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ABSTRACT

We 'consider numerical ranges of a bounded linear operator on complex

Hilbert spaces. Many properties of the classical numerical range are

known. We investigate the properties of the q-numerical range in re-

lation to those of the classical numerical range. We also establish the

relationship between the q-numerical range and the algebra q-numerical

range. Furthermore, we extend the results of the classical numerical range

and q-numerical range to the C-numerical range and investigate how the

C-numerical range is an explicit generalization of both the classical nu-

merical range and q-numerical range.
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Chapter 1

INTRODUCTION

During the last decades, the study of numerical range W(T) has attracted

attention of many Mathematicians and several results have been obtained.

These results are helpful in studying and understanding matrices and

operators. Among the main results is the convexity of the numerical range

as established in the classical Toeplitz-Hausdorfftheorem [9,17]. This set

function also has various generalizations. In our thesis we considered finite

dimensional linear maps on normed spaces, primarily we were concerned

with a generalized q-numerical range of a bounded linear operator in

complex Hilbert spaces.

The first chapter is composed of the basic results which are used in the

subsequent chapters. Here we also present terminologies and symbols.

Some generalizations of the numerical range are also mentioned.

In chapter two we investigate the properties of the q-numerical range. We

show that some properties that hold for the classical numerical range also

hold for q-numerical range, that is, non-emptiness, closedness, convexity

among others. We also look at the relationship between the q-numerical

range and the algebraic q-numericalrange.
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In chapter three, we extend some results of the classical numerical range

and q-numerical range to the C-numerical range. Finally, we-characterize

the C-numerical range as a generalization of both the classical numerical

range and q-numerical range.

1.1 Background Information

We first introduce some essential concepts involving definitions and other

useful notions used in the sequel.

Definition 1.1.1: An operator.

Is a mapping of a vector space X onto itself or to another vector space.

Definition 1.1.2: A linear operator.

Let X and Y be linear spaces. Then a function T : X -----t Y is called a

linear operator if and only if for all Xl, X2 E X and all scalars A, f.L E K

we have

Remark 1.1.3:

Operators on normed spaces, which are linear and continuous, are of

special interest in this study. The continuity is understood to be the

metric continuity given by the norm. Thus T : X -----t Y is continuous at

Xo E X if for every E > 0 there exists o(xo, E) such that

IIT(x) - T(xo)Ii < E whenever lix - xoll < o.
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Definition 1.1.4: A bounded linear operator.

A linear operator T : X ---+ Y is called bounded if and only'if there exists

a constant .M > 0 such that,

/IT(x)1I < MI/(x)11 '\Ix E X.

Definition 1.1.5: Norm of a bounded operator.

Let T E B(X, Y). Then the norm of T is defined as

IITII = {s'UpIITxll; x E D(T), Ilxll < I} = {Sv,pIITxl/; x E D(T), x =J O} < 00.

That the supremum is finite follows from the fact that

//T(x)// ::; NII/(x)/I '\Ix EX, 10.1 ~ o.

Definition 1.1.6: Inverse operator (T-1) .

Let X and Y be vector spaces, T : D(T) c X ---+ R(T) C Y a linear

operator, then the inverse operator (T-1) of T is the mapping

T-1 : R(T) ---+ D(T).

Theorem 1.1.7: Banach Inverse Theorem.

Let X and Y be Banach spaces and T E B(X, Y) which is bijection. Then

there exists T-1 E B(Y, X).

Proof. [(10), pp 88-101].

Definition 1.1.8: A functional.

A functional is a mapping of a vector space into a scalar K(C,R).

3



Definition 1.1.9: A Linear functionaL

f is a linear functional on X if I : X -f C is a linear operator, i.e. a

linear functional is a complex-valued linear operator.

Definition 1.1.10: A bounded Linear functionaL

A linear functional I is called bounded if and only if there exists a constant

N > 0 such that,

II(x)1 ::; NII(x)11 \/x EX.

Definition 1.1.11: Norm of a bounded Linear functional.

Let I : X -f R or C be a bounded linear operator on X. Then the

norm of I is defined as

11111= sup {I~~(Ix-=/= oJ
Definition 1.1.12: The Dual space.

Let X be a vector space and X* the set of all linear functionals on X.

X* is called the dual space of X.

Remark 1.1.13:

The dual space X* of a normed space X is a Banach space whether or

not X is a Banach space.

Definition 1.1.14: An algebra.

An algebra A over X is a linear space together with an internal multipli-

cation of elements of A, such that

\/x,y,z E A;

(i) x(yz) = (xy)z
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(ii) x(y + z) = xY + xz: (y + z)x = yx + zx

(iii) A(:EY) = (/\X)y = .X(Ay), A E K

Definition 1.1.15: A normed algebra.

A normed linear space (A, 11.11) over K is said tobe a normal algebra if A

is an algebra and

Ilxyll ::; IIxlillylI, V x, yEA

Definition 1.1.16: An Involution.

Let A be an algebra, a mapping A ---+ A defined by x ---+ x* is called an

involution on A if it satisfies the following conditions: V x, yEA, A E K

(i) (x + y)* = x* + y*

(ii) (AX)* = :\x*

(iii) (xy)* = y*x*

(iv) x** = x

Definition 1.1.17: A positive linear functional.

A positive linear functional is a linear functional on a Banach algebra A

with an involution that satisfies the condition

f(xx*) 2: 0 V x E A.

Definition 1.1.18: A state.

A state on an algebra A, is a continous positive linear functional that
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satisfies the Schwartz inequality,

If(x*y)12
::; f(·T*X)f(y*y).

Definition 1.1.19: Inner product space.

An inner product space X· is a complex linear space together with an

inner product (,) : X X X -+ C such that;

(i) (x, y) = (y, x)

(ii) (Ax + f.ty, z) = A(x, z) + f.t(x, z) : x, y, z E X, /\ E K

(iii) (x, x) 2: 0, with (x, x) = 0 =? x = O.

Definition 1.1.20: Hilbert space.

A Hilbert space is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.21:. Hermitian operator.

Let H be a Hilbert space and D a linear manifold of H. The mapping

T : D -+ H is said to be Hermitian if

(Tx, y) = (x, Ty) \;j x, Y E D.

Definition 1.1.22: Adjoint.

If T E B(Y, lC), where y, r: are Hilbert spaces, then the unique linear

operator T* E B(lC, Y) satisfying

(Tx,y) = (x,T*y) \Ix E Y andy E lC

6



is called the (Hilbert space) Adjoint of T.

Definition 1.1.23: Self-adjoint operator.

A bounded operator T E B(H) is said to be self-adjoint if T* = T.

Thus T is Hermitian and D(T) = H if and only if T is self-adjoint.

Proposition 1.1.24:

Let T E B(H) where H is a complex Hilbert space. Then the following

statements are equivalent.

(i) T is self-adjoint, i.e T = T*.

(ii) (Tx,1:) is a real number, for all x E H.

Proof. [(10), pp 400 ].

Definition 1.1.25: Normal operator.

A bounded linear operator T on a Hilbert space H is said to be normal

if it commutes with its adjoint i.e TT* = T*T.

Definition 1.1.26: Unitary operator.

A unitary operator is a bounded linear operator U on a Hilbert space

satisfying: U*U = UU* = I, where I is the identity operator.

This property is equivalent to the following:

(i) U preserves inner product on the Hilbert space, so that for all vec-

tors x and y in the Hilbert space H,

(Ux,Uy) = (x,y).
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(ii) U is a surjective isometry (distance preserving map) i.e

IIU(.T - y)11= lI(x - y)ll·

Definition 1.1.27: Compact operator.

