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ABSTRACT

Burgers equation: u, + uu, = Au,, is a nonlinear partial differential equation which arises

in model studies of turbulence and shock wave theory. In physical application of shock

waves in fluids, coefficient A , has the meaning of viscosity. For light fluids or gases the
solution considers the inviscid limitas A4 tends to zero. The solution of Burgers equation

can be classified into two categories: Numerical solutions using both finite difference and
finite elements approaches; the analytic solutions found by Cole and Hopf. In both cases

the solutions have been valid for only 0 < 4 <1. In this thesis, we have found a global
solution to the Burgers equation with no restriction on 4 ie. 1€ (—— 0, oo). In pursuit

of our objective, we have used, the Lie symmetry analysis. The method includes the
development of infinitesimal transformations, generators, prolongations, and the invariant
transformations of the Burgers equation. We have managed to determine all the Lie
groups admitted by the Burgers equation, and used the symmetry transformations to
establish all the solutions corresponding to each Lie group admitted by the equation. |
These solutions, which are appearing in literature for the first time are more explicit and
more general than those previously obtained. This is a big contribution to the

mathematical knowledge in the application of Burgers equation.



CHAPTER 1

INTRODUCTION

1.1 Introduction

Lie group analysis is a mathematical theory that synthesizes symmetry of differential equations.
This theory was originated by a great Norwegian mathematician of the nineteenth century
known as Sophus Lie[13]. Lie pioneered the use of groups of transformations called Lie
groups in the study of symmetry properties of differential equations with a view to their
solutions. He discovered that the known ad hoc methods of integration of differential
equations could easily be derived by his theory of continuous groups. He further, among oiher
things, gave a classification of differential equations in terms of their symmetry groups, thereby
identifying the set of equations which could be integrated or reduced to lower- order equations
by group theoretic arguments. Lie”s basic idea was to find all the Lie groups of a given partial
differential equation (PDE) such that any solution of this PDE is transformed into another
solution by the coordinate transformations of the respective Lie groups; i.e. all the groups with
respect to which the set of solutions of the PDE is invariant. The solutions which results from
this procedure are generally referred to as Lie symmetry solutions.

In this study we apply Lie symmetry analysis in the solution of the Burgers equation:

u,+uu, =Au,. (1.1.0)

The Burgers equation mentioned above is one of the most difficult nonlinear PDE to be

solved analytically. The equation appears in various physical applications. For example it
models weak shock waves in compressible fluid dynamics. It is a one-space dimension version

of Nevier Stoke’s equations of fluid dynamics.



1.2 Statement of The Problem
The exact solutions of the Burgers equation:
u,+uu, =Au

can be classified in two groups as:
a)Numerical solutions
1) Finite Difference
11) Finite Elements
b) Analytic solutions.

In numerical solutions, the values of the constant A are restricted to 4 €[0,1].
In fact when 1< 0.001, computation by means of the exact solution is not practical because

of the slow convergence of the Fourier series Ames[2 ].The analytic solution has so far only

been givev for A=1, Hopfand Cole [5 ], Lamb[ 12 ], Raunch [22],and Gandarias [ 6 ].
In the physical application of shock waves in fluids, 4 has the meaning of viscosity. Thus the
solution considers the inviscid limiti.e., (A — 0) of the Burgers equation.

An attempt has also been made by Gandarias [ 6 ] to obtain potential symmetries for the

Burgers equation and the corresponding local solution for only, A=1.

Popovych and Nataliya [21] obtained the infinitesimal symmetries for Burgers equation

for only A=1. