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ABSTRACT

spite the rapid development of statistical packages, a lot of climatic data still remain

ed due to lack of specialized routines in most of the packages. One package has a
¢ menu though with limitation on complex analysis such as gener‘a—vlized linear models.
can perform the Generalized Linear Model analysis but do not have a specialized menu
alyzing climatic data. There is no statistical package currently available which has a
alized capability to do climatic analysis easily and inciudes the use of generalized linear
. This study starts the work of creating a specialized menu in GenStat for analyzing
atic data by implementing Markov modeling of rainfall data. Four procedures have been
v:n and corresponding dialogues were created to ease their use. Incorporating a climatic
| into GenStat package will support researchers in agricultural and many other fields that

an analysis of climatic data as part of their work. -
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CHAPTER 1: INTRODUCTION

1.1: Background information

Recent developments in statistical software have simplified the etire process of data
manipulation and analysis. This permits the analysis of large and complicated data sets.
Climatic data has been routinely collected in many locations for many years, but a lot of this
data remains unanalyzed. In the past, climatic analysis was often left to specialists due to
complexities of the data, such as the strong within and between year variability. The advances
in the software bring routine analysis of climatic data within reach of non-specialists. This is
important due to the current worldwide interest in climate particularly climate change.

Lack of climatic data analysis has made it difficult to understand the difference
between climate change and natural climatic variability. Statistical analysis is therefore
important as it aims at “identifying the systematic behavior in the data set and also searching
for periodic variation, a quasi-periodic variation, a trend, persistence or extreme events in the
climate element under analysis” [2]. This will enhance the understanding of whether there is a
climate change or climatic variability within a given time frame.

Although a number of statistical packages have the capability to analyze complex
statistical problems, most of them do not have specialized routines for analyzing climatic data.
Instat was introduced in the early 1980s as a simple statistics package to help in the teaching
of statistics. It was later improved by adding more components with particular interest for
processing climatic data [21]. It is the only available package specialized for analyzing

climatic data.

The analysis of climatic data is easier and user friendly in Instat due to its additional
Climatic Menu. Through this menu, most of the climatic analysis can be done e.g. summaries,
analysis of events and Markov modeling of rainfall data, 'etc‘ Though Instat has the ability to
‘ analyze climatic data, it does not include the facilities, such as generalized linear models
(GLMs), needed for a full analysis of climatic data. GenStat on the other hand is a powerful
package which can handle complex GLM. It is a general statistics package that offers a wide

‘rénge of high-quality statistical techniques and graphics.
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GenStat has a flexible working environment'where data can be analyzed using a
user-friendly menu-based interface and a powerful command language from which you can
create your own command procedures to perform the analyses. The command language
permits the user to write his/her own programs that can cover situationsk where the standard
analysis does not give them what they require. “So any GenStat analysis“”can be used in the
construction of a new technique.” [15]. Despite the command language, most users are still
reluctant in using it.

It is possible to analyze climatic data using GenStat even though it does not have the
climate menu as in Instat [6]. Curremly., the climatic data analysis using GenStat is currently
only possible if you know and understand the direction to take for the solution. This requires
more understanding for users who might want to use the package to analyze their climatic data
[6]. The existing GenStat commands and procedures can be used to construct other
procedures, to simplify their use and make them easily available to most users; in addition, the
procedures can be used to form their corresponding menu and dialogues. A climatic menu can
therefore be added to GenStat package to make it easier for many users to do their work
without having to master the command language.

This study is aimed at starting the implementation of a climatic menu into the
GenStat package which will be able to handle high order Markov Chains to be used in
modeling rainfall. Chapter 2 of this report discusses the analysis of rainfall data using Instat
and Marksim with particular interest on Markov modeling. The extensive use of the GenStat
command language and its dialogue/menu interface is discussed in chapter 3. Chapter 4
describes how rainfall data is prepared for fitting in Instat and how the same is implemented
in GenStat using the existing and the newly developed procedures. Markov modeling of
climatic data and how it is implemented in GenStat is then discussed in chapter five. Finally

chapter six discusses how the GenStat procedures are used in a real and large climatic dataset.



1.2: Basic Concepts
1.2.1: The Generalized Linear Model

The Generalized Linear Model (GLM) was introduced by [14]. It is an extension of |
the General Linear Model to include response variables that follow any probability
distribution in the exponential family e.g. Byinomial, Poisson, Multinomial, Gamma, Negative
Binomial etc. It may be used where the response variable neither follows a Normal
distribution nor have homogonous variances [15]. Comparing GLM and Multiple regression
models (a form of general linear model) makes its features seen more clearly [19]. The

expression below can be used to define General linear models:

p
yi=ﬁ0i+zﬁjixji + €; (L'=1,...,n andE(El)=O)
j=1

(I-)

These set of n equations can be written in the form of a compact model as shown

below.
Y=Xp +e€

(1-2)

where

a) Y is a vector of response variable and is a standard linear model meeting the

Gauss-Markov condition and can be expressed as shown in equation 1-3.
EY)=0=Xf

(1-3)

b) isthe matrix explanatory variable (Covariate),

c) B isa vector of unknown parameters (where § are estimated by solving the least-
square equations(1-4) and € is a vector of unobservable of errors corresponding to
the observation.

XXB=XY
(1-4)
The approach used by [14] was to describe any given model in ferms of its link

function and its variance function. The variance function describes the relationship between
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the mean and the variance of the dependent variable to allow for a proper calculation of the
- variance under non-normal conditions while the link function describes the non-linear
f' relationship between the mean of the dependent variable and the linear right hand side.

GLMs are used for regression modeling for non-normal data. Suppose we generalize
equation (1-3) with a linear predictor based on the mean of the outcome variable, then the

- function g(u) will be called the link function.

gw) =60 =Xp
(1-5)
The link function can be inverted as shown in equation (1-6)
u=g"1XB)
(1-6)

If y; is binomially distributed with mean u then the link function is logit as derived
by [14] and expressed as:

90) = log || = x5

(1-7)

- Then p can be expressed as:
' _exp(6)
E=1 exp (0)
(1-8)
1.2.2: Markov Chain

A Markov Chain is a time ordered probabilistic process consisting of a finite number
i of states and some known probabilities p;j, where p;; is the probability of moving from state
ito state j [10]. That is, the probability at some point of time T being in a certain state is
conditioned on the states of the previous time, where the number of previous periods is termed

‘ as the order of the Chain. A Markov Chain is useful for analyzing events whose likelihood

depends on what happened last.




1.2.3: The Markov Chain of first order

In the first-order Markov Chain, the current state is dependent solely on the state of

e immediate previous period and the chance that a process is in state j at time T given that it

- was in state { at time T — 1 is represented by transitional probability P;; which is expressed as

3 follows

Pij,r = PT(XT :jIXT—l = i)

(1-9)
P;; can be estimated as shown below [16]:
qij . .
P;; = : i,j =0,1,2,3,..C
DY I
(1-10)

Where  qj; = historical frequency of transition from state i to state j and

£ =the lnaximUIn number of states
1.2.4: High Order Markov Chain

A Markov Chain of order A is referred to as high order Markov Chain if A greater
: thanl. The probability that on time T will have a particular state depends on the states of the
jl previous time T — A. For example the Markov Chains of order 2 and 3 satisfy the conditions in
equation (1-11) and (1-12) respectively.
1‘ P iz =Pr(X; = jlX;1 = i1, Xey =iz, 0, Xo = lo)

= Pr(X; = j|X; = 1, Xr g = ip)

(1-11)

Where P, is the transition probability of state j in time 7, given state i; in time

2.41),T
" 7—1 and state i, in time T — 2
p; =Pr(X, = jiX,q = i1, X3 = by By = )

3.02,01),T

= Pr(Xr :leT—l = il'XT'—Z = iZ'XT——B = 1-3)

(1-12)
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The equation (1-11) hean that it doesn’t matter what stat the da;/ T—3,T—4,and so
] ; you are referring to order 2.

E Modeling a high order Markov Chain leads to a high-dimensional space of
rar weters [22]. A higher order Markov Chain say of order 2 with two states will have four
eters, order 3 will have eight parameters order 4 will have sixteen k‘paramete:rs and order
have 2} parameters. Increasing the number of states increases the number of parameter
ach order. Such models may not be accurate in situation where there may be no sufficient
ata to estimate them. However, the papers [12] and [22] suggest that the high dimension of

meters can be reduced in such situations.
2.5: Modeling Rainfall data using Markov Chain

Since the work by [4] proposed Markov Chain for modeling the sequence of wet and
days, it gained popularity in representing daily precipitation occurrence processes [13].
has been contributed by the flexibility of the Markov Chain model and the ease of
stimating the parameters and obtaining the fitted model without resorting to simulation [19].

The occurrence of a wet state in day t is dependent of what state that occurred in the
ious day’s t-1, t-2, t-3.... The random variable X, represents the occurrence or non-
occurrence of rain on day T such that

X = {0 if day tisdry
T 1lifdayTtiswet

(1-13)
- 1.2.6: Fitting a first order Markov Model to rainfall data

The first order model assumes that the probability of rain occurring on any day
pends only on whether it did or did not rain on the previous day. To fit this model, the
i;;)arameter for transition probability p;, is estimated over the year [18]. The P;, is the
;"‘r‘obability of rain in day 7 given state { (fori = 0,1 ) in day T — 1. The estimate of p;, is
glven by ;. [19] which is the proportion of years with state i in their day T — 1 that had rain

i
in thelr day 7. The r;; is expressed as shown in equation (1-14).

nll‘l.’

ri,r =
N1 T Nor

(1-14)




where

n;17 1s the number of years with rain on day ©

Mo r is the number of years with no rain on day 7

The random variable n; ; takes a binomial distribution with the probability of success

;"being pir and(n;; ; + nyg ;) is the number of trials. Therefore the model used is
Piz = 9(6ir)
(1-15)
where g(.) is a logit link function connecting the probabilities p; . to the function

_‘Bir which is a linear unknown parameters [19]. The model is a generalized linear model since

binomial is a member of the exponential family [14]. Pi is therefore expressed as

= exp (gir)
P T exp (6)

(1-16)

The work by [19] suggested that Fourier analysis may be used to express 6;; as shown

below:
Bir = ajo + Z[a”‘ sin(kt") + b;,cos (kt")]
k=1

(1-17)

here ' = 2n7/366 and m is the number of harmonics

3: Statement of the problem

Markov Chain models have been in existence in the past to describe rainfall
‘j_ currence data [18]. Several advances are made in improving the Markov model fitting to
:»"a"infall data for example; the use of higher order Markov Chains [19] and finding a suitable
arkov order [1]. However little has been done to make the modeling of rainfall data using
arkov Chains accessible to users of statistical packages.

A powerful statistical package with specialized routine for analyzing climatic data is

needed to handle such models. The introduction of Instat package was meant to simplify the
’7 -
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3 modeling of rainfall datavliand make it accessible to user though it cannot handle complex

analyses like the Generalized Linear Models.

GenStat is another powerful package with the capability of climatic data analysis [6]
but it doesn’t have a climatic menu. Despite its potential and availability of a guide for
- climatic analyses, it is still not easy to use it for climatic analysis due to lack of a specialized
climatic menu.

1.4: Objective of the study

Analysis in GenStat can be done through the command language if it cannot be
achieved through dialogues and menus. It is possible to build the commands into a procedure
that can perform a particular task. These procedures can then be used to develop special

menus and dialogues. The main objective of this study is to start the implementation of an

extension of the Instat climatic menu into the GenStat package through creating procedures,
then developing them into menus. ‘
The specific objectives are;
e Create a set of procedures in GenStat to support Markov Chain modeling of
rainfall data. ;
e To add a menu and dialogs for each procedure to facilitate their use.

e Demonstrate the use of these procedures by analyzing daily rainfall data for
Katumani, Kenya.