If H is a Hilbert space, then an operator T E B(H) is finite rank op-

erator if the dimension of the range of T is finite and compact operator

if for every bounded sequence (xn) in H the sequence (Txn) contains a

convergent subsequence.

Definition 1.1.28: Orthogonal compliment.

Let X be a vector space, Y a closed subspace of X, the orthogonal com-

pliment of the subspace Y denoted by Y -.L is defined as

Y -.L = {x EX: x .L'Y} .

Definition 1.1.29: Projection operator.

The concept of a projection operator P or briefly, projection P is defined

on a Hilbert space H where H is represented as the direct sum of a closed

subspace Y and its orthogonal compliment Y -.L thus

x =y+z, (y E Y, Z E y-.L) (1.1)

Since the sum is direct, y is unique for any given x E H. Hence (1.1)

defines a linear operator
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"-'P is called an orthogonal projection or projection on H onto Y. Hence

a linear operator P : H -----t H is a projection on H if there is a closed

subspace Y of H such that Y is the range of P and v- is the null space

of P and Ply is the identity operator on Y.

Note that in (1.1) we can now write

x = Y + z = Px + (1 - P)x.

This shows that the projection on H onto' y.l is I - P.

There is another characterization of a projection on H, which is sometimes

used as a definition:

Theorem 1.1.30: (Projection).

A bounded linear operator P : H -----t H on a Hilbert space H is a projec-

tion if and only if P is self-adjoint (p* = P) and idempotent (P2 = P)

Proof. [(10), pp 408].

Definition 1.1.31: (A positivity).

A projection P is said to be positive if

(Px, x) 2: 0 't/XE H.

Theorem 1.1.32: (Positivity, norm).

For any projection P on a Hilbert space H.

(i) (Px, x) = IIPxI12.

(ii) P 2: O.



(iii) IIPII :s; 1; IIPII = 1 if P(H) i= {O}.

Proof. [(10), pp 410-411].

Theorem 1.1.33: (The product of projections).

In connection with products (composites )of projections on a Hilbert space

H,the following two statements hold.

(a) P = PIP2 is a projection on H if and only if the projections PI

and P2 commute, that is, PIPz = P2P1• Then P projects H onto

Y = Y1n Y2, where Yj = Pj(H).

(b) Two closed subspaces Y and V of H are orthogonal if and only if

the corresponding projections satisfy Py Po = O.

Proof. [(15), pp 414J.

Theorem 1.1.34: (Sum of projections).

Let P, and P2 be projections on a Hilbert space H. Then

(a) The sum P = PI +P2 is a projection on H if and only if YI = PI (H)

and Y2 = P2 (H) are orthogonal.

(b) If P = PI + P2 is a projection, P projects H onto Y = Y1EB Y2.

Proof. [(10), pp 417].

Corollary 1.1.35: (Sum of finite number of projections).

If H is a Hilbert space, (A1i)~=1are closed subspaces of H and (Pi)~~l are



,.

projections onto closed subspaces, then

n

(1.2)
i=l

if and only if (1i1i)~~1 are pairwise orthogonal and span H, that is, if and

only if for all x E H has a unique representation

x = .'];1 + ... + Xn where Xi E NIi Vi 1,2, ... ,no

This shows that the sum of a finite number of projections onto pairwise

orthogonal subspaces is itself a projection.

Definition 1.1.36:

Let H be a Hilbert space and T : H ..; H be a linear operator.

(i) The subset

ry(T) = {A E C : AI - T is not invertible}

is called the spectrum of T.

(ii) The compliment C - ry(T) is called the resolvent set of T.

(iii) The number

r(T) = sup {IAI : A E ry(T)}

is called the spectral radius of T.

(iv) A number A E C is called the eigenvalue of T if there is a non-

zero x E H such that Tx = AX; the vector x is then called an

eigenvector for T corresponding to the eigenvalue A.
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Convex sets:

Definition 1.1.37: Convex set.

Let X be a linear space. A subset M of the linear space X is convex if

for all x, y E M, and for any positive real number t satisfying 0 < t < 1

we have

iu: + (1 - t)y E A1.

Definition 1.1.38: Convex hull.

If A1 is a subset of a linear space X, then a convex hull A1, represented

by conv(A1) is the smallest convex subset of X containing A1 and it is

the intersection of all the convex subsets of X that contain M.

Remark 1.1.39:

The intersection of any convex subsets of X is also convex.

Definition 1.1.40: Span of A1. Let 1\1 be a non-void subset of a

linear space (X, K). The set of all linear combinations of elements of A1

is called the space spanned by A1 and is represented by [A1J. That is

Special types of matrices:

Definition 1.1.41: Diagonal matrix.

The matrix D = [dijJ E A1n is called diagonal if dij = 0 whenever j 1= i.

Conventionally, we denote such a matrix as D = diag( dl1, ... dnn) or

D =diag d, where d is the vector of diagonal entries of D.
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Remark 1.1.45:

Neither the unitarily matrix U nor the triangular matrix T---ofthe above

theorem is unique.

Definition 1.1.46: Unitarily diagonalizable matrix.

If A E A1n is unitarily equivalent to a diagonal matrix, then A is said to

be unitarily diagonalizable.

Theorem 1.1.47: (The spectral theorem for normal matrices).

If A = [aij] E Mn, has eigenvalues AI, .. , ,/\n, then the following state-

ments are equivalent. \j i, j = 1,2, ... ,n.

(a) A is normal.

(b) A is unitarily diagonalizable.

(d) There is an orthonormal set of n eigenvectors of A.

Proof. [(13), pp 101].

Theorem 1.1.48: (The spectral theorem for Hermitian ma-

trices).

Let A E A1n be given. Then A is Hermitian if and only if there is a

unitary matrix U E A1n and a. real diagonal matrix A E A1n such that

A = U*AU. Moreover, A is real and Hermitian if and only if there is a

real orthogonal matrix PEkIn and a real diagonal matrix A E A1n such

that A = P* AP.
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Proof. [(13), pp 172-173].

Definition 1.1.49: Trace.

Let A = (ajk) Vj, k = 1,2, ... ,n, be an n-rowed square matrix. Then

the sum of its eigenvalues equals to the trace of A, that is, the sum of the

elements of the principal diagonal:

n

L Ai = trace A = an + ... + ann·

i=l

Definition 1.1.50: Rank.

The rank of a matrix A is defined as the order of the largest square array

in A with a nonzero determinant.
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1.2 Numerical Ranges

1.2.1 The Classical Numerical Range.

Let H be a complex Hilbert space, T : H -----+ H a bounded linear operator

and B(H) the set of bounded linear operators on H. For any T E B(H),

the set W (T) given by

WeT) = {(Tx,x) : x E H, Ilxll = I} (1.3)

is the classical numerical range of the operator T.

In the case of a matrix A E C"?" which represents a linear operator

from en to en, the numerical range. can be thought of as the image of

the surface of the Euclidian unit ball in en (a compact set) under the

continous transformation x 1-+ f(Ax) i.e

W(A) = {f(Ax) : x E en, f E (en)*, f(x) = Ilxll = 1 = Ilfll} (1.4)

I is defined based on the consequences of the extension form of the Hahn-

Banach Theorem i.e

Theorem 1.2.1: (Extension form of the Hahn-Banach Theo-

rem).

Let X be a real vector space, M a subspace of X and let p be a seminorm

on X. Suppose I is a complex-valued linear functional on M such that

II(x)1 :::;p(x) V x E M
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Then ::I a bounded linear functional F on X for which

(i) IF(x)1 ~ f(x) V x EX.

