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Abstract

Let H be an infinite dimensional complex Hilbert space and B(H)
the algebra of all bounded linear operators on H. For two bounded
operators A, B € B(H), the map dap : B(H) — B(H) is a generalized
inner derivation operator induced by A and B defined by d4p(X) =
AX —XB (1)
In this paper we show that the norm of a generalized inner derivation
operator is given by |[(d45/5(B(m)) |l = [IAll +||B|| for all A, B € B(H).
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Introduction

Definition: Generalized derivation
Let H be a separable infinite dimensional complex Hilbert space and let B(H)
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denote the algebra of all bounded linear operators on H. Let A, B € B(H).
The left and the right multiplication operators induced by A and B is denoted
by L, and Rp respectively and defined by L4(X) = AX and Rp(X) = XB.
The generalized derivation 045 : B(H) — B(H) is defined by
dap(X)=La— Rp(X)=AX — XBforall X € B(H).

Definition: Finite rank operator.

A bounded linear operator T': A — B between Banach spaces is said to be
a finite rank operator if its range is finite dimensional. Let E be a complex
Banach space and z,y € F be vectors, then for (z, f) € E x E* the finite rank
operator @ f : E — Cis given by (x ® f)(y) = f(y)x. If E = H then for all
x,y € H we define the finite rank operator by (zr ®y)z = (z,y)x for all z € H.

Definition: Maximal numerical range

Let T € B(H). The maximal numerical range of 7' is defined by the set
Wo(T) ={\: (Txn,x,) — Awhere ||z,|| =1 and || Tz, || — ||T||} where z,, is
a sequence in H and \ € C.

Main result

Theorem 1
Let A,B € B(H) and 645 : B(H) — B(H). Then
104880 || = 1Al + (| BI|

Proof
By definition,
18as/munll = suplllsas(X) ] : X € BUH), |X] = 1}
= sup{||AX — XB| : X € B(H), || X| =1}.
Therefore,
16.a5/800) | > 1645(X)| for all X € B(H) and ||X|| = 1.
Taking an arbitrary € > 0 we have
1648/ 8(m || — & < |64p(X)|| for all X € B(H) and ||X|| = 1. So
1048/B() || —& < |AX — XB].
Since||AX — X B|| < ||Al| + || B]| and letting € — 0, then we have that
I6.48/500 | < I1A] + 1B @)
On the other hand, let s,y, 2z € H be unit vectors. Let u,v be functionals so
that u®y: H — C and v ® 2z : H — C are finite rank operators defined by
(u®y)s =u(s)y and (v ® z)s = v(s)z for all s € H with [|s|| = 1.
So [lu @yl = supf{[[(u®y)s|| : s € H, [|s[| = 1}
= sup{|lu(s)y|| : s € H, ||s|| =1}
= sup{lu(s)[llyll : s € H, |[s| =1}
= |u(s)| = [[ul
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Similarly, [|jv ® z|| = |v(s)| = ||v]]

So if welet A =u®yand B = v® z, then ||A]| = |u(s)| = ||u|| and
Bl = lv(s)] = [lv]].
Now,

[645/5m)| = 1545(X) | = [6.45(X)s]] where X € B(H) with [| X[ = 1.
But, d4p(X)s = (AX — XB)(s) = AX(s) — XB(s)

= (u®y)X(s)) — (X(v® 2))(s)

= u(s)yX — Xv(s)z

= u(s)X(y) — X(2)v(s).

Therefore,
16aB/B(m||> = [[(AX — X B)(s)|]?
= (u(s)X (y) — X(2)v(s), u(s) X (y) — X(2)v(s))
= (u(s)X (y), u(s) X (y))—(u(s)X (), X (2)v(s)) = (X (2)v(s), u(s) X (y))+(X (=
= lu(s) X () — (u(s) X (y), X (2)v(s)) — (X (2)v(s), u(s) X (y)) + | X (2)v(s)|]?
= [u(s) P X ()] = (X (y) X (2)v)(s, ) = (X (2)vuX (y))(s, 8) + [ X (2)[[*[v(s) ]
= IU(S)I2 —uX (y)vX(2) —vX(2)uX(y) + |v(s)[?

Y X (z) —vX(2)uX(y) + [[v]*.
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[uX (y)| = || All, and
vX(z) = —|vX(z)| = —||B|| then we have that

(2) —vX(2)uX (y) + [v]]* = [|Al]* + 21 Al BI -+ 1B11”

= {l[All + [ BII}*.