~ 1.5: Significance of the study

Simplifying daily rainfall data analysis will enable more researchers to be able to do
the analysis and hence include it in their work. Non specialists will have an opportunity to
perform simple climatic analysis on their data without necessarily consulting the data
specialists. This is intended to encourage more researchers to utilize climatic data in their
 research. The Markov modeling analysis will incorporate the Generalized Linear Model that is
readily available in GenStat. This new facility will permit the comprehensive analysis of daily

rainfall data to easily produce quality reports.




w

' Chapter 2: Literature review

~ The study on the sequence of daily rainfall occurrence was started by [4]. They
assumed that the probability of rainfall on any day depended only on whether the previous day‘
was wet or dry, that is whether rainfall did or did not occur. Given the event on the previous
day, then, the probability of rainfall is assumed independent of events (;f further preceding
days. They classified days as wet or dry according to whether there had ’or had not been
recorded at least 0.lmm of precipitation in the 24-hour from 8.00 a.m. to 8.00 a.m. the
following day. They found that the daily rainfall occurrence for the Tel Aviv data was
successfully fitted with the first-order stationary Markov Chain model. The model parameters
were the two conditional probabilities:

p1 =p(Wet day/previous.day wet )
2-1)
po = p(Wet day/previous day dry)
(2-2)
Given the Markov Chain and estimates of its two basic probabilities, they derived
various properties of rainfall occurrence patterns. These included probabilities of rainfall i

days after a wet or dry day. A wet spell of length k& was defined as a sequence of £ wet days

preceded and followed by dry days. Dry spells were defined correspondingly. Weather

- cycles were defined as combinations of a wet spell and an adjacent dry spell. The distribution

of spell lengths was found to be geometric. They then derived probabilities of a wet spell of
length £ and dry spell of lengthm, probability of a weather cycle of n days and the
- probability of exactly s wet days among n following a wet day. For large #, the distribution
- of the number of wet days tends to normality. The fit of the model was tested on data of daily
| rainfall in Tel Aviv [4] for the 27 rainy seasons 1923/24 — 1949/50. Chi-square tests of
goodness of fit showed no significant deviations from the actual observations on rainfall so
the model was said to hold.

» | Rainfall usually occurs in seasons of various lengths. They did not have any further
coefficients of periodicity, persistence or any other parameters. The model was not suggested

in terms of actual rainfall occurrence but as a statistical description of the observations. In

9
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their paper [11], they repOrted that the first order of t};e Markov Chain model was found to fit
the observed data in Italy successfully. This model was based on the assumption that there
was a dependency of the daily rainfall occurrence to that of the previous day.

In the analysis of Samaru, Nigeria rainfall [17], he modeled thc\ occurrence of rainfall
as a first order Markov Chain. The probability of rainfall was not constant within each period
of interest instead the probability of rainfall is a function of the time of the year. At the
beginning and end of the season, the probability of rain is greater, if there was rain on the
previous day, than if the previous day was dry. In the middle of the season, the probability of
rain appears to be approximately the same irrespective of the state of the previous day. A
linear logistic model was fitted to the data. However, to estimate the transition probabilities
>in the Markov Chain model, lots of data is required hence statistical software to-ease the
analysis.

A climatic Guide [21] described the use of Instat Software to analyze climatic data.
The guide explained step by step how to analyze most of the element of climate. This
; simplifies the analysis of climatic data due its existing dialogue and menus specialized for
- analyzing climatic data. However there are instances when it is not sufficient. For example,
1 situation where higher order Markov modeling tof more than order 2) is required, Instat
cannot achieve. Alternative software to Instat is Marksim which is based on a
~ stochastic weather generator and uses a third-order Markov process to model daily weather
' data [8].
| The widely used stochastic model in rainfall modeling is the GLM [3] due to the
~ stochastic nature of rainfall [13] this has not been achieved in Instat. GenStat software is a
~ more powerful tool because it can be used to perform the more complex analysis of data
- especially the GLM. GenStat climatic Guide [5] describes how GenStat software can be used

~ to analyze climatic data.

10
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CHAPTER 3: FITTING MARKOV CHAIN MODELS USING INSTAT
AND MARKSIM

- 3.1: Introduction
d {

Markov models are fitted for rainfall data collected from Katu(r;{ani Experimental
:‘Research Station in Kenya (longitude-1°35'S, Longitude-37°14'E , Altitude-1600mm) for the
lyears 1961-2001 (41 years). The data is already available in the Instat library, and is used to
;':ﬁt a zero, first and second order Markov models using Instat package. The same data will be
‘;simulated using MarkSim software whiéh also fits a third order Markov model to the data.
:The two packages (Instat and MarkSim) are used to establish the appropriate order of the

- Markov model of rainfall data for Katumani Experimental Research Station. -

,3.2: Instat.

Instat package has a specialized menu for Markov modeling of rainfall data. Using
the Climatic Menu in Ihstat, Markov modeling sub menu involves three stages. These are;

data preparation, fitting the model and using the model. Figure 1 below shows the “Climatic

=> Markov Modeling” Menu in Instat.

Stage 1: Data Preparation

Stage 2: Fit the Model

. Stage 2: Use the fitted Model

Figure 1: Markov Modeling Menu
';3'.2.1: Data preparation

The data preparation stage summarizes the rainfall data into counts and totals for the
- model ﬁtting. The Menu “Climatic => Markov Modeling => Counts/Totals” (Figure 1) is
Psed It is possible to model a zero, first and second order Markov Chains for rainfall

occurrences in Instat. When the zero option is selected in the ‘Order for Count” section, it

11




L

~ calculates the total number bf wet and dry days for each day of the year (two variables only;
1 dry and wet), first order calculates the number of days with a specific state given the state in
the previous day (four variables i.e. ‘ww’,’wd’, ‘dw’ and ‘dd’) while second order calculates
- number of days with a specific state given the state in the two previou§ days (eight variables
Le. ‘www’, ‘wwd’, ‘wdw’, ‘dww’, 'ddw’, ‘dwd’,wdd’, ‘ddd’). Figuré‘? is a dialog box in
Instat that is used to generate the counts/totals. (We illustrate thése stages with a zero order

- Markov model)

| Counts and Totals from Daily Data

ﬂmce% %
Figure 2 Counts/Totals Dialogue box
'I'hc result for count is displayed in the spreadsheet (Figure 3) for order zero. Remember the
sult did not display the amount of rainfall since the radio button none for amount was

selected as shown in Figure 2.

&8 Current Worksheet - Katumani.wor

ol B ENTRINT

12
Figure 3: Counts of rainy days of order zero.

The column X42 is renamed as 'dry' and X43 as 'rain'. They contain the number of
occasions, in the 41 years, that each day is dry or rainy. For example, 8 years out of 41years
had rainfall on day 5 (5™ January), while, only 6 out of 41 years received rainfall on the 1%

12
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~ January. From the counts, the chance of rainfall on a particular day can be calculated, for

1 ] - . .6 8
- example using the result in Figure 3, the chance of rain on 1** January. is 7 on 2" January.a,

: 10 —_ , ;
-~ on 3" January 77 cte These probabilities are calculated using the Menu “Climate => Markov

. Modeling => Prepare”. The dialog (Figure 4) has the option of calculating the summary of

rainfall counts and amounts on a daily basis or otherwise.

- Day numbers into
[x44 -
Sl;imm'ary.éf rainfall counts and amounts -

G Leave o daily basis

" Summarise Summary of rainfall counts and amounts—

" Leave on daiy basis

i |

:_o‘t:.in5 ﬁ-.fdggitotals .’

Figure 4: Prepare Dialogue Box |

The Prepare dialogue box sets up the columns needed to fit the models (Figure 5) and

B

also produces a graph of the chance of rain (Graph .

rent Worksheet - Katumani.wor

= |Katumani Experimental Research Station - Daily Rainfall (mm) 1361-2001 Lat Lon
3 52 X53

: it dst. o1 2 c dsd s ]

| 01463415 3124425 02 -0.3398527 (0.0343276. 0.3334106 147876E-02° -0.9986741 861474E-02, 0.9976432 -0.0857305 -0.9963183
| 01%51213 3107258, -0.0343276 -0.9334106 861474E-02 0.9376432 -0.102821 -0.9946939 01369061  0.990584: -0.1708297 -0.9853005
| 02433024 3030091 147876E-02 -0.9986741 0.102821 09346399 -0.1538906 -0.9380879 0.2045521 0.9788557 -0.2546712 -0.9670277
| 01707317 3072924 861474E-02, -0.9976432 0.1363061 0.930584 -0.2045521 -0.9788557 0.2712333) 09625134 -0.3366373 -0.9416344
| 01951219 3055757 -0.0857305 -0.9963183 01708297 0.9853005 -0.2546711 -0.9670277 03366373 0.9416344 -0.4161247 -0.9093075
| 02526829 303859 0102821 09946393 02045521 09738557 0.3041148 0.9526354 04004533 0.9163163 -0.432548 -0.8702653
02433024 3021422 -01193812 0.9327833 02380333 0.971257 -0.3527521 0.9357168 0.462383 (0.8866803 -0.5653447 -0.8248548
| 01707317 3004255 0.1363061 -0.990584 02712339 09625134 04004539 -0.9163163 05221326 08528643 06339785 -0.7733507
N1N7117. .2 937NRAR: .N1RIARANA: N GRANRTA: N ANAT14A] NARZRIRAL .NAATNAA! N AAAARTT: NRTAA?11: N RIRN?R4: .NR7]442: .N TIRTIR??

Figure 5: Probability of rainy day or order zero

The columns set in Figure 5 above X45 shows the probability of rain while X46-X56

- shows the figures that are used for fitting the curve.

13
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Overall chance of rain

; mﬂ/\\ W\N\f’\

25 50 75 100 125 150 175 200 250 275 300 325 350
Day of the Year

Graph 1: Overall Chance of rain
- 3.2.2: Fitting the model

The second stage of Markov modeling is fitting the Markov model to the rainfall
- data. It uses the model probabilities dialogue which is obtained through, “Markov Modeling
i  => Model Probabilities” menu which opens fitting the probabilities dialoge box (Figure 6)
_ This produces the fitted probabilities, which are given in a column called 'f_t' (Figure 7) and a

curve of the fitted probabilities, Graph 2

Fitting the probabilities of rain

Help Cancel |

Figure 6: Fitting Probability Dialogue box

14




 0.2314891 -05335322
0.2225461 -1.020109
0.2138521 -0.9957734
02054263 02795608
01972812 05144213
01894324 -0.1340795
0.1818388

0.174658

Figure 7: Fitted Probabilities of order zero.

Rainfall data is cilic in nature that is the 31st of december continues to 1st of january

the following year. There sin and cosine functions are used as indicated in table 5 to compute

";the fitted values in table 7

Fitted Probability

i

i H  § T i i i 1 5 i i i i H
25 50 75 100 125 150 175 200 225 250 275 300 325 350
Day of the Year

Graph 2: Fitted Probability curve

'.2.3: First Order Markov Model for rainfall occurrences

Instat has the ability to fit Markov' Chains for counts of up to order two to rainfall
data. A first order Markov Chain is modeled by using the dialogue box for Count/Totals is
shown below (Figure 8).

15
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e 28 5 5 3
79 .28 .. & 5 4
T 27 5 5 4
e 26 4 B 5
8 23 3 7 2
e 24 5 8 4
84 20 4 3 8
85 2 3 2 11
oc il b 2 d in

Figure 9: Counts of rainy days of order one.

The probability of rainfall are computed using the prepare dialogue and the results

obtained are give in columns (Figure 10) and a plot is produced (Graph 5)

16
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.4 167 01616766 04736842
R 143 02097302 62 05645161
® 0w 0w w1 0251048 71 043077
,,,,,,,,,, 7S N L N N . 134 0.2014325 71 05915433
% M0 2 93 117 - 0.2564103 8 07045454
ks €5 T 104 122 0.2868652 8 0578313
W W ® M3 1% 0222022 70 05142857
BEE 7 I 114 128 02890625 77 05714286
& 1 3 119 133 0.2481203 72 0472222

Figure 10: Prob.abilily of rainy days of order one

The computation of the probabilities given in Figure 10 is done based on 5 days
totals . Date 79 contains the totals for date 77 to date 81 i.e., 27 in rd column is computed by
Iadding all the rd’s from date 77 to date 81. Hence P_rd= (rd / _d)=27/167 =0.161.