(ii) F(x) = f(x) Vx E M

In other words, ::I an extension F of f having the same property of f
Proof. [(11), pp 136].

Corollary 1.2.2 : Let w be a non-zero vector in a normed space X.

Then there exists a continous linear functional F, defined on the entire

space X, such that IIFII = 1 and F(w) = /lw/l.
Proof. [(15), pp 150].

Corollary 1.2.3: If X is a normed space such that F( w) = 0 V F E

X*, then w = O.

Proof. [(15), pp 151].

Corollary 1.2.4: Let X be a normed space and M be its closed

subspace. Further, assume that w E X - AI. Then there exists F E X*

such that /IF/I = 1 and F(w) = /lw/l = 1.

Proof. [(15), pp 151].

1.2.1. Properties of the classical numerical range WeT) :

For any T E B(H);

(i) WeT) is non-empty.

(ii) W(U*TU) = vV(T), U is unitary operator on H.

(iii) WeT') lies in the closed disc of radius IITII centered at the origin.
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(iv) vV(T) contains all the eigenvalues of T i.e A E W(T).

(v) W(T*) = {3\ : /\ E liV(T)} .

(vi) W(!) = {1}, I is the identity of B(H).

(vii) W(aT + (3!) = aW(T) + (3 a, (3, E K.

(viii) vV(T) is a convex set (The Toeplitz-Hausdorff Theorem).

Proof. [14J.

1.2.2 Other forms of Numerical ranges.

The q-Numerical Range.

For any T E B(H), the q-numerical range is defined

Wq(T) = {(Tx, y) : x, y E H, (x, x) = (y, y) = 1, (x, y) = q} (1.5)

for q E C satisfying Iql < 1.

The Maximal Numerical Range and the o-Numerical Range.

These types of numerical range were introduced by Stampfli [16J. For any

T E B(H), the maximal numerical range is defined as
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Whereas the O-numerical range is given by

vV,,(T) = closure {(Tx, .r) : .r E H, Ilxll = 1, IITxll 2: 6}. ' (1.7)

However, by considering a matrix A E cnxn
, Chi-Kwong Li [4] defines

these numerical ranges as

Wo(T) = {x* Ax: x E en, x*x = 1, IIAxl1= IIAllllxll} . (1.8)

and 6-numerical range by

W,,(T) = {z" Ax: x E en,x*x = 1, IIAxl1 2: o}. (1.9)

The Algebra Numerical Range and the Spatial Numerical Range.

Let X be a complex normed algebra with unit. Denote by X* the set of

all bounded linear functionals on X. The algebra numerical range of an

element a E X is defined by

1I(a) = {J(a) : J E X*, J(1) = 1 = IIJII}. (1.10)

It is well-known that 11(0,), [3]is a compact convex subset of the complex

plane.

Let X be a complex Banach space and B(X) the Banach algebra of

bounded linear operators on X. FOI T E B(X), the spatial numerical

range is given by

1Isp(T) = {J(Tx) : x E X, J E X*, IIJII = Ilxli = J(x) = 1}. (1.11)
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The algebra and spatial numerical range of an operator are closely con-

nected. We have

(1.12)

where conv denotes the closed convex hull, [3].

The k-Numerical Range, c-Numerical Range and C-Numerical

Range.

For k E {I, ... ,n}, Halmos [7] introduced the k-numerical range of T E

enxn defined by

Wk (T) = {t X;TXi : Xl, ... Xk are orthonormal vectors in en} .
t=l

(1.13)

Wk(T) is convex, [2].

For areal vector c = (Cl, ... , en), Westwick [18]introduced the c-numerical

range of T defined by

We(T) = {t cix;Txi : Xl,· .. Xn are orthonormal vectors in en} .
t=l

(1.14)

We (T) is convex (i.e Westwick's convexity. theorem), [18].

Replacing C in We(T) above with C = diag(cl, ... .c.,) where C E enxn,

the c-numerical range is C-numerical range which can also be denoted by

Wc(T) := {tr(CUTU*) : U E unitary)}. (1.15)
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This set was introduced by Goldberg and Straus [5]. The convexity of

vVc(T) does not always hold for C E C'":". "--'

Remark: For any T E B(H) the k-numerical range, c-numerical

range and C-numerical range can also be expressed respectively as:

Wk (T) ~ {t (TXi, Xi) : X" ... Xk are orthonormal vectors in H }

(1.16)

where k: E {I, ... ,n},

WJT) ~ {t, e;(TXi, Xi) : X" •.• Xn arc orthonormal vectors in H }

(1.17)

where c = (Cl,' .. , cn) is a real vector" and

We(T) ~ {t, e;(TXi, Xi) : x" ... Xn are orthonormal vectors in H }

(1.18)

where C = diag(cl,"', en) is a complex vector. This set can also be

expressed as

Wc(T) := {tr(CU*TU) : U E B(H) is unitary}. (1.19)
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1.3 Review of Related Literature.

Toeplitz [17]in 1918 proved that W(T) has a convex outer boundary and

Hausdorff [9]in 1919 showed that the intersection of every line with W(T)

is connected or empty. It is from the conjecture of these two that gave rise

to the result of the classical Toeplitz-Hausdorff Theorem [(8), 1967]. It is

remarkable for it states that the image of the unit sphere in en (a hollow

object) is a compact set in e under the quadratic form x f-----t (Tx, z).

Since then various generalization have been considered ranging from finite

dimensional to infinite dimensional linear 'maps on normed spaces. Sadia

[14Jshowed that W(T) is identical to V(T). Stampfli [16]introduced the

maximal numerical range Wo(T) and the 6-numerical range W,,(T) of the

bounded linear operator T. He [16]proved the convexity of Wo(T) on a

Hilbert space. Whereas, the convexity of W,,(T) on a Hilbert space was

proved by Agure [1]. However, the convexity of both sets of the numerical

ranges on a general Banach space is still open.

Agure [1],considered V8(T) for T E B(H), where B(H) is a unital algebra

and called it the algebra 6-numerical range, i.e

V8(T) = closure {f(T) : f(I) = I!fll = 1 and f(T*T) 2: 62
}. (1.20)

Having proved that both sets W,,(T) and V8(T) are convex, he [1]showed

that the two sets are actually identical. i.e
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Halmos [7Jin 1964 introduced the k-numerical range Wk(T) of T E B(H)

and its convexity was proved by Berger [2J. Then Westwick [18J considered

the c-numerical range Wc(T) of T E B(H). While Goldberg and Straus

[5Jin 1977 introduced and studied the C-numerical range Wc(T) of T E

B(H). Westwick [18Jproved that Wc(T) is always convex for CERn

(i.e for C a Hermitian) but left open for a complex C.

Therefore the purpose of our study is to further extend the properties

of W(T) and Wq(T), in particular the convexity property to Wc(T) for

a complex C and determine how Wc(T) is a generalization of both the

classical numerical range, and the q-numerical range of a Hilbert space

operator T,
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1.4 Statement of The Problem.

Let H be a Hilbert space, T : H -t H a bounded linear operator and

B(H) the set of bounded linear operators on H. \IT E B(H), we inves-

tigate the properties of Wq(T). In particular, we confirm that Wq(T) is

convex. vVealso establish that the other properties of W (T) in section

(1.2.1) are also true for Wq(T). Furthermore, we investigate the rela-

tionship between Wq(T) and the algebra q-numerical range. Finally, we

extend properties of W(T) and Wq(T) to Wc(T) and investigate how

Wc(T) is a generalization of both W(T) and Wq(T).

1..5 Objectives of The study.

