/1— [gPun +j)

= qq(u;, u)+qv/1 — |q)? (Ui, Ungj) +/1 — ‘Q{ZC](UnH,Uj)+(1_|‘Z|2)<Un+iuun+j)

= IQ|25i,j 22 (1 - IQIz)(Si,j = 6i,j 5= 1, 0es B

Also we have

(i, v5) = (i, Qs + /T = [qPtns )

= g{us, u5) + v/ 1 — g% {vs, Unyy) = qbs; fori=1,...,n.

Thus we obtain

(Tiy Tj) = €cieUiy Uj)€erej = €cie (Uz'; Uj)ece; = Oije€;

and analogously

(Ui ¥5) = 0i56s fori,j=1...,n.

Moreover,

(L‘,?Jj) = Gei,s<ui,vj>6s,ej = esi,s<ui,vj>€€e,aj = q(si,jei fOTi,j =1..

Then

T=2iF ... +Tpn=3;

and

Yy=h-+...+yn =9
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are desired vectors, implying that the set pW*(T') is non-empty for all

T € B(H). -
We now prove our main result which is due to Rajna [12].

Theorem 3.3.2.7:
Let T be an operator in B(H). Then

W, (T) = {tr(CU*TU) : U is unitary}

where C, a k-tuple of complex numbers is regarded as a linear operator
acting on an orthonormal basis {z1, ... z,} of an n-dimensional subspace

of H such that

Oz =5 1=lsoh

Cznri=+v1—|ql?z i=1...,n.

Proof.
Given a unitary operator

U: H— H,

we define

Ty = €eie Uzi

Y = qecie Uzi + /1 —|gl%ei Uznys fori=1,...,n.

Since {Uz1,...,Uz,} is an orthonormal set in H, arguing as in the proof

of lemma 3.3.2.6, we obtain that

<-’73¢,=Tj> - <yiayj> - 61’,]‘82‘: (ifz','yﬂ = qéi,jei foralli,j=1,...,n.
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Let us put

T =g At = 1 =

and

Y=%+t.. .+t ¥ =Y

Then we have
(z,z) = {y,9) = p, {z,9) = qp.

Also it holds that
Bt = gt ( By ¥ e Tn) = €cmiTi = €. i€ Uz = eUz = Uz. (3.25)

€eeill = Cepi (yl L yn) = €ceilli = Cepei (geei,sUzi S E \V/ 1 - lqlze'ii,EUzn-H)

=geUz ++1—|g?2eUzpyi = qUz + /1 — ]\q}zUZn_H- fori=1,...,n.
(3.26)

In particular,

so we get

(Tee,sima es,sifU) - <T€a,5z'a7; es,eiy> €.

On the other hand, we have
<T66,5im7 85,&@) = €Eeei <TLE, y) €eie = Ceeileiei <T'Ta y) €ei,eiCeie

- e€,€i<T6ixa eiy>6éi,6 = €eei <T€i$a ezy> €:iCeie

= (Te,x,ey) e.
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Therefore

(Tee,eix,ee,eiy) = (Te;z, ey) fori=1,... 7.
Notice that

C*2zi = Gz + 1—lglPz,s t=1,...,n

C*z; =0 t=n+1,... 2n.
So by (3.25), (3.26) and (3.27) we obtain that

n n

tr(CUTU) = Y (U*TUz,C*z;) — D (TU=Z,UC*z)

i=1 =1

- Zj: <TUz,-,U (q_zi +y1l— |4'22n+i)>

= qz (TUzia Uzz) =+ Z (Tee,siwu ee,eiy - qee,sil')

=1 =1

= i <T€€’€i$, ee,eiy) = i <T€i$1 62y>
=] :

i=1

= tr (Z (Teiz,esy) ei) =tr (Z(Teim, 6:'?!))

=1 =1

= tr (Z ei<T£L‘, y)ez) =1tr (].7<T-757 y>p)

=tr(Tz,y) = (Tz,y)

which reduces to the g-numerical range

Conversely, let z,y € H satisfy

(z,2) = (y,9) = p and '<$, Yy) = qp.
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=

Suppose first thiat lg] < 1. Define a linear operator
U:Y,—-H

by its action on the basis {z, - Zn)
Uz = €eeil,

1 N )
Uzpyi = W (es,eiy — GeceiT)  for i = | . 3
It is easy to check that the operator U is a Well—deﬁned isometry.
That is, for i,j =1,.. ., 1, we have
(Uzia Uzj) = € <x1 $>esj,€ = CeeiPCejc = i,7€
which implies
U zze€H

and

<UZ,', UZj) = (5.5,3‘.
Also, for 4,5 = 1,... n it holds that
1 _ _
(Uzi’ Uzn+j> = W(ee,eiy — GCc ;i T, Ceeily — qee,ejl'>

1 . |
=12 PE (ee,ei<yay>esj,s — ecei{y, T)e; . — Jecei{Z, y)ee; . + %€, oz, $>Cej,e)

1 _ _
- W (es,sipeej,e T 99 ciPecje — Qs giPecje + ’QIzes,eipeej,e)
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1 2 ) "o
m= e g (€ = g e = We + 1@126) = 0;,5€.