First Order and overall chance of rain

¥ -p.rd
¥ opr
09+ |¥ pr

/\\ 22
AN

1\
i

Tt :
S A N Lo d
Nt M N TSR
Lk N g :

Vi
Wt

0 4 6

T ; T T T T T = T T T T T T
- 80 100 léO 140 160 180 200 220 240 260 280 300 320 340 360

Date
Graph 3: Probability curves for order two

The ‘Fitting the probability’ dialog box is used as shown in Figure 11 is used to fit

17
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Figure 11: Fitting probabilities dialogue box for order one

First-order probabilities

=1 rd

T T T T T T T T T T T T T T T T T 7
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Date : :

Graph 4: Fitted Probabilities for rainfall of order one

4: Second Order Markov Model for rainfall occurrences

To prepare data for second order Markov Chain model, then ‘second-Order of Count’
i0 -button is selected from the ‘Count and Total from Daily Data’ dialogue box. The results
second order gives 8 columns for counts namely ‘ddd’, ‘ddr’, ‘drd’, *drr’, ‘rdd’, ‘rdr’,
vd’, ‘rrr’ (Figure 12). It is pointed out that out of 41 years, 26 years had a dry day on 3™

uary given dry on 2™ January given dry on 1% January being (thick lined circle on Figure

18
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Figure 12: Counts of rainy days of order two.

The probability of rainfall are computed using the prepare dialogue and the results
-~ obtained are give in columns ‘p_rdd’, ‘p rdr’, ‘p_rrd’, ‘P_rrr’ (Figure 13) and a plot
_;’produced (Graph 5)

55

1428

0.06896552

0 7 4
01851852 7 01428571 2 05 4
0.1034483 4 0.25 6 08333333 2
0.06836552 2 0 4 0.5 3
0.05896552 5 02 2 0.5 5
0275806 2 0 3 06666667 5
0.07692308 3 (0.66BE667 7 04285714 5
004 6 (0.1666667 4 05 6

0.06896552 5 06 2 0 5
0.06896552 5 0.2 5 0.2 2 1

Figure 13: Probability of rainy days of order two

The results for 2nd order Markov Chain plots two sets of curves; the 1st order and 2nd
brde-r probability curves. The curves in Graph 5 do not have clear distinctions and therefore do

“not present the probabilities well.
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Graph 5: Probability curves fo}f order two
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The fitted model of order two is now obtained by using ‘Fitting Probability dialog
box shown in Figure 14. The order of probabilities option to be used at this stage is ‘Second (4

‘curves)’ if you want all the curves for rain given the conditions of the two previous days

~ Order of prebabilities ——————
| ¢ o ¢ Fist @

Sliese

Car ii:nle:-city af iritial rmodel ;’T j;j! harmarics

Caneel

Figure 14: Fitting probabilities diﬁlogue box for order two with four curves
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Graph 6 shows the fitted probabilities of order two. There is no clear distinction
 between frrrandf rrd.

Second-order Fitted probabilities

i
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Graph 6: Fitted Probabilities for rainfall of order two with four curves

When there is no clear distinction between f rrr and f rrd, Instat has an option to

~model them together by the first order probability / rr. This option can be seen in the dialog
“b'ox in Figure 15 as the choice of ‘second order with three curves’. This phenomenon is quite

‘common in rainfall data where a rain event seems to “clear the memory” of what happened

‘previously. The fitted probabilities are shown in Graph 7.

B —

~ (Order of probabilities

|
;w iy ¥ R o Second * gé.é~é6‘ﬁ"dmm§ v T
% { Zeod Fust ¢ [4 curves) 3 {3 curves}

Complesity of nitial model ﬁ“ﬁ harmorics
Help | Cancel | ak

Figure 15: Fitting probabilities dialogue box for order two with three curves
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‘Graph 7: Fitted Probabilities for rainfall of order two with three curves
The current version of Instat the Markov command is limited to second-order
Markov Chains, however rainfall data for some sites are better modeled using higher order

‘Markov Chains.

3.2.5: Modeling rainfall amounts.

Instat can also model rainfall amounts on rainy days. Modeling the amounts involves
the three stages as discussed in Section 3.2: Climatic => Markov Modeling => Counts/Totals

nu is used. In the Count and Total dialogue box we choose zero order for amount as shown

Figure 16 (circle in thick line).
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Figure 16: Count and totals dialogue box for rainfall amount of order zero

The result after clicking OK button will generate results with three columns; dry,

._ wet, tr and Ir (Figure 17). The ‘tr’ column indicates the total rainfall amount for the rainy days
- minus the total threshold values while the ‘Ir” column is the sum of logarithms of the rainfall

- minus the threshold. The two columns are computed using the equations (3-1) and (3-2)

tr, = ) (A —T)
G-1)

Ir, = In(4; —T)
| (3-2)

-year number.

35530

3 8 1167 193370
31 10 101 161043
34 7 78.85  13.0649
< 87.2 136700
‘2312 101 204840

Figure 17: Total rain amounts of order zero.
The dry and wet columns in the figure above give the number of years in which the

i

day of the year was dry or rainy. The mean amount of rain is obtained by dividing the total tr
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Where A, is the rainfall amount on day t and T is the threshold value and y is the
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Figure 18: Fitting rainfall amount for order zero
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Graph 8: Fitted mean rainfall amounts for order zero.

The fitted curve is as shown the Graph 8. The current version of Instat can only fit

arkov model up to order 1.
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3.3: MarkSim

3.3.1: Introduction

MarkSim is a computer tool that generates simulated data for crop modeling and risk
- assessment [8]. Rainfall in the MarkSim model is modeled based on thethird order Markov
~ Chain in two stages. The first stage is transitional probability té determine whether any
- particular day is wet. Since it is a third order Markov Chain, this wet day will depend on
‘[ whether there was any rainfall in the previous three days. The second stage of the MarkSim
3 model determines the amount of rainfall. When using MarkSim, a parameter file is created
~and then used to simulate daily climatic data.
MarkSim defines the probability of day i being wet as
P(W/ajaa3) = ¢ Y(b; + a;_1dy + a;_pd, + a;_3d;)
(3-3)

~ where:

?.:¢'1 is the inverse normal probability function (probit)

fbf, is the monthly baseline probit of a wet day following three consecutive dry days

ia,,, are binary coefficients of rain (1) or no rain (0) on a day

d,,, are lag constants

When estimating the mean and the shape parameters of the gamma distribution for
gach month, the method of maximum likelihood is used [9]. In the process of generating

&,infall records, the monthly baseline probabilities are interpolated to daily probabilities by

using 12 point Fourier transform.

3.3.2: The Parameter file

- The information that is required to create a parameter file is the longitude, latitude
and elevation of the site of interest. The longitude (1.58333 degrees), latitude (37.2333
'grees)‘ and elevation (1600 meters) for Katumani when entered, MarkSim will now create a

rameter file for the simulated data.
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Figure 19 shows the parameter file created from entering the longitude, latitude and

- elevation of Katumani into MarkSim.

1

1

Row= 214 Col=332 Record= 89792 Cluster= 139
KATUMANI Interpolated 1.583 37.233 1600

MONTH AY P BETA RAINDAYS SE
1 4.6 0.668 -1.279 0.141 0.32593
2 5.4 0.532 -1.111 0.201 0.30257
3 8.1 0.571 -1.018 0.253 0.29538
4 12.3 0419 -0.672 0.431 . 0.27587
5 6.3 0.496 -0.955 0.291 0.29761
6 4.4 0.654 -1.201 0.168 0.32214
7 5.0 0.561 -1.031 0.238 0.31086
3 4.5 0.615 -1.154 0.188 0.32291
9 4.5 0.637 -1.138 0.191 0.31696
10 6.5 0.577 -1.014 0.255 0.30324
11 ; 9.6 0.434 -0.695 0.418 0.28395
12 5.5 0.547 -0.987 0.274 0.30664

DI1-3 0.7610 0.1980 0.2150 NP= 2 Cluster 139 Phase 0.877

rain 21. 31. 67.142. 64. 22. 36. 26. 25. 55 114. 50.

temp 183190197 195190181175174 178186183179

rang 15.015913711.711912812212.113.813.512.1 124

radn 20.820520.119.820.519.918.117.719.020.2 19.7 19.9
Output CLX file written: KATUNANI

Figure 19: Parameter File for Katumani

3.3.3: The Baseline Probits and the Lag Parameters

‘The probability of rain given the state in the three previous days is calculated from

the parameter file using (3-3). The monthly baseline probit values show the probability of rain.

i

“given that it was dry in the three previous days as ¢ ~!(b;) i.e. when all a,, are 0. The baseline

- In a third-order model, eight different rainfall probabilities are considered, ‘ddd’,
" fdrr’ drd’, rrr’, ‘rrd’, ‘rdd’ and ‘rdr’, with r standing for a rainy day and d for a dry

. MarkSim has a third order model for each month, where the eight different probabilities
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are calculated using the 12 baseline probit (BETA) values and the three lag coefficients (D1-

3). MarkSim therefore uses just 15 parameters to calculate the 96 (12 times 8) probabilities of
rain. The probability of rain in January given that the three previous days were dry, rainy,

rainy, for example is

=10.1922.

L

<

P_t/drr = ¢~ 1(-1.279+(0)0.76 10+ (1)0.1980 + (1)0.2150) = @1 (—0.866)

The rest of the probabilities are calculated in a similar way and are listed (

P r/ddd | P v/ddr | P r/drr | P v/drd | P t/rry | P v/rrd | P_r/rdd | P_r/rdr

Jan 0.100 0.144 0.193 0.140 0.458 0.374 ' 0.302 0.381

Feb 0.133 0.185 0.243 0.181 0.525 0.440 0.363 0.446

Mar 0.154 YO.21 1 0.273 0.206 0.562 0.476 0.399 0;483

Apr 0.251 0.324 0.398 0.318 0.692 0.613 0.535 0.619

May 0.170 0.230 0.294 0.225 0.587 0.502 0.423 0.508

Jun 0.115 0.162 0.215 0.158 0.489 0.404 0.330 0.411

Jul 0.151 0.207 0.268 0.202 0557, 0.471 0.394 0.478

Aug 0.124 0.174 0.229 0.170 0.508 0.423 0.347 0.429

Sep 0.128 0.178 0.234 0.174 0.514 0.429 0.353 0.436

Oct 0.155 0.212 0.274 0.207 0.564 0.478 0.4_00 0.485

Nov | 0244 | 0316 | 0389 | 0310 | 0684 | 0604 | 0526 | 0611

Dec 0.162 0.220 0.283 0215 0.574 0.489 0.411 0.496

Table 2)

Months | ‘ddd’ ‘ddr’ ‘drr’ ‘drd’ ‘rric’ ‘rrd’ ‘rdd’ ‘rdr’
Jan | -1.279 -1.064 -0.866 -1.081 -0.105 -0.32 -0.518 -0.303
Feb -1.111 -0.896 -0.698 -0.913 0.063 -0.152 -0.35 -0.135
Mar -1.018 -0.803 -0.605 -0.82 0.156 -0.059 -0.257 -0.042
Apr -0.672 -0.457 -0.259 -0.474 0.502 0.287 0.089 0.304
May -0.955 -0.74 -0.542 -0.757 0.219 0.004 -0.194 0.021
Jun -1.201 -0.986 -0.788 -1.003 -0.027 -0.242 -0.44 -0.225
Jul -1.031 -0.816 -0.618 -0.833 0.143 -0.072 -0.27 -0.055
Aug -1.154 -0.939 -0.741 -0.956 0.02 -0.195 -0.393 -0.178
Sep -1.138 -0.923 -0.725 -0.94 0.036 -0.179 -0.377 -0.162
Oct -1.014 -0.799 -0.601 -0.816 0.16 -0.055 -0.253 -0.038
Nov -0.695 -0.48 -0.282 -0.497 0.479 0.264 0.066 0.281
Dec -0.987 -0.772 -0.574 -0.789 0.187 -0.028 -0.226 -0.011
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Table 1: Probit values for the twelve months

i ke i o |

N

After the probit values have been computed, their corresponding values of

robab

ility are then computed. This can be archived well using MS-Excel.