The main purpose of this study was to:

• Investigate the properties of vVq(T). In particular, to confirm whether

Wq(T) is convexand establish whether the other properties of W(T)

are also true for Wq(T).

e Investigate whether Wq(T) is related to the algebra q-numerical

range Vq(T).

I» Extend the properties of lV(T) and TiVq(T) to Wc(T), and finally

show how the Wc(T) is a generalization of both vV(T) and Wq(T)

\IT E B(H).
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Chapter 2

THE q-NUMERICAL

RANGE

Introduction.

In this chapter we investigate the properties of the q-numerical range.

We show that some properties that hold for WeT) in section (1.2.1) also

hold for Wq(T), for example non-emptiness, closedness, convexity among

others. We also look at the relationship between the q-numerical range

Wq(T) and the algebra q-numerical range Vq(T).

2.1 Properties of q-numerical range.

For any T E B(H), we recall the definition of q-numerical range as

Wq(T) = {(Tx,y) : x,y E H, (x,x) = (y,y) = 1, (x,y) = q}

for q E C satisfying \q\ s 1.
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(ii) Wq(T) is unitary invariant i.e Wq(U*TU) = Wq(T) for all unitary

operator U E B(H).

(iii) Wq(T) lies in the closed disc of radius IITII centered at the origin i.e

for A E C, {IAI < IITII}.

(iv) Wq(T) contains all the eigenvalues of T i.e .AE Wq(T).

(vi) Wq(I) = {q}, I is the identity operator E B(H).

(vii) Wq(ad + j3T) = a {q} + j3Wq(T), I is identity operator E B(H) and

a, j3 E K.

(viii) Wq(T) is a convex set.

Proof.

(i). To prove that Wq(T) i= 0.

Since T is an operator on H i= O.

Take x, Y E H : Ilxll = lIylI = 1, (z ,y) = q. Then

Wq(T) = {(Tx, y) : x, y E H, (z; x). (y, y) = 1, (x, y) = q} i= 0.

(ii}. To prove that Wq(U*TU) = Wq(T) for all unitary operator

U E B(H).

We need to show that

(2.1)
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and that

To prove (2.1).

Let A E Wq(U*TU) for some UT E B(H), where U is unitary.

Then d x, Y E H with Ilxll = Ilyll= 1, (x, y) = q such that

((U*TU)x, y) = 7\.

Thus

A = ((U*TU)x,y) ~(TUx,Uy)

Taking Ux = Xl,Uy = Yl with Ilxlll = Ilydl= 1,

we see that

(Xl,Yl) = (Ux,Uy) = ((U*U)x,y) = (x,y) = q

and that

Next to show that Wq(T) ~ Wq(U*TU).

Let /\ E Wq(T). Then.d x,y E H with Ilxlll = IIYlli= 1, (Xl,Yl) =

q

such that

(Tx, y) = A.
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Then since U is unitary, we have

(Tx, y) = (TUU*x, UU*y)

Taking U*x = Xl, U*y = YI with IlxI11= IIYIII = 1,

we see that

(Xl, YI) = (Ux, Uy) = «(U*U)x, y)(x, y) = q

and that

(TUU*x, UU*y! = (TUXI, UYI)

= «(U*TU)XI' YI!

(Iii). To show that Wq(T) lies in the closed disc of radius UTII
centered at the origin i.e {IAI < IITII}.
Take A E Wq(T), then :3X, Y E H, (x, x) = (y, y) = 1, (x, y) = q

such that

A = (T:r,YJ

=> IAI = I(Tx, y) I < IITxllllYl1 ::; IITllllxllllyll·

Since Ilxll = Ilyll = 1, we get
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Thus the result i.e wq(T) = S1lP {IAI : A E Wq(T)}.

(iv). To show that Wq(T) contains all the eigenvalues of T i.e

A E Wq(T).

Let T : H -+ H (H, a finite dimensional Hilbert space):

Tx = AX with IIxll = IlylI = 1, (x, y) = q \Ix, y E H.

Then,

(Tx, y) = (A.T, y) ~ /\q

:::} IAql = IAllql < IAI < IITII

(v). To show that Wq(T*) = p:.: .\ E Wq(T)}

Wq(T*) = {(T*x, y) : x, y E H, (x, x) = (y, y) = 1, (x, y) = q}.

= {(x,Ty): X,y E H, (x,x) = (y,y) = 1, (x,y) = q}

= {(TYl x): x, y E H, (x, x) = (y, y) = 1, (x, y) = q}

= {X. /\ E Wq(T)}.

(vi). To show that Wq(I) = {q}, I is the identity operator E B(H).

Wq(I) = {(Ix, y) : (x, x) = (y, y) = 1, (x, y) = q}

= {(x,y): x,y E H, (x,y) = q} = {q}.
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(vii). To show that

Wg(o:I + f3T) = a {q} + f3Wg(T)

where I is identity operator E B(H) and a, f3 E K.

Wg(aI+f3T) = {((aI + f3T)x, y) : x, y E H, (x, x) = (y, y) = 1, (x, y) = q}

= {(aIx + f3Tx,y) : x,y E H, (x,x) = (y,y) = 1, (x,y) = q}

= {(ax, y) + (f3T)x, y) : x, y E H, (z , x) = (y, y) = 1, (z ,y) = q}

= {a(x, y) : x, y E H, (x, x) = (y, y) = 1, (x, y) = q} +

{f3(Tx, y) : x, y E H, (z ,x) = (y, y) = 1, (x, y) = q}

= a{q} + f3W~(T).

(viii). To show that Wg(T) is a convex set.

We would like to point out that this proof follows from the argument

of Halmos [8]. Here need to show that the intersection of every line

with Wg(T) is connected or empty.

Suppose T is a bounded linear operator on the Hilbert space H.

Suppose A and f.1, are distinct points of Wg(T). We desire to show

that the line segment [A, f.1,]liesentirely in Wg(T).

We have unit vectors x and y with

A= (Tx, y) and f.1, = (Ty, x). (2.3)

30



These vectors are linearly independent (else A= f.L). Hence

(Tx, y) I: (Ty, x).

If {x, y} are linearly dependent, then since they are unit vectors,

one could be written as a multiple of the other. Since, moreover,the

factor should have to have absolute values of 1, it could follow that

(Tx, y) = (Ty, x), a contradiction.

Two preliminary reductions simplifies the proof:

• If /\ = u, this is trivial.

Now let AI: u, Then

:l a, {3E C : aA + (3= 1 and a + f.L{3 = O. (2.4)

It suffices to prove that [O,lJ is induced in

(2.5)

The reason is that if

then

a{Tx\ yI) + {3q = t(a;.\+ (3q) + (1 - t)(af.L + (3q)
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= cd ); + (1 - t)Cl!J-l + f3q

= Cl! [t).. + (1 - t)J-l] + (3q.

There is no loss of generality in assuming that )..= 1 and u = o.
Then (Cl! + (3)= 1.

(UJ Write T = T, + iT2 with Ti and T2 Hermitian.

Since (Tx,y)(= 1) and (Ty,x)(= 0) are real, it follows that the

imaginary parts i.e (T2X, y) and (T2y, x) vanish. Replacing x and y

by )..x and )..y respectively where 1)..1, = 1, we have that (Tx, y) and

(Ty, x) remains the same i.e

(Tx, y) = (T)"x, )..y) = 1)..12(Tx, y) = (Tx, V).

Analogously (Ty, x) remains (Ty, x) and (T2X, y) becomes

There is no loss of generality in assuming that (T2X, y) is purely

imaginary.

We may then proceed by putting

h(t) = tx + (1 - t)y (2.6)

and assert that h (t) -::f O.