Thus,
16.45/50n 17 = {I[AIlI B[}
Taking square root on both sides we obtain
10a8/B0ml = [ Al + | Bl (3)
Equations (2) and (3) together yields,
I645/50n)l = I4] + Bl O
We now proceed to show that the equality holds using Stampfli’s maximal
numerical range.
Let A be a bounded linear operator on B(H). Then the distance d(A) from A
to the scalar multiple of the identity is given by
d(A) =inf{||A—=X||: X e C}.

Theorem 2

Let d(A) = inf{||A — A|| : A € C} and d(B) = inf{||B — A|| : A € C} the
distance from A and B respectively to the scalar multiple of the identity. Then
1648/l = | Al + | Bl

Proof.
For A € C and X € B(H) with || X|| = 1, we have
dap(X)=AX - XB
=(A—-NX —-X(B—-)\)| forall X € B(H) with A, B € B(H) fixed.

Jo(s), X(z)v
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So,
1045(X)] = [[(A = )X = X(B -\
< (A=Al +[[B = AlDI[X]]

Taking supremum with || X|| = 1 we obtain
1045/ B(H)[ < |A=All + [|1B = Al
= d(A) +d(B).

To show the reverse inequality we use the maximal numerical range.

For A € B(H) the maximal numerical range of A is given by

Wo(A) ={A € C: (Azx,, z,)) — A, with ||z,|| = 1 and | Az,| — || 4]}

The following lemma shows the relationship between W, (A), W,(B) and [|d 45|

Lemma 3
Let A\y € W,(A) and Ay € W,(B). Then

1 1
104l > (A2 = M)z + (1 BI]? = [X2]?)2.

Proof.
By definition, ||0ap/B(H)|| = sup{||AX — XB| : X € B(H) and || X|| = 1}.
Since \; € W,(A), there exists z,, € H such that ||Az,| — ||A| and (Az,, z,) —
)\1.
Also, for Ay € W,(B), there exists z,, € H such that ||Bz,| — |B| and
(Bxp, ) — As.
We set Az, = apz, + Buyn and Bz, = anx, + wyy, where (x,,y,) = 0 and
l|lynll = 1. Given that V,z,, = z,, V,y, = =y, and V,, = 0 on {x,,y,}, then
|(AV,, = V,B)z,|| = ||AVz, — V,Bx,||

= | Az, — Va(an@n + wnt) ||
Az, — Vianr, — Vawnya|
= HO‘nxn + Buln — Ty + Wnyn”
= || BnYn + Wninll
= Wn + Wn‘
< Bl + |wnl-

But

Az || = [Jann 4 Buynll < llan@nl| + || Baynll = an| 4| Bnl.
So |5,| > || Az, || — || and since [|Ax,|| — ||Al|, then

18a] = (| A|I% = |ow|?)? — &, where e, — 0 and a, — A1

Also,

| Bl = lann + wnynll < lanznll + llwnynll = lan] + lwn]
So |wp| > || By|| — |ow| and since ||Bz,|| — || B]| then
lwn| = (|1 B2 = |ow|?)2 — £, where &, — 0 and a, — A
Thus

1 1
Bl + |wn| = (IAII* = lan]*)2 = €0 + (I BII* — an[*)? — &n
= (IAI7 = M)z + (B2 = [X2f*)z.

Therefore,
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1645l 2 1645Vl > [(AV—VaB)aall > (JAI2 = M) + (B2~ o) 2.0

If A\; and A are as defined in lemma 3 and we let o, = (Az,,x,) — A\ and

o, = (Bxy, x,) — Ay so that

|an|2 + |6n|2 = HAQCNH2 — ||A||2 that is, |3,| = (HAXNHZ - |an|2)

| |? + |wn|? = | Be,||* — [|B]|? that is, |wn| = (| Bwn||* — [a|?)

Also, let V,, = x,, ® T, — Yn ® yn, then ||V, || =1 and

(AV,, — V,B)x,, = BnlYn + Wnln.

Then

a5l > 1(AV, — ViB)all = 18,1 + ] 1
= (HAfEnHZ - |an|2)§ + (HBil’nHZ - |O‘n|2)§ )
= ([Azn||* = [(Azp, 2)[*)2 + (| Ben||* = [(Ban, 2a) )2
= ([[AIZ = [M12)2 + (1B = [Aa]?)>.

Now, if 0 € W,(A) and 0 € W,(B) then we have that

10a5] = Al +[|B].

Furthermore, ||A|l + || B]| < ||0ag|| < d(A) +d(B) < ||A]| + || B]|-

Thus, |6ap/p¢m |l = [|A] +[|B||.0

1
2 and
1
2.
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