i

(

<

28




P r/ddd | P r/ddr | P r/drr | P r/drd | P_v/rrr | P r/rrd | P r/rdd | P_r/rdr
Jan 0.100 0.144 0.193 0.140 0.458 0.374 0.302 0.381
Feb 0.133 07185 0.243 0.181 0.525 0.440 0.363 0.446
Mar 0.154 0.211 0.273 0.206 0.562 0.476 .0.399 0.483
Apr 0.251 0.324 0.398 0.318 0.692 0.613 ‘()'.535 0.619
May 0.170 0.230 0.294 0.225 0.587 0.502 0.423 0.508
Jun 0.115 0.162 0:215 0.158 0.489 0.404 0.330 0.411
Jul 0.151 0.207 0.268 0.202 0.557 0.471 0.394 0.478
Aug 0.124 0.174 0.229 0.170 0.508 0.423 0.347 0.429
Sep 0.128 0.17‘8 0234 | 0.174 0.514 0.429 0.353 0.436
Oct 0.155 0.212 0.274 0.207 0.564 0.478 0.400 0.485

" Nov 0.244 0.316 0.389 0.310 0.684 0.604 0.526 0.611

Dec 0.162 0.220 0.283 0.215 0.574 0.489 0.411 0.496
Table 2: Probability values for the twelve months of Katumani Simulated data

: The value of the lag coefficient represents the extent of separation of the probit

- values which translates to the difference in the rainfall probabilities. For example, a large first
- lag coefficient value would represent a large difference between the probability of rain given
the previous day was rainy and the probability of rain given that the previous day was dry. A
| small lag coefficient would represent a small separation of the rainfall probabilities at that

| coefficient. A very small third lag coefficient would suggest that a second-order model would

~ be appropriate.

29




E. Probability of Rain

Jan - Feb Mar  Apr May  Jun Jul Aug  Sep Oct Nov  Dec
Months of the Year

Graph 9: The Eight Different Probabilities of Rain across the Year

1 Graph 9 plots the eight rainfall probabilities over the year. With the large D1 value of
- 0.5295 there are two distinct groups of probabilities. In the first group the previous day was
rainy and in the second group the previous day was dry. The probability of rain is higher when
v;_«the previous day was rainy. The eight curves on the probit scale would be exactly parallel with
differences in probabilities varying slightly through the yéar.

Basically, Marksim was designed as computer tool that generates simulated rainfall

‘data amongst other for crop modeling and risk assessment and to model a third order Markov

hain for the simulated rainfall data. The assumption of third order models for different sites

s not »practical to some sites and therefore Marksim models can only be used well for rainfall

data that require third order Markov Chain model. GenStat capability to model any order of

Markov Chains is utilized in this work to develop a special routine for doing the same.
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CHAPTER 4: GENSTAT COMMAND INTERFACE

- 4.1: Introduction

GenStat is a computer program for statistical analysis, witp all the facilities of a
general-purpose statistics package. It has a user friendly interface which“makes it easy to use
by selecting option from menus and dialogue Box. Apart from bbeing a collection of pre-
programmed commands for selecting from fixed options of available analyses, it has a flexible
command language which enables users to write their own commands and use them in
situations where the available commands cannot solve their problems.

This chapter describes the use of command language of GenStat including the

macros, procedures and how to create the menu and dialogs for the procedures.

4.2: Command language

GenStat’s own commands forms a language and is called GenStat Command
- Language. It is this command language that is used to create procedures and macros within
~ GenStat. The commands give you complete control over what is printed from analysis.
Whenever a dialogue box is completed,'and [OK] button pressed, GenStat itself
produces commands corresponding to the analysis process which are written in the Input Log
- and sent to the GenStat Server for processing. The results are sent to the output window once
~ the Server has processed the commands. If there were any error in the commands, then the
, description is sent to the Error Log, as well as to the Output window.

We use a sample data shown in Figure 20 to illustrate the command language.

Figure 20: Sample rainfall data
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To calculate the maximum and minimum rainfall per year ‘Start=> Summary
Statistics => Summaries of Groups (Variate)’ menu is used to obtain the dialogue box selected
as shown in Figure 21. The corresponding command for the analysis is generated in the input

log window shown in Figure 22.

YWeights:

™ Display table as percentage of
™ Set Margin

; T_I.Jpe of Summary
'i [~ Totals .

3“ No. obesewatl@ns v -
E Means ' ;\7 Maxlma :
l 7 Quantiles

TM Variances

Sl

é lnput Log

3 | TABULATE [PRINT=means,minima,maxima; CLASSIFICATION=YEAR; MARGINS=no] RAIN

Figure 22: Command corresponding to Summary by Groups Dialogue.
: The GenStat dialogues and menu make use of command without necessarily having
to type them. It is important to learn beyond GenStat menu and make use of its commands
~ since there are some facilities that are not available in the menu yet are in command. For
example a simple procedure that caiculate day lengths at any latitude and any day of the year
6] As a command it is called ‘daylength’, but there is no equivalent menu option. This
- command can be used to calculate the day leﬁgths through the command interface.

An example on how ‘daylength’ is used is shown in Figure 23
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B Input Window;1*

PRINT 'Example of how to use procedure DAYLENGTH!'

VARIATE Dayno; !(1...31):; DECIMALS=0

DAYLENGTH [LATITUDE=52.20S5] DAYNUMEER=Dayno:; DAYLENGTH=Davlength
CALCULATE Sunset = 12 + Daylength / 2 .
CALCULATE Sunrise = 12 - Daylength / 2
PRINT 'Sunrise and Sunset times for January at Wellesbourne, UK.'
PRINT Dayno,Sunrise, Sunset; DECIMALS=2

<

Figure 23: Example that uses Day length procedure

The user has an option of submitting these commands line by line or a group of lines

- or the whole window by using the ‘Run=>Submit line’, Run=>Submit Selection’ and

- Run=>Submit window’ menus respectively as shown in Figure 24. Once the window has been

- submitted, the result is displayed in the output window.

sta Spread  Graphics  Stats  Optio

Submit Line Ctrl+L
Submit to Current Line . Ctrl+5Shift+K .
. . 4 8 Output .
Submit from Current Line  Ckrl+Shift+M e o
Bl Selection Chre
it Window Chhew - Sunrise and Sunset times for January at Wellesbourne, UK
Recycle Window Ctrl+Shift+/ 34 PRINT Dayno, Sunrise, Sunset; DECIMALS=2
Submit Clipboard Ctr+K '
Dayno Sunrise Sunset
Submit File... Ctri+B 1.00 3.09 15.91
Submit R Script... 2200 8.087 15.93
; s s 3.00 §.08 15.94
Subrnit BUGS Script... . 55 e R
: 5.00 8.04 15.96
Restart Session e = o5 e o
Restart Server 7.00 8.01 15.99
Flush Server 8.00 7.99 16.01

Figure 24: Running the commancds
4.3: Compacting programs

Compacting programs in GenStat involves storing statements (commands) made by
users so that they can refer to them later or use them repeatedly. There are two ways of

{ compacting programs in GenStat namely: Macros and Procedures [15]

4.3.1: Procedures

When statements are compacted using Procedure, they must be self-contained, apart
- from those explicitly defined as options or parametér‘s of the procedure. That is, all the data
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- specifying options and parameters as required.

é’OCEDURE [restore=case] 'Counts'

B STATES' "(I: Scalar giving the nuaber of states of the chain) ™\
'LIMITS' , "({I: Scalar or wector giving the wvalues to determine the states) ™)
'ORDER' i "{I: Order of the Markowv Chain) ™
ECLASS' n *{I: Factor over which the data are to be totalled) ™
IR'HIGH' > "i{I: YES/MO indicating if high order, default is NO) ™)
'LABELS' , "{I: YES/MNO on whether to labhel the tablez of results, default is YES) ™
~ 'SPREAD' r "(I: YES/NO on whether to display the results in spreadsheecs) ™
RINITIAL' ; "{I: Scalar or variats - length =0RDER with initial valuesj™,

<

- structures that they use are accessible only within the procedure. Once you write programs for
- complicated tasks, GenStat allows you to keep them for future use. You may also wish to use

- procedures written by other people by simply giving the name of the procedure, and

N
When GenStat meets a statement with a name that it does not recognize as one of the

-~ standard GenStat directives, it first checks to see whether you have a procedure of that name

already stored in your program. Then it checks it up in any procedure library that you may

- have attached explicitly to your program, taking these in order of their channel numbers. After

locating the required procedure, GenStat reads it in, if necessary, and then executes Iit.

Information is transferred to and from a procedure only by means of its options and

parameters.

Below is a new procedure (Counts) which counts the number of dry and wet days on a

- given Markov Chain order. It also calculates the mean amount of rainfall of rainy days.

OPTION NAME= %

MODE=4 (P) ,3 (T) ,P; SET=3(yes),no,3{yes),no; DECLARED=8(yes):\
PRESENT=8 (yes) :\
DEFAULT=2, ! (0.85),1,%, 'NO','YES', 'HO', %;}
TYPE=!T('scalar'), !T('scalar', 'variate'), !T({'scalar'), !T(' factor'),}
3('T('text')),!'T('scalar', 'variate'];\
VALUE=#*, %, %, % 2 (!T('YES', 'HNO')),*,*

PARAMETER NAME= %

'DATA', "(I: wvector from which spell lengths ars to he formed” b

{COUNTS', "(0O: takles containing the frequencies) " %

'AMOUNTS', "{Q: table containing the swae of the amounts) ™)

'CATEGORIES', " (0: variate containing the category of each cbservation) ™Y
'SCOUNTS' ; "(Q: pointer to tables for fraquencies}fi

4

MODE=P; SET=yes,4(no); DECLARED=vyes,4(no); }
TYPE='T('variate'),2(!T{'table')), !T{'variate'), !T('pointer'}); \
PRESENT=yes, 4 (no)

Figure 25: Procedure Counts- sec |

The procedure ‘counts’ in Figure 25 can now be executed through the command
interface by referring to the procedure name. The command that makes use of the procedure

- name is as shown in Figure 26 below.
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COUNTS [order=2;states=2;class=Day0fYear; spread='YES':)\
high='yes'; lahels='yes';limits=!(0.2,0.5) ;%
INITIAL=!{0,0)]Rain;cat=c;counts=counts;a=amounts

Figure 26: Procedure Counts- sec 2
In the command above, the options are defined in the bracket‘s_v[] these are; order,
v states, class, spread, High, labels, limits. While the parameters are defined outside the
1 brackets, these are Rain, categories counts, amounts. The rules for using the procedure are

- identical. Using a procedure does not require the knowledge of how the program inside

- operates, what data structures it contains, nor what directives it uses so long as you specify

~the correct options and parameters [15].

4.3.2: Macros

A macro is created when GenStat program is placed into a text. Once a macro is
formed, you can use the macro to execute the program that is built within it by typing a pair of
hash characters ## followed by the macro name. An example of a macro is shown in the

- Figure 27

vtext[VALUES='COUNTE: [order=2;statez=3;class=Day0f¥ear; spread=YES; high=NO; \
4 labels=yes; limits=!(0.2,0.5) ; INITIALL="!(0,0) ] Rain;cat=c;counts=counts;a=smounts']trial
|#f trial )

Figure 27: Macro

The program shown in Figure 26 can be executed within a macro shown in the Figure

!27. First the command is defined within the single quotes (*’) of the text, then the macro is
“executed by running command line ##trial. The two method of compacting programs are

“made use of to built more complex commands.
4.4: Creating Menus and Dialogs

' GenStat allow its users to create their own menus for existing procedures. Any menu created is
'added in the main menu called user .Once the procedure is completed, they are saved with the
bxténsion .gpi, in a GenStat folder called AddIn found in C:\Program files\Genl 2ed\AddlIn. The codes
.are then run using Run=>Submit window mem;. The procedure is then added in the library using

Tools=>Procedure Library=>Build. [6]
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Commands for creating the menu are then created in a new input window. The layout and the

~ content structure are created using the GenStat resource language basic structure is described below.