Since

(T2h(t), h(t») = (T2(tX + (1 - t)y), tx + (1 - t)y)
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= (T2tx + T2(1 - t)y, tx + (1 - t)y) + (T2(1 - t)y, tx)+

(n(1- t)V, (1 - t)V)

<...-

= t2(T2X, x) + t(l - t) [(T2X, y) + (T2x, y)*] + (1 - t)2(T2Y' y)

Since (T2X,y) (and hence (T2X, x), (T2y,y») is purely imaginary, we

see that

<T2h(t), h(t») = 0 \:It (0:::::: t ::::::1).

It follows then that

(Th(t), h(t)) = t2(Tx, x) +2t(1-t)Re(Tx, y) +(1-t)2(Ty, y) (2.7)

is real and lies entirely in Wq(T) 'lit (0 S t S 1).

i.e when t = 0, then

(Th(t), h(t)) = (Ty, y)

and when t = 1, then

(Th(t), h(t)) = (Tx, x).

The function
(Th(t), h(t))

t -r Ilh(t) 112 (2.8)

is continous on the closed interval [0, 1]. Hence the range of the

function contains every nur,nber in the unit interval [0, 1].
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2.2 The relationship between the q-Numerical
G

Range and the Algebra q-Numeric!ll Range.

Let H be a complex Banach space and B(H) the set of bounded linear

operators on H. For V T E B(H), q E C : Iql :::; 1, the algebra q-

numerical range is defined by

Vq(T) = closure {f(T) : f E B(H)*, f(1) = (x, y) , Ilfll :::;1 ,f(T*T) = (Tx, Ty)} .

(2.9)

Vq(T) is a convex set. To show this, let >'1, A2 E Vq(T). We shall show

that

(0:::;a:::;1). (2.10)

Now AI, A2 E Vq(T) implies that ::3functionals JI, h E B(H)* such that

IlfIli :::;1, h(1) :::;=1, andJI(T*T) = (Tx, Ty), h(T*T) = (Tx, Ty).

Define f in B(H)* by

f(T) = aJI(T) + (1- a)h(T). (2.11)

We demonstrate that f is a bounded linear functional such that

f(I) = (x, y) ,lIfll :::;1 and f(T*T) = (Tx, Ty)
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= afI(f3lT1) + af1(f32T2) + (1 - a)h(f3lT1) + (1 - a)f32h(T2)

= afIf3l(T1) + afIf32(T2) + (1 - a)hf3l(Tl) + (1 - a)f32h(T2)

= 131{afl (T1) + (1 - a)h(Tl)} + ,82 {afl (T2) + (1 - a)h(T2)}

= f3d(Tl) + f32/(T2) =i> f is linear.

Now letting

f(T) = (Tx,y) VX,y E H : (x,x) = (y,y) = 1, (x,y) = q

it is clear that

f(I) = (x, y).

From the definition (2.11), we have

If(T)1 = lafI(T) + (1- a)h(T)1

::; alfI(T)1 + (1 - a)lh(T)1

< allfIlIllTl1 + (1- a)lIhllllTIl

::; (a + 1- a)/ITII(since IIflll ::; 1, IIf211< 1)

.'. If(T) I < IITII· (2.12)
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Taking sups. both sides of (2.12) : IITII :s; 1, we obtain

IIfll < 1.

Also from definition (2.11), we see that

f(T*T) = aJI(T*T) + (1 - a)h(T*T)

= aJrCT*T) + hCT*T) - ahCT*T)

= hCT*T) = (Tx, Ty)

.'. f(T*T) = (Tx,Ty).

It followsthat f as defined above is a bounded linear functional satisfying

f(I) = (x, y), Ilfll :s; 1 and f(T*T) = (Tx, Ty).

Hence f(T) E Vq(T), implying that Vq(T) is convex.

It is clear that f is not a state on B (H).

Now to establish the relationship between Wq(T) and Vq(T), we first

seek to show that

(2.13)

To establish this,

Let A E Wq(T), then :3 x, y E H, Ilxll = Ilyll = 1, (x, y) = q :

(Tx, y) = A.
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Define f in B(H)* by

f(T) = (Tx, y), f(T*T) = (Tx, Ty) \:IT E B(H). (2.14)

We show that f is a linear functional in B(H)* satisfying

f(I) = (x,y), Ilfll ~ 1.

To show that f is linear,

we let a, (3E C, TI, T2 E B(H), then

= (aTlx, y) + ((3T2x, y)

= a(TIx, y) + (3(T2x, y)

= af(TI) + (3f(T2) => f is linear.

From (2.14), it is clear that

f(I) = (x, y).

Also we have

If(T)1 = I(Tx,y)1 < IITllllxllllyl1 = IITII

=> If(T)1 ~ IITII (since IIxll = lIyll = 1) (2.15)
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Taking sups. both sides of (2.15): IITII = 1,

=? Ilfll < 1

So that

A = (Tx, y) = f(T) E Vq(T).

However, the reverse inclusion i.e Vq(T) ~ Wq(T), does not hold.
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Chapter 3

EXTENSION OF W(T) AND,

Wq(T) TO WC(T)

Introduction.

It is not surprising that some results on W(T)'and Wq(T) can be extended

to the C-numerical range which is defined by

We (T) ~ {t, c;(T x, Xi) , Xi, ... ,Xn orthonormal vectors in H} (3.1)

for V T E B(H), with C, a k-tuple of nonzero (in general, complex)

numbers Cl,' .. ,Cn. From these extended results, one can interprete the

set C-numerical range as a generalization of both W(T) and Wq(T). This

is explicitly established in this chapter.

39



3.1 Properties of C-Numerical Range.

For any T E B(H) , C, a K-tuple of non-zero (in general, complex)

numbers Cl,"', Cn, and {J;i : Xl,.'" Xn} an orthonormal subset of H;

(i) We(T) i= 0.

(ii) We(T) is unitary invariant i.e We(U*TU) = We(T) for all unitary

operators U E B (H).

(iii) We(T) lies in the closed disc of radius kllTIl centered at the origin

i.e {IAI < kIITII}·
(Where we denote k = L:~=lICi I = 1).

(iv) We(T) contains all the eigenvalues of T i.e A E We(T).

(v) We(T*) = {X : A E We(T)}.

(vi) We(!) = {L:~=lCi}, I is the identity operator E B(H).

(vii) We (01+/3T) = a L:~=1c, +/3We(T), I is identity operator E B(H)

and Q, /3,E K.

(viii) We(T) is a convex set.

Proof.

(i). To prove that WcCT) i= 0.
Since T is an operator on H i= 0, also {Xi} ~ being an orthonormal subset'

of H, and C is a non-zero k-tuple complex numbers, it follows that

Wc(T) = {t, r,(TXi, Xi) 'Xi,···, xn orthonormal vectors in H} f 0.
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(ii). To prove that Wc(U*TU) = Wc(T) for all unitary operator

U E B(H).

We need to show that

Wc(U*TU) <:;;; Wc(T) (3.2)

and that

Wc(T) <:;;; vVc(U*TU) .. (3.3)

To prove (3.2)

Let). E Wc(U*TU) for some unitary U E B(H),

then B {Xi} ~ an orthonormal subset of H such that

n n

LCi(U*TUXi,Xi) = L~i(TUXi,UXi) = /\.
i=l i=l

Taking UXi = Yi, with IIYil1 = 1, we have

n n

= Lc; (TU Xi, UXi) = Lci(TYi, Yi)
i=l i=l

=? ). E Wc(T).

Thus

Wc(U*TU) < Wc(T).