1—|qf? »
So
Uzn-i-i € H
and
(Uzn—Hu Uzn-i-j) = 5i,j~
Furthermore
1 ’ -
<UZ’L'1 U2n+]> = ——-—1 — qu2€E,€i<I, Yy — q$>65j,g
- 1
1 1912657&' (z,9) — 4(z, 7)) ecje
1 % P
. 1qlzee,ez‘ (gp—qp)ecje =0 fori,j=1,...,n.
Hence

(Uz;,Uzpyj) =0 fori,j=1,...,n.

Therefore, U is an isometry and can be extended to a unitary operator
U:H—H.

Finally, since (3.25) (3.26) and (3.27) are also valid, the same calculation

as before shows that

tr(CUTU) = tr{Tz,y) = (Tz,y) .
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Now, suppose that |g| = 1, then we have

C*z, = gz fop=1,....,m.

C*2;, =0 fori=1+n,...,2n.

Define a linear operator

U: Y=
on the orthonormal basis {z, ... z,} by putting
Uzi =82 fori=1l,...,m

It is clear that U is a well-defined isometry and can be extended to a

unitary operator

U:H—H.

Let us put

=g, p=ey forz=1,...,n

Thus we have

(i, 7a) = ez, T)e; = eipe; = ¢

and analogously

(Yi,ys) =€, fori=1,... n.

Moreover,

(Iz’7yi> = 6i<$a E}')@i =eqpe; = qe; fori=1,...,n.




TR,

So we deduce that z;,y; are unit vectors of the Hilbert space H such that

<

(y:)=¢q, fori=1,...,n.

Also, since

W

[z, m) | = lal = 1= | {zi, 2:) |2.] (s, ) |

it follows that
Y=o, o, €C fori=1,...,n.

But

Ve A ) = U 0y} = 04 {8 B = Oy

from which it follows that
Yy=py=um-+...+y =4z +...2,) = Jpz = qz.

Thus we get

n n

HCTIU) = Z (U'TU 2,C"2;) = Z (TU 2, U(q2))

7 2

= Z <Te€,az’xa g65,5i$> = Z (Tee,eima es,éi?f)
= Z (Tex,e;y) =tr (Z (Te;x, e;y) e@-)
i=1 , i=1
= (Z(Teix, ew)) =% (Z ei(Tz, y)ei) = tr (p(Tz, y)p)

1

= il ) = (Te, 1)
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and by remarks (3.3.2.3), and (3.3.2.5) this set reduces to the g-numerical
range W,(T') of an operator T € B(H). o

Corollary 3.3.2.8: Let H be a Hilbert space of finite dimension.
Denote by {e;} a fixed orthonormal basis of H. For ¢ € C, |q| < 1, and
C, a k-tuple of complex numbers representing a matrix with respect to

the basis {e1,...,€e,}. Then the set
We(T) =tr(CUTU) for T € B(H)

can also be defined as:

n

WC(T) = {Z(T"BMQJ CT Y eH <$z’x'b> = <ywyz> - 1: <x’nyj> = qcs’é,j ?'aj - 17 B

=1

Proof:
Given t € W(T), there is a unitary U € B{H) such that

t=tr(CUTU) = » (U TUe;,Ce;) = » (TUe;, UC™e;).

2

Let us put

z; = Ue;,
yz-:UC'*ei, i,jzl,...,n.

Then we have

t=Y (Touy)  (@625) = (Ui, y;) = 8i; and (z:, %) = ¢0i;.
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Conversely, suppose that

<
n

t= Z(Tﬂ”z,yJ T, &5) = (Wi, ¥5) = 6ig and (Ti, Yi) = ¢0i ;-

If |g| < 1, define

1

V1= 1P — gzi)’

Uei:CEi, Uen-;-l: ’!,21,,??,
In the case |g| = 1, let us put

Ue;=a, t=1,...,10.

Then U is a well-defined isometry on the subspace of H and can be

extended to a unitary operator U € B(H). Thereby,

t =tr(CUTU).

We observe that when n = 1, then
We(T) = (Tx,y)

which is the g-numerical range of an operator T € B{H ) and hence W¢(T')
is a generalization of the g-numerical range.

This concludes our assertion that W (T') is a generalization of both W (T')
and We(T). I
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Chapter 4

CONCLUSION

4.1 Concluding remarks.

The study of numerical range and its generalization has been a motivation
to many mathematicians. In our study, we considered numerical ranges
in a complex Hilbert space. We investigated the properties g-numerical
range,whereby, we established that the properties for the classical numer-
ical range in section (1.2.1) are also true for the g-numerical range. We
also established that the g-numerical range is contained in the algebra g¢-
numerical range but the reverse inclusion does not hold. Furthermore, we
showed that the results of the classical numerical range and g-numerical
range can be extended to the C-numerical range and that the C-numerical
range is an explicit generalization of both the classical numerical range
and g-numerical range.

It is our hope that the study will activate interest in posterity among stu—‘
dents. For future research , efforts can be directed towards generalization
of the numerical ranges on other Banach spaces apart from the Hilbert

space.
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