DIALOG id, width, height

CAPTION fext ;

PROCEDURE fext ‘o
BEGIN

... dialogue control (layout and content instructicn

END

- DIALOG statement defines the id of the dialogue and its size of the dialogue box. CAPTION
statement specifies the title that will appear on the dialogue title. The PROCEDURE statement
 specifies the procedure that will be created in the dialogue. The BEGIN-END is a block of statement

that specifies the body structure of the Dialogue box. The file is then saved with extension .grc. [6]

The .grc file is then attached into GenStat. The layout of the commands used for attaching

‘~the.g1‘c file is described below.

[AddInX]
Type = DIALOG

ProgID = my dialogue id
MenuTitle = name in menu

ResourceFile = dialogue code.grc

The underlined text needs to be changed by the user. The command is also created in a new
input window then saved with extension .gad .

A sample of the dialogue box created in this study is shown in Figure 23. All the commands

and procedures are included in the appendix Ii1,IV,V and VI
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DIALOG dialogl, 240, 240
CAPTION "Counts and Totals from Daily Data™
PROCEDURE "ZOUNTS™
BEGIN
PUSHBUTTON "&Run®, IDRUN,20, 220, 45, 15,B5_RUN
PUSHBUTTON '"&Resec", IDCLEAR,95,220,45,15,B5_CLEAR
PUSHBUTTON "&Cancel”, IDCANCEL,160,220,45,15,B5_CANCEL
"PUSHBUTTON "&Default®, IDDEFAULT,Z10,180,30,15,B5 DEFAULTS"
LTEXT "sAvsilahle Data:",ITEXT,S5,5,55,10 ‘o
LISTBOX IDLIST,S,20,90,120,GW_AVAILABLE
LTEXT "&Data:™, ISTATIC, 115,5, 60,10
EDITTEXT DATA,115,15,80,14,GU_AVAILABLE | DT TYPVAR | GW_PARAM | EC_SET
LTEXT ”"&Class for totals:"”,ISTATIC,115,35,,55,10
EDITTEXT CLASS, 115,45,80,14,GWU_AVAILABLE | DT_TYPFAC | GW_OPT | EC_SET
LTEXT "&Type of Markowv:",ISTATIC,115,65,,60,10
COMBOBOX HIGH, 175,65,60,40,CB_DROPLIST | GW_OPT
SLIST HIGH, "Norwal", "High"
RLIST HIGH, "NO", "YE3" i
LTEXT "&Nuraber of States:",ISTATIC,115,90,,60,10
EDITTEXT STATES,215,90,20,11, GW_OPT
LTEXT "&Threshold Vealues:'",ISTATIC, 115,105, , 60,10
EDITTEXT LIMITS,200,105,35,11, GW_OPT .
LTEXT "sInitial WValue:",ISTATIC,115,120,,60,10
EDITTEXT INITIAL,200,120,35,11, GW_OPT
LTEXT "&Markovw Chain Order:"™,ISTATIC,115,135,,80,10
EDITTEXT ORDER,215,135,20,11, GW_OPT
GROUPBOX "Save result in", IDSTATIC, 40, 150, 170, 40
TOGGLEBOX "imount', a, 55, 165, 40, 14,GU_PARAHM, "awount”, "HO"
TOGGLEBOX "Counts”, counts, 110, 165, 40, 14,GW_PARAM, "counts™, "NO"
TOGGLEBOX "Class", cat, 155, 165, 40, 14,GW_PARAHN, "=", "NO"
TOGGLEBOX "Display in 3preadsh=ec”, SPREAD, 100, 200, 90, 14,GW_OPT, "YE3", "NO’

END

Figure 28: A .grc file for creating Counts and Amount Daily data menu

AddInl]

Type=DILLOG

ProgID=dialogl

MenuTitle=Counts and Toctals from Daily Data
ResourceFile=counts.gro '

Figure 29: 4 .gad file for attaching dialogue command
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CHAPTER 5: MARKOV MODELING OF CLIMATIC DATA IN
GENSTAT

5.1: Introduction

The potentials of GenStat are exploited to provide routines thgpcan analyze rainfall
data using Markov model and make it accessible to users. The First stage involves preparing
the data for fitting; the second stage involves fitting the Markov model for the rainfall. Four
procedures are  written  which  includes; COUNT, PREPARE, FITTING,

AMOUNTFITTING. These procedures are all shown in the appendix III, [V, V and VI

The COUNT procedure was written to read the raw data fed by the user and
summarizes it by counting the number of rainy days for each day of the number of the years
the data is given. It also calculates the amount of rain in the rainy days. The result of the
summaries is then tabulated ready for calculation of the probabilities and fitting. The
: PREPARE procedure designed to calculates the probability of rain, the FITTING procedure,
~fits the probability of rain while AMOUNTFITTING fits the amount of rainfali. This chapter

- provides the documentation of what the procedures. that are newly created do.
5.2: COUNT Procedure

COUNT procedure was first written by Roger Stern (unpublished) but in form of
macros. This macro was redesigned to procedure for its use in making the menus. It identifies
the state condition on each day then TABULATE directive is used to summarize the frequency

- of each day of the year possessing a specific state over the number of years the data is given.
5.2.1:  Options for COUNT Procedure

States — This is a scalar value that defines the number of states, i.e. 2, 3, 4 etc. A state
is determined by the amount of the rainfall below or above a specified threshoid. The number

- of state equals the number of limits (threshold) values plus one.

Limits — This is a scalar or a variate that is used to determine the limit of a state, the
~ default value of limit is 0.85. If a day received rainfall amount that is less than this value

VIV'I(O.SS), then the day is referred to as a dry day, otherwise it will be a wet day.
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Order-Itis a scalar-value that defines the nuhber of order the Markov model will use

to model the data. The values range from zero onwards

Class — It is a factor with 366 values over which the data is to be summed. It

corresponds the period that you want that you will use to define the annual seasonality.

<

High — It specifies whether the Markov order is high or normal as explained in section

1.2.4: of this thesis.

Labels —Specifies whether or not the table of the counts will have labels or not (the

default is ‘yes’)

Spread — It is a string specifying whether or not to display the result of counts and

~ amount in a spreadsheet (the default is ‘yes’).

Initial — It is a scalar or variate that assigns initial value to days before the first data of
 the data. It is applicable to Markov of order one and above. The initial values are specified to

, avoid missing data for days before the first day.

Table — It is a string specifying whether or not to display the result of counts and

amount in a table structure (the default is ‘yes’).
5.2.2: Parameters for Count Procedure

Data- It is an input vector parameter of rainfall data. The rainfall data is given as one

variate for all the years.
Counts- It is an output table parameter containing the sum of the frequencies
Amounts — [t is an output table containing the sum of the amounts
Categories- An output variate parameter containing the category of each observation
Scounts - An output pointer parameter to tables' for frequencies
5.2.3:  Description of Count Procedure

The COUNTS procedure counts the number of times a day of the year haviﬁg a

- specific state-condition for the number of years and also calculates the rainfall amounts for

f rainy days. Amount of rainfall is defined as the actual amount of rainfall recorded minus the
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~ threshold value. That is, if the threshold is 0.85mm and in a specific day, it was recorded that

- the rainfall was 2mm, then the rainfall amount is 1.15mm.

The frequencies of the days with the same state conditions are organized in a table
using TABULATE directive with columns representing the state condition e.g. dry, wet, dd,
dw, ddd, dww, etc while the rows indicate factor levels for example day number of the year
totaling to 366 days (see a sample in Figure 32 (b)). The amounts of rainfall are also summed

over the rainy days. This is further illustrated in the Figure 30

below. Using the sample data set in Figure 30 (a), the resulted tables that are created

when the COUNTS procedure is run with order 1 and threshold of 0.85 are shown in Figure 30

(b)

& V3
iz (bayor) rain HIFT =
; 8 1 a & 7 e
| 1 2 sl :

2 E e
- 1 3 7| - 1| 1| 1| of=
= | 1y 4] of 2| 1| of 1| 2

s 1 5 o]
: 2 i = 3 : g [ 1] 2
- T af 2| 1| of 1
8] 2| 3 > s| 1| 1| 2] o=
‘ 2 1 1 =
27| : £
2 5 o R
3 1 0 & o =
3 2 of
3 3 o -
3 4 o
3 5 5 &g
4 1 o]
4 2 6| b
4 3 o *
s 4 0 5.3 _
4 5 2| v | P " =t
e i <! b
(a) (b)

Figure 30: 4 sample rainfall data and results of count procedures.

Considering a state condition with wet given wet for day 2, i.e. there are only 2 days

that satisfy this condition. The two days had‘ rainfall recorded as 4mm and 6mm. the rainfall
amount recorded in the amount table is 8.3 (4mm+6mm-2(0.85mm).
The rainfall amount of a given day of the year with specific state, is calculated using
he equation (3-1) and (3-2). |
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The results of the count procedure are given in a table structure with the number of
columns determined by the order of the model.

The table of counts and amounts may be displayed in a spreadsheet by declaring
SPREAD=yes. The initial record for rain can be set using the option of INITIAL. The number
of values in INITIAL variate must be equal to the ORDER value. )

5.3: PREPARE Procedure

: The PREPARE procedure converts the input structures (counts and amounts tables)
- to variates by making use of VTABLE Procedure [7], this enable manipulation of the result in

each columns of the table.
5.3.1:  Options for PREPARE procedure
Plot-Specifies whether or not to plot the results, the default is YES

_ Spread- Specifies whether or not to display the results in spreadsheets, the default is
YES
5.3.2:  Parameter for Prepare procedure
The parameters that are used in the PREPARE prdcedure are;
Counts - This is an input table containing the frequencies, it corresponds to the count
~ table resulting from the COUNT procedure

Amounts — This is an input table containing the amounts of rainfall. It correspond to

the amount table resulted from the COUNT procedure described above.

5.3.3:  Description of Prepare Procedure

The PREPARE procedure reads data from the results created in COUNTS procedure;
these are counts and amounts. The input structures are converted into variate  then the

probabilities are calculated by applying the fomula below.

Pijg .. = —Cflk‘_ i,j,k=123,..,C
i=1 fijk .

(3-1)
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Where

C= maximum number of states

Pyji .. = The probability of the present state is i given that the state in the previous day
is j and day before yesterday is £ and so on up to the number of ordeﬁ&lf order zero is used
L then we refer to P;, for order one ( P;; ), for order two ( Py ) and so on.

fiji .. - The number of days that posses the condition that the present state is / given
1 that the state in the previous day is j and day before yesterday is k and so on up to the number
of order

, ¥, fiji .- The total number of days with the previous day having state j and the day
, '.before the having state & regardless of the state in the present day.

| The probabilities may be saved, displayed in the spreadsheet when SPREAD=yes or
t plotted by the DGRAPH directive when PLOT=yes. The high order Markov can be obtained
- when HIGH=yes which is only applicable when ORDER > 2. The order value used in the

" COUNTS procedure must be maintained in PREPARE procedure

5.4: FITTING command procedures.

Fitting Procedure converts the counts and amounts table into variate using Vtable
procedure [7]. The variates are then used to fit the probabilities of rain. The result may be

displayed in a graph or saved.
5.4.1: Options for FITTING procedure

‘ Harmonics- It is a scalar to represent the number of harmonic required for the model
) fitting, default is 3

~ Spread- Specifies whether or not to display the results in spreadsheets, the default is

5.4.2: Parameter for FITTING procedure

5 The parameters that are used in the FITTING procedure are;

Counts -Tables containing the frequencies, it correspond to the count table resulted

from the count procedure
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Amounts — This is an input table containing the amounts of rainfall. It correspond to

the amount table resulted from the count procedure described above.
5.4.3: Description of Fitting Procedure

The FITTING parameter is set to read data structure of type table. (Counts and
amounts tables from COUNTS procedure). The input structures are converted into variate then
fitted. The variates forms the Y values while the dayNo factor is assigned to the X-values

when plotting the fitted parameters.