Next to show that

Wc(T) <:;;; Wc(U*TU).
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Let /\ E Wc(T) , then :3 {Xi}~ an orthonormal subset of H such that

n

= L C;\TXi, Xi) = A.
i=l

Since U is unitary, we have

n n

L Ci(Txi, Xi) = LCi\TUU*Xi' UU*Xi).
i=l i=l

Taking U*Xi = Yi with IIYil1= 1, we obtain

n k

L ci\TUU*Xi' UU*Xi) = L C;\U*TUYi, Yi)
i=l i=l

=? A E Wc(U*TU).

Thus

vVc(T) ~ Wc(U*TU).

(iii). To show that Wc(T) lies in the closed disc of radius k11T11
centered at the origin i.e {IAI :; kIITII}.
(Where we denote k = L:~l ICil= 1).

Let A E Wc(T), then there exists {Xi}~ an orthonormal subset of H

such that
n

A = LCi\Txi, xi)
i=l

n n

=? IAI = ILCi\Txi,xi)l:; IITxillllxil1L ICil
i=l i=l

n

< IITllllxillllxili L ICil
i=l
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n

(But Ilxili = 1, L [c.] = 1)
i=l

Thus the result i.e wq(T) = S'U,p{IAI: A E Wc(T)}.

(iv). To show that Wc(T) contains all the eigenvalues of T.

Let T : H -+ H (for H a finite dimensional Hilbert space):

Take A E We (T) such that

n n

A = L ~Ai' 0:::; Ci ::; 1, L Ci = 1
i=l i=l

and for {Xi} ~ an orthonormal subset of H, then

n n

LCi(Txi,Xi) = LCi(AiXi,Xi) = A
i=l i=l

n

= L ~Ai(Xi' Xi)
i=l

n

= LCiAi = A.
i=l

=> All eigenvalues Ai are a linear combination in the set Wc(T).

(v ), To show that Wc(T*) = {::\:A E Wc(T)}.

We have
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~{t, ",(Xi, TXi) : IIxili ~ 1}

~{t, ",(TXi, x,) : Ilxili ~ 1}

= {X: A E Wc(T)} .

(vi). To show that Wc(I) = {2=~=1c.}, I is the identity operator

E B(H).

We have

Wc(I) ~ {t,,,,(IX,,Xi): 11",11··I}
= {t~(Xi'Xi) : !!xill = I}

t=l

={t~}.
t=l

(vii). To show that We (aI +j3T) = a L:~=1c, +j3Wc (T), I is identity

operator E B(H).

V T E B(H),

We(a1 + {3T) ~ { t,"'((aI + {3T)Xi' Xi) : IIx,1I ~ I}
-r- { (t, 0,,,1Xi + t, ",j3Tx" Xi) : IIXi II ~ 1}

~ a {t, ",(lXi, Xi) : IIxili ~1 } + {3{t, ",(TXi' Xi) : IIxdl ~ 1}
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n

= aL C; + ,BWc(T).
i=l

(viii). To show that Wc(T) is a convex set.

The convexity of Wc(T) (for T normal) holds if and only if the eigenvalues

of T are collinear on the complex plane.

To show this, let us take arbitrary t, s E Wc(T) and 0 :::;a :::;1. Then

we have

t = {t c,(TXi, Xi) : (Xi )~1 are othornomal vectors in H} ,
t=l

s ~ {t, c;(TYi, Yi) : (Yi) ~~1 are othornomal vectors in H} .

Denote by K the n-dimensional subspace of H spanned by vectors el, ... , en·

Let P E B(H) be the orthogonal projection from H to K. Then we have

t E Wp*cP/K(T) and s E Wp*cP/K(T)

Here C is taken as an ordered vector so that

lHIc = \Dc [6],

where

lHIc: a class of Hermitian matrices depending on C and

\Dc : a class of matrices, \Dc = conv {UCU*: U E unitary}.

From the spectral theorem for Hermitian matrices [(13), pp 172-173],

we have

P*CP/K = C E Hermitian.
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Thus Wp*cP/I«T) is equivalent to the c-Numerical Range that was intro-

duced by Westwick [18]and whose convexity holds [18,19]. <.-

Whence we have

at + (1 - a)s E Wp*cP/I«T) <;;:: liVc(T).

Conversely, if liVC (T) is a convex complex plane, then there exists eigen-

values of T which are collinear.
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3.2 The relationship between the C-Numerical

"-'Range and the Algebra C-Numerical Range.

Let H be a complex Banach space and B(H) the set of bounded linear

operators on H. For 'liT E B(H), the algebra C-numerical range is

defined by

VerT) .~ closure {f(t) : f E B(E)', f(l) cc IIfll ~ 1, f(T'T) ~ t, ",IITxill' } .

Vc(T) is convex. To show this, let AI, A2 E Ve(T). vVeseek to show

that

(Here we consider 0 :s; c; :s; 1, L~=l c, = 1).

Now All A2 E Ve(T) implies that :3 functionals h, 12 E B(H)* such

that

h(T) = AI, h(T) = A2, h(I) = 1= Ilhll, 12(1) = 1= 111211

and

n n

h(T*T) = L~IITXiI12 ?: 0 h(T*T) = L cillTxil12 ?: 0
i=l i=l

Define f in B(H)* by

f(T) = aJI(T) + (1- a)h(T). (3.4)

47



We demonstrate that f is a positive linear functional satisfying the con-

dition

f(I) = Ilfll = 1.

=?- f is linear..

It is clear from the definition that f is positive. That is,

f(T*T) = afl(T*T) + (1 - a)h(T*T)

= afl(T*T) + h(T*T) - ah(T*T)
n

= h(T*T) = L cillT.Til12 ~ O.
i=l

Now f(I) = etfl(I) + (1 - a)f2(I)

=a+1-et=1 (since !I (I) = h(I) = 1)

Thus

f(I) = 1. (3.5)
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Next we show that

II!II = 1.

From the definition of 1, we have

I(T) = aJI(T) + (1 - a)h(T) (0 ::; a < 1)

=? 11(T)1 = laJI(T) + (1-· a)h(T)1

< aIl111111(T)11+ (1- a)llhllll(T)11

= (a + 1- a) (IITII) (since·IIJIII = 111211= 1)

=? 11(T)1 < IITII·

(Taking sups. both sides: IITII = 1), we have

11111< 1. (3.6)

Also from (3.5)

1= 11(1)1 < 1111111111= lUll

=? 111112: 1. (3.7)

From (3.6) and (3.7) we have

11111= 1.

It thus follows that 1 as defined above is a positive, linear functional

satisfying

11111= 1= 1(1)·

49



Hence

J(T) <;;; Ve(T) =? Ve(T) is convex.

We then show that Wc(T) is identical to Ve(T) '\IT E B(H) i.e

Wc(T) = Vc(T).

First we show that

We(T) < Ve(T). (3.8)

Let A E Wc(T), then ::3(xi)7=1 othornomal vectors in H

and 0 ~ c; < 1, 2::1 c, = 1 :

n .

L Ci(TXi, Xi) = A.
i=l

Define J in B(H)* by

n

J(T) = LCi\TXi, Xi),
i=l

n

J(T*T) = L ciIIT.TiI12
, '\IT E B(H)

i=l

(3.9)

We show that J is a state in B(H)*.

To show that J is linear,

we let 0'., e E C, T1, T2 E B(H), then

n

J (CY.Tl+ j3T2) = L ci\(CY.T1 + j3T2)Xi, Xi)
i=l

n n

= LCi\CY.T1Xi,.Ti) +LCi(j3TzXi,X,;)
i=l i=l
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n n

= a L ci(T1Xi, Xi} + f3 L ci(T2Xi, Xi}
i=l i=l

=? f is linear.

From (3.9) it follows that f is positive.

Next we show that

feI) = lifll = 1, I an identity operator E BeH).

From (3.9), we have

n

IfeT)1 = ILCi(Txi, Xi) I
i=l

n n

< L CillTllliXil12 < LCiIITII, for Ilxili = 1
i=l i=l

n

=? If(T) I ::; IITII (since L Ci = 1, 0 < c; < 1). (3.10)
i=l

Taking sups. on both sides of (3.10), we obtain

Ilfll < 1. (3.11)

We also have
n

f(1) = LCi(Ixi,Xi) = 1
i=l

=? 1= If(1)1 ::; IIfllll!11 = IIflt·
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So that

1< Ilfll· (3.12)

From (3.11) and (3.12), we have

Ilfll = J.

Thus A = J(T) as defined in (3.8) is contained in Vc(T)

=* Wc(T) ~ Vc(T).

To show the reverse inclusion i.e

Vc(T) ~ Wc(T).

We assume that A E Vc(T) and A r:f. Wc(T) and derive a contradiction.

Since /\ E Vc(T), it follows that :3 a state f in B(H) such that

n

f(T) = A and f(T*T) = L~IITxiI12.
i=l

Since Wc(T) is convex, by rotating T, we may assume that

ReWc(T) S ReA - ex, ex > o. (3.13)

Let G ~ {(X')~l othonorrnal vectors in Hand Re E<;(Tx"x,) 2" Re>. - %, ,,> +
(3.14)

The set G is non-empty because if it is not, then for all (Xi)~l othonormal vectors in H,

we shall have
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n

Re LCi(Txi, Xi) < ReA -~, a> 0.
i=l

(3.15)

But since f is a weak* -limit of convex combination of vector states,

\I E > 0, :3 N = N(E) : \1m> N,

Ifrn(T) - f(T)1 < E.

Also we can find M = A1(E) such that for all m > A1, the following

inequality will hold.

IfnCT*T) - f(T*T)I < E.

Take
a

E <-
2

(3.16)

and n > max(N, An
Since

n

frn(T) = L Ci(TXi' Xi)
i=l

n° :::;Ci :::; 1, and L Ci = 1,
i=l

we have

(3.17)

But

frn(T) > f(T) - E

so that

Refrn(T) > Ref(T) - E.
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Thus

ReJm(T) > ReA - E (since J(T) = A). (3.18)

From (3.18) and (3.19) we have

a
ReA - E < ReA - -

2

(3.19)

which is a contradiction.

Therefore A rf. Wc(T) implies that A rf. Vc(T) and hence

A E Vc(T) implies that A E Wc(T). Thus

Vc(T) s;.; Wc(T). (3.20)

(3.8) and (3.20)

'* Vc(T) = Wc(T).
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3.3 C-Numerical Range as a generalization

"-'of both the Classical Numerical Range

and q-Nurnerical Range.

3.3.1 C-Numerical Range as a generalization of the

Classical Numerical Range.-

For T E B(H), with C, a k-tuple of nonzero (in general, complex) num-

bers Cl, ... , Cn, we recall the C-numerical range as the set

We (T) 0, {t, c, (TXi, Xi) , Xi, ... , x.; orthonormal vectors in H }

If C consists of just one number, say Cl = 1, then it reduces to the classical

numerical range,

W(T) = {(Tx,x): x E H, Ilxll = 1}.

3.3.2 C-Numerical Range as a generalization of the

q-Numerical Range.

We assume that the Hilbert space H has a finite dimension n. Let p

be an orthogonal projection in a subspace K(H) of Hand Hn designate -

the range of p. One significant property in this section is presence of

an orthonormal basis. (An orthonormal basis for H is by definition an

orthogonal system (x).) such that x,\ are basic vectors in the sense that
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(XA' xA) are orthogonal projections in K(H) of rank 1. The orthogonal

dimension of H (i.e the cardinal number of any of its orthon~'Tmal bases)

will be designated by dimK(H)' Furthermore, the inner product on H will

be denoted by

(-,.)= tr ((-, .)) .

We shall fL'C a unit vector E in H and denote by e the orthogonal projection

ec c to the one-dimensional subspace spanned by E. More precisely, for a,

fixed orthogonal projection e in K(H) of rank 1, H is given as the set of

all ex, x E H. Also, for all x, y E H we have that

(x, y) = (x, y)e.

We now choose an orthonormal basis {El," .En} for Hn which is to be

held fixed for the rest of this section. We shall denote

el = eci,ci for i = 1, ... ,no

Evidently,

Definition 3.3.2.1:

For any complex number q with Iql :S 1 and T E B(H), we shall define

the set

pW;(T) = {tr(Tx, y): x, y E H, (x, x) = (y, y) = p, (x, YI = qp}

(3.21)

where p E K(H) is the rank n projection.
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Ftenaark 3.3.2.2:
Suppose that vectors x, y E H satisfy

(x, x) = (y, y) = p, (x, Yl = qp (3.22)

where q E C, Iql < l.

Let us put

We shall show that

is linearly independent set of a Hilbert space H. Namely, for i, j

1, ... ,n, we have

and analogously

Also, the condition

(x, y) = qp

implies that

From this we deduce that Xi, Yi E H and it holds that

(3.23)
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Where bi,j is the Kronecker delta defined by

o i i= j

1 L = J

Let us now suppose that

n n

L (}IiXi +L f3iYi = 0 for some (}Ii, f3i E C.
i=l i=l

(3.24)

Multiplying this equality on its right-hand side by Xi and then by Yi (and

by using 3.23) we get,

n n

L (}IiXi·Xi +L f3iYi ..'Ei = 0
i=l i=l

n ri'

=? L (}Ii+ L f3iq = 0
i=l i=l

n n

= (}Ii+ f3iq = 0 (Taking L (}Ii= (}Iiand L f3i = f3i)
i=l i=l

and
n n

L (}IiXi'Yi + L f3iYi'Yi = 0
i=l i=l

n n

=? L oaq +L f3i = 0
i=l i=l

n n

= cuq + f3i = 0 (Taking L (}Ii= (}Iiand L f3i = f3i)
i=l i=l

from which it follows that
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Hence,

Qi = 0, and thus {3i = 0, i = 1, ... ,17,.

Therefore,

is a linearly independent set in H.

Remark 3.3.2.3:

Observe that when 17, = 1, the condition

(x, x) = (y,y) = el, (x, y) = qe,

is equivalent to the fact that x and yare unit vectors of Hilbert space H

such that

(x, y) = q.

Moreover.

tr(Tx, y) = (Tx, y)

So the set pW;(T) is the q-numerical range Wq(T) 'iT E B(H).

Remark 3.3.2.4:

The condition

(x, x) = (y, y) = p

obviously implies

(x - px, x·- px) = (y - py, y - py) = ° i.e x = px and y = py.

59



So we have

(Tx, y) = p(Tx, y)p.

Furthermore, for every 7] .L Hn we get

(Tx, y)7] = p(Tx, Y)]YI7 = o.

Therefore, (Tx, y) can be regarded as an operator acting on the n-dimensional

space H«.

Remark 3.3.2.5:

The definition of the set pW;(T) does not depend on the choice of the

rank n projection p E K(H). Hence the set pW;(T) can be written as

W;(T), and when n=l, then we have W;(T), which is the q-numerical

range Wq(T) of the operator T E B(H).

Lemma 3.3.2.6:

For any q E C with Iql ~. 1, p E K(H) the rank n projection, then there

exist x, y E H such that

(x, x) = (y, y) = p, (x, y) = qp

and by the definition of pW;(T), it implies that pW;(T) i= 0.