5.5: AMOUNTFITTING command procedures

AMOUNTFITTING Procedure converts the counts and amounts table into variate
using VTABLE procedure [7]. The variates are then used to fit the amounts of rain. The result

may be displayed in a graph or not.

5.5.1: Options for AMOUNTFITTING procedure

Harmonics- It is a scalar to represent the number of harmonic required for the model
fitting, default is 3
Spread- Specifies whether or not to display the results in spreadsheets, the default is

- NO
5.5.2: Parameter for FittingAmount procedure

The parameters that are used in the AMOUNTFITTING procedure are;

Counts -Tables containing the frequencies, it correspond to the count table resulted
from the count procedure

Amounts — This is an input table containing the amounts of rainfall. It correspond to

';the amount table resulted from the count procedure described above.
5.5.3: Description of FittingAmount Procedure

The AMOUNTFITTING parameters are set to read data structure of type table. (counts
and amounts tables from COUNTS procedure). The input structures are converted into variate
then fitted. The variates forms the Y values while the dayNo factor is assigned to the X-values

when plotting the fitted amounts.
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CHAPTER 6: RESULTS AND DISCUSSION

6.1: Application of the model te Katumani Data

This chapter discusses how the newly developed procedures are used in all the
aspects of the options specified. The daily rainfall data collected from 1961- 2001 at
Katumani Experiments research Station in Kenya is used to test the procedure. The data is
| imported from Instat library into GenStat through excel. Alternatively it can be exported to
GenStat from Instat window.

- 6.2: Description of the data

The data is for rainfall recorded in mm for 41 years, the columns represents the years

while the row represent the day of the year running from 1 to 366. Part of the screen shot

showing the data set in GenStat is in the Appendix I. There are 10 leap years and 31 non-leap
- years. The maximum of maximum annual rainfall was received in 1963 (186.9 mm) while the
minimum of maximum annual rainfall was received in 1987 (26.7 mm) (see Appendix II).

6.3: Organizing the data

The counts procedure reads only two variates; Rain and a factor column over which
the count is to be done i.e. day of the year, months of the year, weeks of the year etc. In this
text the factor DayOfYear is used. The data is stalked such that the variate Rain is in one
column for all the days and DayOfYear in one column for all the years. The Spread=>
Manipulate=> Stalk menu is used to achieve this. The ‘Stalk Column in Sheet’ dialogue box
is filled as shown in Figure 31. The number of columns in this case will be the number of
years (see Appendix I). The stalked déta is shown in Figure 32.

The factor column is changed to a variate by just right clicking the year column then
choosing Convert to variate option. This result will now show the level values of the column.
The Spread => Calculate => Fill menu is used to fill the year’s values as shown in Figure
33. This is important for the calculation of the DayOfYear. The stalked data with year variate

is shown in Figure 34.
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Stack Culumns in Sheet' KATUMANI GSH -

lYear
Stack Columns: Repeat Columns: &

1: Y1961
1: Y1362
1: Y1363
1:Y1364 :
1: %1365 _—
1: Y1966

111967
1
1
1
1
1
1

1 Y1968
1:Y1969

- Y1970
=Y13971
11972
Y1973

e Create umque Column names.

V' Use names from First stacked column for Factcu\L bels

oK - Cancel ' Clear j - Help

Figure 31: Stalk column dialogue box »

Figure 32: Stalked data
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Increment:

Number of Fepeats:

2001

Figure 34: Year in variate

Create two columns, day of the months and month of the year as shown in the Figure
35. The three columns (day, month and year) are used to calculate the date unless data is

~entered with date format. Using Spread=>Calculate=> column, (Figure 36) the date column
is calculated (See Figure 37).




Wi wulanja|lw|lw| N

-
=3

-
[

=
N

13|Jan 1961

Figure 35: Data with day, };z-énth and year

;.. Calculate
(DayOfMonth.Month;Year)

rM«aInees »
™ Tables

I Printin Output

Save Result In: !

¥ Display In Spreadshest: {New Data:b _'_J

[ ok | cocel | cear | oDetars | optins. |  Hep |
Figure 36: Calculate dialogue box for date

Spreadsheet [new.gsh]*

21/02/61

1961 o0
1961 0| 22/02/61
1961 0| 23/02/61
1961 o| 24/02/61
1961 0| 25/02/61
1961 0| 26/02/61 **%% GSYOO01 **** Yarning (Code CA 63). Statement 1 on Line 2495
1961 of 27702761 Command: CALCULATE Date=DATE (DayOfHonth;Honth: Year)
Error in arguments for DATE function
1961 2| 28/02/61 Invalid day and month number: 29th February is not present in the year 1961,
1961 * * which is not a leap year

1961 0| 01/03/61
1961 0| 02/03/61
1961 0| 03/03/61
1961 0| 04/03/61
1961 0| 05/03/61
1961 0| 06/03/61
1961 0| 07/03/61

Figure 37: Date column calculated but with a fault message

47




C

The date column is calculated though a fault message is shown, which states that
29th Feb of a non-leap year is invalid, hence no date is created on the 29" Feb. To avoid this
fault, the invalid day is eliminated before calculating the dates. To eliminate the invalid data
(29th Feb of a non-leap year), you can just delete the rows which are invalid.

Column for DayOfYear is calculated using MFRACTION (Dalté; 1; 1). This always
gives 1st March as day 61 in the year instead of NDAYINYEAR (Date; 1) which gives st

March as the 61st day in a leap year, but 60th day in other years.

The data set ready for the analysis is shown in Figure 38. The dayofyear with the 1*
march (61* day) highlited.

‘ i Spreadsheet [new.gsh]®

15/02761
16/02/61
17702761
18/02/61
19/02/61
20702761
21702761
22/02/61
23/02/61
24/02/61
25/02/61
26402761
27/02/61
28/02/61
01/03/61
02/03/61
03/03/61

P S ' »

Figure 38: Dai set with ‘DafY “and ‘Rain’ column rea

6.4: The User Menu

The four climatic menus corresponding to the procedures are created under the user
menu in GenStat. Through this menu the procedures can now be accessed and used (Figure
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39). Choosing User=> Count and Totals from daily Data will open count dialogue box

(Figure 42) which correspond to the COUNT Procedure

Counts and Totals from Daily Data
Probability of Rain

Fitting Probabilities

Fitting Amounts

| Counts and Totals frem Daily Data

Ayfail::lﬁlg Data: Data:

Class for totals:

Initial Value:

v Markov Chain Order:
- Specify the names of the tables
- Counts

Figure 40: Count and Totals from daily Data dialogue box

The field for ‘data’ receives the rainfall data and must be set. The ‘class for totals’
specifies the factor over which the data for counts will be totaled. This can either be the month
of the year; day of year etc. ‘Type of Markov’ field specifies the type of Markov Chain to
model, either normal or high. The fields ‘number of statés’, ‘threshold value’, ‘initial value’

and ‘Markov Chain order’, when left blank will use the defaults values.

6.5: Two- State Markov Chain modeling

! In a two- State Markov Chain, the stétes are dry and wet; the threshold value is only
one marking the boundary of the two states. Using the default value of threshold option

- (0.85mm), any value of rainfall greater than 0.85mm is the state of rain while less than or
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equal to 0.85 is the state of dry. This section discusses Markov Chain modeling of order zero

and one.

6.5.1: Order zero

L

<

When modeling a normal two-state zero order Markov Chain, T.e. the chance of an
event occurring in day 7 without considering the event that occurred in the previous day(s),
the User => Count and Totals from daily Data menu is used to obtain the Count and Totals

from daily Data dialogue box and then filled as shown below.

Counts and Totals from Daily Data

- Threshold Yalues: i

Initial Value: } o
Markov Chain Order. 10

Reset

Figure 41: Dialogue box for Counts and totals from Daily Data (Order Zero)

The result gives the count and amounts based on order zero (Figure 42 and Figure

43).

Figure 42: Couns of riny days (order zero)
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Figure 43: aiall amounts (order zero)
A PREPARE procedure is then used to calculate the chance of rainfall for order zero.
The User => Prepare menu is used to load the Prepare dialog and the option and parameter

set as shown in figure below.

Probability of rain

AQaiIéiaIe-:TaBle:

{Amount

« x| A | Cancel_|
Figure 44: Dialogue box for Prob'dlk)bilityof rain (Ora’er Zero)
The results of probability are displayed on a spreadsheet (Figure 45) and a plot of the

probabilities (Graph 10) is displayed.

preadshee paded D P
0.853659(0.146341 |4

2|0.804878[0.195122
3[0.756098|0.243902||
4/0.829268[0.170732}|
5(0.804878|0.195122]|
6l0.707317/0. 2926831

Figure 45: Probabilities of rainy.day forn; GenStat (order zero)

51



Overall Chance ofRain
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Graph 10: Probabilities of order zero (GenStat)

The graph indicates that Katumani has two seasons of rainfall, these are long rains
(April-May) and short rains (November). The chance of rain during the short rain p‘eriod is
- higher compared to that of long rain period. The same results were depicted when Instat
- software was used (refer to section 3.2.2:). The day number can be grouped into 5-days totals,
~ week’s totals or monthly. To obtain weekly totals, the user will have to create a factor column

of week number and use it instead of the DayOfYear (Figure 46). The count totaled in 7 days

- (weekly) gives a clearer graph (see Graph 11).
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- 1961 1|Jan 01/01/61 1 0 52|~

1961 2[Jan 02/01/61 2 0 o
1961 3[Jan 03/01/61 3 0 1
] 1961 4[Jan 04/01/61 1 o] _ 1
- 5| 191 5(Jan 05/01/61 5 0 1
4] 191 6/Jan 0601761 6 0 1
2] 1961 71Jan 07/01/61 7 0 1
| 1961 8[Jan 08/01/61 8 0 1

5| 1961 9|Jan 09/01/61 9 0 2l

- 1961 10|Jan 10/01/61 10 0 2} |

Ly a1 11l lan 14046 & IS

Figure 46: Dataset withy week number created (Order Zero)

Overall Chance ofrain per week
05 _|
04 |
03 _|
02 |
01 _|
0.0 _|
| I [ | T |
0 10 20 30 40 50
Week nunber

Graph 11: Overall chance of weekly rainfall of order zero (GenStat)
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The fitted probability is obtained using User=>Fitting probability of rain menu

which loads ‘Fitting Probabilities of rain’ dialogue box associated to the FITTING procedure.

The options for the procedure are set as; Harmonics=3(Figure 46)

Flttmg Probabilities of rain

Aval[abfe Tak‘

Amounl Enter Counts Here:

Counts

i Counts

Number of Hamonics:
13
I~ Plot fltted vilis .

_JJ_J e

Figure 47: Dialogue box for fitting Probabzltty of rain (Order Zero)

Clicking run button displays the fitted model on a graph (Graph 11) and the
regression output shown below starting with harmonic of order 2.

Regression analysis

Response variate: w
Binomial totals: tot
Distribution: Binomial
Link function: Logit
Weight variate: tots

Fitted terms:

Constant, half hamonic(1], half hamonic([2],
half hamonic[3],

half hamonic[4]

Summary of analysis

mean deviance approx
Source d.f. | deviance deviance ratio chi pr
Regression 4 1917.8 479.451 479.45 <00
Residual 361 542.5 1.503
Total 365 2460.3 6.741
Change =il =119:4 £19:364 10936 <.001

Table 3: Summary of analysis of fitted probability of rain for 0-order with 2

The data have a binomial distribution with logit link function. These are the two
aspects required to characterize a generalized linear model (GLM). Instead of sum of squares,
the deviances are obtained when fitting a GLM. The deviance ration in table 3 is given as

479.45 meaning it is regression mean deviance divide by 1 not 1.503. this is so because the

tre_,sidual for binomial is 1
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Estimates of parameters

Parameter estimate s.e. £(*) t pr. antilog of
estimate
Constant -1.9904 0.0336 -59.15 <.001 0.1366
half hamonic([1l] Sin[1] 0.7023 0.0390 17.99 <.001 2.018
half hamonic[2] cos[1] 1.2007 0.0468 25.65 k(5.001 3. 323
half hamonic (3] Sin([2] =1 52589 0.0411 -30.60 <.001 0.2840
half hamonic([4] cos[2] =0 ..3816 0. 0355 -10.76 <.001 0.6828
Table 4: Estimate of parameters of fitted probability of rain for 0-order with 2
Accumulated analysis of deviance
Change dE s deviance mean deviance approx
deviance ratio chi pr
+ half hamonic (1] Sin[1] 1 93.386 93.386 93.39 <. 001
+ half hamonic(2] cos (1] 1 535.478 5351498 535.48 <.001
+ half hamonic([3] Sin(2] 1 1169.576 1169.576 1169.58 <.001
+ half hamonic([4] cos (2] 1 119.364 119.364 119.36 <.001

Residual 361 542.511 1.503
Total 365 2460.315 6.741

- Table 5: Accumulated analysis of deviance of fitted probability of rain for 0-order with 2 harmonics

In table 5 above, shows that adding the harmonic of order 2 is significant. When

~ harmonic of order 3 is added the results below is obtained.

' Change 6 i deviance mean deviance approx
deviance ratio chi pr

+ half hamonic[1] Sani[ 1] 1 93.386 93.386 93.39 <.001

+ half hamonic[2] cos[1] 1 535.478 535.478 535.48 <.001

+ half hamonic[3] Sin[2] 1 1369156 MM 16915576 1769.. 58 « <.001

+ half hamonic([4] cos (2] ik 119.364 119 .364 119.36 <.001

+ half hamonic([5] Sin[3] i 131.654 1343654 181265 <001

~+ half hamonic([6] cos (3] 1 1.028 1,028 1.03 0.311
Residual 359 409.829 151472

Rrotal 365 2460.315 614l

Table 6: Accumulated analysis of deviance of fitted probability of rain for 0-order with 3 harmonics

Fitting the probability of order zero with harmonics of order three is not significant
since cos[3] > 0.05. Therefore harmonic of order two is applied and the fitted plot is now

“drawn and shown in Graph 12.
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Fitted Probabilities (Zero Order)
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Graph 12: Fitted Probabilities of order zero (GenStat)

6.5.2: Order one

A two-state Markov Chain of order one is modeled for the chance of a state in a day
given the state condition in the previous day. The dialogue box for counts is filled with the
order option equal to one with the rest of the fields the same as in order zero discussed above.
The results for counts and amounts for order | are displayed in a spreadsheet as shown in
Figure 48. (Note: 0,1,2,3 used as column header of ‘counts’ table corresponds to the states dd,

~ dw,wd,ww respectively)

P D d Ho i b ¥ £
@ o7 o2 4 =8 4 m 174 2
1 29] 4| 8| 2} Il ‘ - 88.1| 286
30 29 2| 4| 6 20.3| 807

Figure 48AF irst ;r:der coum‘s aﬁcé ;aina'all amounts

i The number of times it was dry on o January given that on 1st January was also dry
are 29 out of 41. The value 29 is below dd on day 2. On the same row under wd, the 6 means
that the number of times it was wet on 2™ January given that lst January was also dry are 6
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out of 41. The amount table the columns are only two (wd and ww) which contain the amounts
of rain given the previous state. On days with no rain in the present state their amounts are no
calculated. i.e. on day 13" January, there was no day with rain given that the previous day was

dry hence the corresponding amount is not calculated. ¢
The probabilities of rain given the state in the previous day calculabted by PREPARE

procedure is shown in Figure 49 and the corresponding plot for the probabilities (Graph 13)

i

0.0689655|0.

0.171429
0.121212
0.0645161
0.0882353|0.
0.212121
0.137931
0.0645161
0.147059
0.0882353
0.0571429
0.114286
0

» n n7gaa74/n 23121
Figure 49: Chance of rain given the state in the previous day

The values in the table are probabilities of rain given the state in the previous day.

For example, the probability of rain on the 1% January given that it was dry in the previous day

i50.06897
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Graph 13: Probabilities of rain for order one (GenStat)

When the probabilities are plotted for each day, it is overcrowded and understanding
the distinction of the curves can be hard. As before there are solutions for this to give better
curves by first grouping the days into 5-day totals and then >plot the results (GraphA 14), or 10
day, weekly and monthly totals or get the fitted probabilities (Graph 15).
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Graph 15: Fitted Probabilities of order one (GenStat)
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6.6: Higher order two- state Markov Chain Modeling

The higher order two-state Markov Chain in this context would mean modeling
Markov Chain of order two and above with reduced number of parameters. We will discuss
(
the results for order 2, 3, 4 and 5. o

6.6.1: Order Two Normal Markov Model
The Markov Chain of order 2 can be modeled for high or normal types of Markov
Chain. The normal order Markov is obtained when the count dialogue box is filled as shown

below.

Counts and Totals from Daily Data

I

Threshold Values: | ; ]

Initial Value: T e
Markoy Cﬁain Ord_ér: 32
- Specify the names of the tables -

Amounts C°“nt§ [ Display in Spreadsheet

—

X  [Ee] o |
Figure 50: Dialogue box for Count (Normal Markov Chain of Order Two)
The fitted probabilities for order two are plotted in Graph 16. There is a clear

~ distinction between the curves when it is dry on the previous day and when it is wet in the
previous day during the rainy seasons. This is not the case in the dry seasons where there is no

clear distinction between the curves.
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Graph 16: Fitted Probabilities of rain for order two (Normal Markov)

6.6.2: Order Two High Markov Model

Considering a high Markov Chain model for order 2, the www and wwd curves are

combined to ww. The dialogue box for counts used to obtain a high Markov Chain of order 2

is filled as shown in Figure 51
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Counts and Totals from Daily Data

lDéyO!Yeat ¢

]High V}
Number of States: ]
Thieshold Values: | L

Initial Value: ] :

& M’arkw\Chain Qrdec, I'z A

Counts

g Ahounts |

j "Amount iCounls

F—__i

Figure 51: Dzalogue box for Count (Hzgh orderMarkov Chain of Order Two)

The results for counts are displayed in a table format called count while the amounts

table is displayed in the amounts table.

 : g il " Dre d ap ;. = able 7

of 4 7| of 27 £ : 17 HTA 2
1| 2| 4] 6] 22 ' 56.9] 31.1] 286
1| o] 2| 326 | 19.9] 04| 807

o 5| 5| 2|27 - 10| | e78

1| 5| 2| 427 138 115 618

of 5] 3| 2[2af : 458 | 5541

2 6| 6| 1|2} ' 266 99| 37.2

1| 5| 5| 5] 24 51.9] 34| 596)

3l 2l sl 2l 27l 7661 543

Flgure 52: Counts and amounts for 2 J -hzgh order Markov Chain(table structure)

The corresponding variate for table is shown in the figure below. The variate table is
obtained when you choose ‘Spreadsheet’ option in the Probability of rain dialogue box. The

column headers for counts correspond to the column headers in Figure 53.
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Figure 53: Counts for 2™ _high order Markov Chain (vartate Structure)
The probability of rain for each day calculated from the counts is also displayed in

the spreadsheet when the Probability of rain dialogue box is executed (see fig 51).

*

0.0689655
0.185185

0.142857
0.103448 0.25

0.0689655 0 .
Figure 54: Probability of rain for 2" -high order Markov Chain.

The probability of rain in January 1* given that it was dry in the last two days is
0.06896, while the probability that it rained on January 1* given that it rained in the previous
day is 0.3636. The last column in table 54 (P_ww) is used in place of having P www and

P_wwd, which are almost the same when fitted. The fitted probability model is shown in the

Graph 17.
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Fitted Probabilities of order 2 (HighOrder)

06 |
0.5 _|
04 |
S
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0.0 . _|
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Day Nurber
F_w2d v dayNo
F_dw v dayNo
F_w v dayNo

Graph 17: Fitted Probabilities of order two-High Order (GenStat)

The fitted probability of rain is high above the probability of dry given rain and that

of the probability of wet given two drys in the previous.

6.6.3: Normal and High Markov models for order three and four

The fitted normal and high Markov Chain model for order three are shown in the
Graph 18. The fitted model indicates that there is no distinction between the groups of curves

when the previous day was dry.
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Graph 18: Fitted Probabilities of normal Markov Chain of order three.
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Fitted Probabilities oforder 3 (High Makorv nodel)
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Graph 19: Fitted Probabilities of high Markov Chain of order three.

All the curves in Graph 19 are distinct to each other during the rainy seasons. Using

higher orders breaks the distinctions as shown for order 4 (Graph 20) and order 5 (Graph 21)
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~ Fitted Probabilities oforder 4 (High markov nodel)
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Graph 20: Fitted Probabilities of high Markov Chain of order four.

6.6.4: Order five

Order five for a normal Markov will result in so many parameters (64) which might
not be significant in Markov modeling. A high order Markov will reduce this number to 10

parameters only. The result obtained for Katumani data is as shown below.
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Figure 55: Counts of rainy days for High Markov Chain of order 5

6.5 4

calculated with ‘HIGH’ Markov property

7.2

Figure 56: Amount of rainfall for High Markov Chain of order 5

The number of times that January 1st received rainfall given that the 5 previous days

were dry was 2 out of 40 with amount being 4.8mm. The probabilities in Table 57 are
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The probability of rain given five previous days dry is 0.1333.

‘ _wddw | Fwd daw !

ﬂ 0.133333 0 0 *1 0.363636 i s
2 0.15 0.5 * 0.142857| 0.333333 %

2l nnsor21el a2 «| 0 1acRR7 n 2% n 7s1l

Figure 57: Probability of rain for High Markov Chain of order 5



-

¢

Fitted Probabilities of Order 5 (HighOrder)
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Graph 21: Fitted Probabilities of high Markov Chain of order five.

In graph 19, the chance of rain given rain is distinct and high from the other models
while the probability of rain given longer dry spell is very low compared to other Chains. The
fitted model for rain given that the previous day being dry, has a lot of interactions during dry
seasons implying that there is less variations in the number of wet days given dry and less
interaction during the wet seasons implying that there is high variation the number of wet

days given dry in the previous day. In a nutshell, during the wet season, there seems to be a
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clear difference between the numbers of wet days in a month depending on whether it was wet
or dry the previous day.

6.7: Markov Chain with Initial data

N
When the initial data is missing, the first day count will be missing if the model

requires the condition of the previous state. The initial values are set to give a memory of the
previous day before the first day the data starts. The number of values of initial must be equal

to the Markov order. A two-state Markov of order one and two is used to demonstrate this.

6.7.1: Order one

In a Ist order Markov Chain, only one initial value is needed. The dialogue box for

count is filled as shown below.

Specify the names of the tables
Amounts - Counts

Amourt *{tounts 0 . {
Figure 58: Counts dialogue box with initial value set of a I*' order Markov Chain
There is a difference in result on 1* January for a first order Markov Chain with
‘initial value’ set and ‘initial value’ not set. The total counts is more (41) in Figure 59 when

initial value is set than the total counts (40) in Figure 59 when the initial is not set.

o

Figure 59: Counts for wo-state 1° order Markov Chain with initial




6.7.2: Order Two

When a Markov Chain is of order two it will require two initial values. When the
initial values are more than one, they are set in a variate structure. i.e. instead of 0,0 we use

1(0,0) . The dialogue box for this is filled as shown in Figure 60 below. ¢

Counts and Totals from Daily Data

0

‘,Rain.v.,

Class for totals: !D ayOfYear

. Tyge of Markoyv: 1Normal ,:i

At

"I’ﬁitfalt?%ilue:' ]g[u,u] ’
Markov Chain Order: ] 7|

~S ecify the names of the tables —————
4 Counts I~ Display in Spreadsheet

ICounts

= Run Reset l Cancel

Figure 60: C&um‘s dialogue box with iniﬁal value set of a 2" order Markov Chain

The results for this dialogue are shown in Figure 61
iiil Spreadsheet [Book:;3] 2-way ... Q@

i.7

3.2
14.2
14.9
16.5
; : 6.5 1.7
Figure 61: Counts and amount table of 2" order Markov Chain with initial given

6.8: Three-state Markov Chain Modeling

[n certain occasions one may want to group the rain fall data into three states i.e. rain,

trace and wet or even more number of states. The model has the capability of modeling
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Markov Chains with more than two states. A three state Markov model will have two
threshold values which determine the boundaries of each state. This section describes a zero

order and a one order state Markov model. To obtain a zero order Markov model the dialogue

box for counts can be filled as shown in the Figure 62 below. ¢

<

Counts and Totals from Daily Data

iHain

e

‘Eiasgfpr..téta!g:_b iDaylijea; S

Type of Matkov: [Nomal <]

. Mumber of 'States: .