Proof:

Let {Ul, ... , un} be an orthonormal set of the Hilbert space H. We define
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Then we get

= ijq(Ui, uj)+ijVl - IqI2(Ui, un+j)+Vl - IqI2q(Un+i, Uj)+(1-lqI2)(un+i, un+j)

= Iql2bi,.i + (1 - IqI2)bi,.i = bi,j i = 1, ... ,n.

Also we have

(Ui,Vj) = (Ui,fiUj + V1-lqI2un+j)

= q(Ui' Uj) + \11 - \q\2(Ui' Un+j) = ;bi,j [or i = 1, ... ,n.

Thus we obtain

and analogously

Moreover,

Then

x = Xl + ... + Xn = Xi

and

Y = Yl + ... + Yn = Yi
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are desired vectors, implying that the set pW;(T) is non-empty for all

T E B(H).

We now prove our main result which is due to Rajna [12].

Theorem 3.3.2.7:

Let T be an operator in B (H). Then

Wq(T) = {tr(CU*TU): U is unitary}

where C, a k-tuple of complex numbers is regarded as a linear operator

acting on anorthonormal basis {Zl, ... zn} of an n-dimensional subspace

of H such that

CZi = qz; i = 1... ,ti

Proof.

Given a unitary operator

U: H --t H,

we define

Since {U Zl, ... , Uzn} is an orthonormal set in H, arguing as in the proof

of lemma 3.3.2.6, we obtain that
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Let us put

:.r: = Xl + ... + Xn = Xi

and

Y = Yi + ... + Yn = Yi·

Then we have

(X, x) = (y, y) = p, (x, y) = qp.

Also it holds that

ec:,c:iY= ec:,c:i(YI + ... +Yn) = ec:,c:iYi = e~,C:i(ijec:i,c:UZi + VI-lqI2ec:i,c:UZn+i)

= ijeU z; + VI - Iql2eU Zn+i = ijU Zi + VI - Iql2U Zn+i for i = 1, ... , n.

(3.26)

In particular,

so we get

On the other hand, we have
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Therefore

Notice that

C*Zi = ijZi + VI - Iql2Zn+i i = 1, ,n

C*Zi = 0 i = n + 1, , 2n.

So by (3.25), (3.26) and (3.27) we obtain that

n n

tr(CU*TU) = L (U*TUzi,C*Zi) = L (TUzi,UC*Zi)
i=l i=l

=t (TU Zi, U (ijZi + VI - IqI2Zn+i))
i=l

n n

= q L (TU Zi, U Zi) +L (TeC;,cix, ec;,ciY- ijec;,c;iX)
i=l i=l

n n

=L (TeC;,c;ix,ec;,ciY) =L (Teix, eiY)
i=l i=l

= tr (t, (Te,x, e,y) ei) = Lr (t,(Teix, eiY))

= tr (t, e,(Tx, y)ei) = tT (p(Tx, y)p)

= tr(Tx, y) = (Tx, y)

which reduces to the q-numerical range (by remarks 3.3.2.3 and 3.3.2.5).

Conversely, let x, Y E H satisfy

(x, x) = (y, y) = p and (x, y) = qp.
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Suppose first that Iql < 1. Define a linear operator

U: Yn-+H

by its action on the basis {Zl ... zn} :

1
UZn+i = J1- Iql2 (ec,ciY - qec,cix) for i = 1, ... .ti.

It is easy to check that the operator U is a well-defined isometry.

That is, for i,j = 1, ... ,n, we have

which implies

and

Also, for i, j = 1, ... ,n it holds that
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So

UZn+i E H

and

Furthermore

1
1_lqI2eC,ci (qp - qp) ecj,c = 0 for i,j = 1, ... , n:

Hence

(UZi,UZn+j)=O fori,j=l, ... ,n.

Therefore, U is an isometry and can be extended to a unitary operator

U: H -+ H.

Finally, since (3.25) (3.26) and (3.27) are also valid, the same calculation

as before shows that

tr(CU*TU) ~ tr(Tx,y) = (Tx,y).
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Now, suppose that Iql = 1, then we have

C*Zi = qz;

C*Zi = 0

fori = 1, ,n.

for i = 1+ n, , 2n.

Define a linear operator

U:Yn-----+H

on the orthonormal basis {Zl, ... zn} by putting

U Zi = ec,cix for i = 1, ... ,n.

It is clear that U is a well-defined isometry and can be extended to a

unitary operator

U:H-----+H.

Let us put

Thus we have

and analogously

Moreover,
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So we deduce that Xi, Yi are unit vectors of the Hilbert space H such that

(Xi,Yi) = q, for i = 1, ... .ri.

Also, since

it follows that

But

from which it follows that

Y = PY = YI + ... + Yn = q (Xi + ... Xn) = qpx = q«.

Thus we get

n n

tr(CU*TU) = L (U*TUzi,C*Zi) = L (TUzi,U(qZi))

n n .

= L (Tec,ciX, qec,ciX) = L (Tec,ciX, ec,ciY)
i

~t (Tei",e;y)dT (t (Teix,eiY)Ci)

c tr (~(TeiX' e;y)) ~ tr ( ~ ei(Tx, Y)Ci) ~ ir (P(Tx, y)p)

= tr(Tx, y) = (Tx, y)
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and by remarks (3.3.2.3), and (3.3.2.5) this set reduces to the q-numerical

range Wq(T) of an operator T E B(H).

Corollary 3.3.2.8: Let H be a Hilbert space of finite dimension.

Denote by {eJ a fixed orthonormal basis of H. For q E C, Iql ::; 1, and

C, a k-tuple of complex numbers representing a matrix with respect to

the basis {el' ... ,en} . Then the set

Wc(T) = tr(CU*TU) for T E B(H)

can also be defined as:

Proof:

Given t E Wc(T), there is a unitary U E B(H) such that

n n

t = tr(CU*TU) = 2:,(U*TUei' C*ei! = 2:,(TUei' UC*ei)'
i

Let us put

Yi = UC*ei' i,j = 1, ... .n.

Then we have

n

t = L(TXi' Yi! (Xi, Xj) = (Yi, Yj) = 6i,j and (Xi, Yi! = q6i,j.
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Conversely, suppose that

n

If Iql< 1, define

In the case Iql= 1, let us put

Uei=Xi, i=l, ... ,n.

Then U is a well-defined isometry on the subspace of H and can be

extended to a unitary operator U E B(H). Thereby,

t = tr(CU*TU).

We observe that when n = 1, then

vVc(T) = (Tx, y)

which is the q-numerical range of an operator T E B(H) and hence Wc(T)

is a generalization of the q-numerical range.

This concludes our assertion that TVc (T) is a generalization of both W (T) -

and Wc(T).
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Chapter 4

CONCLUSION

4.1 Concluding remarks.

The study of numerical range and its generalization has been a motivation

to many mathematicians. In our study, we considered numerical ranges

in a complex Hilbert space. We investigated the properties q-numerical

range,whereby, we established that the properties for the classical numer-

ical range in section (1.2.1) are also true for the q-numerical range. We

also established that the q-numerical range is contained in the algebra q-

numerical range but the reverse inclusion does not hold. Furthermore, we

showed that the results of the classical numerical range and q-numerical

range can be extended to the C-numerical range and that the C-numerical

range is an explicit generalization of both the classical numerical range

and q-numerical range.

It is our hope that the study will activate interest in posterity among stu-

dents. For future research, efforts can be directed towards generalization

of the numerical ranges on other Banach spaces apart from the Hilbert

space.
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