. Avallébfé Data: . Daf.i‘

.&Mark‘ov‘ Chain Order: ]ﬂ S

-~ Specifit the names of the tables —————

Amounts Caunts v Display in Spreadsheet
» iCounts

|& 2 [ A ] Reset | conce |

Figure 62: Counts dialogue zero order 3-state Markov Chain
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6.9: Modeling Rainfall Amount

When fitting rainfall amount, The User=>Fitting amount is used, and the dialogue

box for fitting amounts is as shown in the Figure 63 below.

]Amount £
Enter Counts Here:

Number of Hamonics:

¥ Plot The fitted values

Counts

g x| 8

Figure 63: Dtalogue box for f ttmg Amount

Cancel

6.9.1: Modeling rainfall Amount of order zero

The model for rainfall amount of order zero is fitted in graph shown in graph 22

Overall Mean Rainfall per day in mm

8]
8
g
8
8
8
&

Day Number

[ fm v dayNo J

Graph 22: Fitted Mean rainfall of order zero (GenStat)
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The result in Graph 22 indicates that the overall mean rainfall in the long season is
higher than in the short season. The mean annual rainfall, result (Graph 26) is realistic based

on the conditions that Katumani experienced during the period when the data was collected.

(

6.9.2: Modeling rainfall Amount of order one <

When the Markov model of order one for rainfall amount is fitted starting with

harmonic of order 2 followed by harmonic of order 3, the result is shown in the Graph 23

below.

Fitted mean rainfall amount oforder 1

Day Nunber

fm_wd v dayNo
fm_ww v dayNo

Graph 23: Fitted Mean rainfall of order one with harmonic of order 2

Estimates of parameters
Response variate: w d

Parameter estimate s.e. E(325) t pr:
Constant 1.8291 0.0472 38.79 <.001
half hamonic(1] Sin[1] 0.3452° 0.0601 5.4 <. 001
‘half hamonic([2] Cos[1] 0.5191 0.0662 7.85 <.001
half hamonic([3] Sin([2] =0.,1965 0.0601 w327 0.001
half hamonic([4] Cos [2] -0.2273 0.0608 -3.74 <.001

Table 7: Estimate of parameter for rainfall amount model (w given d) with 2 harmonics
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Response variate: w w

Parameter estimate S.6e, £(256) t prs

Constant 2.1022 0.0805 26.13 <.001

half hamonic([1l] Sin[1] 0.1678 0.0818 2..05 0.041
half hamonic(2] Cos[1] 0.478 0= 105 4.54 <.001

half hamonic[3] Sin(2] =0:1301 0.0787 ~1..65 0.099
half hamonic([4] Cos[2] =0,.2827 0.0674 —4:.71'9 <.001

Table 8: Estimate of parameter for rainfall amount model (w given w) with 2 harmonics

Fitted Rainafall Amount oforedr 1 with 3 hamionics

14

12

T T T T T T T
0 50 100 150 200 250 300
Day Nunber
fm_wd v dayNo
. fm_ww v dayNo

Graph 24: Fitted Mean rainfall of order one with harmonic of order 3
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Response variate:

w d

Parameter estimate | s.e. 1(323).; lut pr. estimate
Constant 1.8267 0.0469 | 38.91 | <.001 6.214
half hamonic[1] Sin(1] 0.3939 0.0639 | 6.17 <.001 1.483

half hamonic[2] Cos [1] 0.5287 0.0689 | 7.67 <.001 1.697
half hamonic[3] Sin[2] -0.2301 0.0615 | -3.74 | <.001 0.7944 -
half hamonic[4] Cos [2] -0.2121 0.0648 | -3.27 0.001 0.8089
half hamonic[5] Sin[3] 0.0748 0.0597 1.25 0.211 1.078

half hamonic[6] Cos [3] -0.1121 0.0609 | -1.84 0.067 0.8940

Table 9: Estimate of parameter for rainfall amount model (w given d) with 3 harmonics

Response variate: W W

Parameter estimate 8.6 t(254) t pr. estimate
Constant 1.9994 0.0842 23.75 <.001 7:385
half hamonic[1] | Sin([1] 0.254 0.102 2.48 -0.014 1.289
half hamonic[2] | Cos[1] 0.717 0.129 5.58 <.001 2.049
half hamonic[3] | Sin([2] -0.2933 0.0942 -3.11 0.002 0.7458
half hamonic[4] | Cos (2] -0.4191 0.0946 -4.43 <.001 0.6576
half hamonic[5] | Sin[3] 0.2311 0.0700 3.30 0.001 1.260
half hamonic[6] | Cos[3] 0.0390 0.0757 0.51 0.607 1.040

Table 10: Estimate of parameter for rainfall amount model (w given w) with 3 harmonics

Table 7 and Table 8 indicates that the harmonic of order 2 is significant while that of

order 3 is not significant (Table 9 and Table 10)
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6.9.3: Modeling High Markov model of order two for Rainfall Amount

Graph 25 shows fitted mean rainfall amount of high Markov Chain model of order 2

Mean Annual rainfall ofHigh Makov Model oforder 2

2
T T T T T T T
0 50 100 150 200 250 300 350
Day Nunber
Fm_w2d v dayNo

Fm_wdw v dayNo
Fm_ww v dayNo

Graph 25: Fitted Mean rainfall of High Markov of order two

Order two normal Markov fits better than order highs for Katumani data.
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Mean Annual Rainfil] in Katurmeni between 1961 2001

10.5

9.5

9.0

T 1 I 1 | | | i |
1960 1965 1970 1975 1980 1985 1990 1995 2000
Graph 26: Fitted Mean rainfall of order zero (GenStat)

During 1961-1963 Kenya received the highest rainfall called whuru®. The lowest
rainfall was received in 1980 -1983 when the greatest drought was experienced. The second

peak was during El-Nifio rains in 1998.

¥ Uhuru means Independence (The heavy rains were experience during the period of Kenyan independence.)
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CHAPTER 7: CONCLUSION AND FURTHER WORK

A comprehensive analysis of rainfall data is a fundamental component in the
planning phase of agricultural research since rainfall is the key element in the tropical regions
amongst other climatic constrains. The step taken in developing the climatic routine is
therefore meant to help users make full use of their rainfall data. It will support agricultural
research and many other fields that need an analysis of rainfall data as part of their work.

The successful implementation of the four menus encourages the potential statistical
programmers that it is possible to have a full menu for climatic data analysis. This study has
just jumpstarted the process by tackling one of the most challenging statistical techniques,
“Markov Chain Modeling”. 1 strongly believe it is possible to implement the rest of the work
involved in climatic analysis into GenStat. The challenges met and knowledgey gained in this
work highly motivates me to achieve the dream of full climatic menu as further work beyond
this study '

The analyses in GenStat are now more flexible compared to what can be achieved by
the current version of Instat. Using the menus in GenStat, it is now possible to model Markov
Chain of higher order.

This work has simplified the modeling of rainfall data using GenStat since through
the menus, the routines can now be accessed very easily and any other statisticians who are
not programmers can still make use of. In addition, the analysis done through these routines
can now be relied on since the portray the true distribution of rainfall data. The result from
this analysis can therefore be used in publication.

The area of immediate address include modeling climatic events, crop performance
index analysis, summaries of climatic data, time series analysis, and temperature analysis etc.
For a full utilization of the package in handling climatic data, it is important to look forward
to implementing all these aspects of climatic analysis.

The journey is not ending at GenStat only; we are looking forward to collaborate
with other researchers who are interested in the same field e.g. of implementing the same in

other powerful statistical software e.g. R.

79




[1]

[2]

[3]

[10]

[11]

-

REFERENCES

Avik, G., Deepanwita, G., & Dashgupta, S. (2010). Hiker order Markov Chain
Mode! for monsoon rainfall over West Belgal, India. Indian Journal of Radio and

{

Space Physics , 39, 39-44. e

Buchdahl, J. (1999). Global Climate Change Student Guide: A review of
contemporary and prehistoric global climate change. Atmosphere, Climate &
Environment, Information Programme, aric. Manchester Metropolitan University, (p.
99). Manchester.

Chandler, R. E., & Wheater, H. S. (2002). Analysis of rainfall variability using
generalized linear models: A case study from the west of Ireland. Water Resources

Research. , 38, 1192.

Gabriel, K. R., & Neumann, J. (1961). 4 Markov Chain Model for Daily Rainfall
Occurrence at Tel Aviv. Quarterly Journal of Royal Meteorology Society , 88, 90-95.
Gallagher, J., & Stern, R. (2004). Analyzing Climatic Data Using Genstat for
Windows. University of Reading. '

Gallagher, J., & Stern, R. (2009). Analyzing Climatic Data Using Genstat for
Windows. University of Reading.

Goedhart, P. W. (1991). Vtable; GenStat Release 7.1 Reference Manual (p. 464).

VSN International.

Jones, P. G., & Thornton, P. K. (1999). Fitting a third-order Markov rainfall model
to interpolated. Agricultural and Forest Meteorology , 97, 213-231.

Kendall, L. (2008). Generating Complete Sets of Daily Climatic Data Using a Range
of Initial Inputs. MSc Thesis, University of Reading, Department of Applied

Statistics, Reading.

Khamsi, M. (1999). Markov Chain. Retrieved May 23, 2010, from S.O.S.

Mathematics CyberBoard. : http://www.sosmath.com/matrix/markov/markov.html

Kottegoda, N. T., Natale, L., & Raiteri, E. (2004). Some considerations of

periodicity and persistence in daily rainfalls. ] Hydrology , 296, 23-37.
80



[12]

[13]

[14]

[15]

[16]

[17]

(20]

[21]

(22]

o

<

Longhai, L., & Rédford, M. (2008). Compressing Parameters in Bayesian High-
order Models with Application to Logistic Sequence Models. Bayesian Analysis , 3,
793-82.

Mimikou, M. (1983). Daily precipitation occurrences modelling with Markov chain

of seasonal order. Hydrological Sciences , 28, 2-6.

Nelder, J., & Wedderburn, R. (1972). Generalized Linear Model. Roy Statistics
Society , A135, 370-384.

Payne, R., Murray, D., Harding, S.& Baird, D. S. (2009). Genstat Release 12
Reference Manual, Part 3 Procedure Library. (R. Payne, Ed.) Hemel Hempstead,
Oxford, UK: VSN International. . ' .

Siriwardena, L., Srianthan, R., & McMahon, T. A. (2002). Evaluation of two daily

rainfall data generation models, . Retrieved from www.toolkit.net.au./cgibin

Stern, R. D. (1979). Analysis of daily rainfall at Samaru, Nigeria, using a simple
two-part model. Theoretical and Applied Climatology , Volume 28 (Numbers 1-2 /
March, 1980), 123-135. :

Stern, R. D., & Coe, R. (1982). The Use of Rainfall Models in Agricultural
Planning. Agricultural Meteorology , 26, 35-40.

Stern, R., & Coe, R. (1984). A model fitting analysis of Daily Rainfall Data. The
journal of the Royal Statistical Society , 147 (1), 1-34.

Stern, R., & Coe, R. (1982). Fitting Models to Daily Data. Journal of Applied
Meteorology , 12 (7), 1024-1031.

Stern, R., Rijks, D., Dale, I., & Knock, J. (2006). [nstat Climatic Guide. University
of Reading.

Vardi, Y., & Ju, W. (1999). A4 Hybrid High-order Markov Chain Model for

Computer Intrusion Detection. National Institute of Statistical Sciences, Alexander.

8l




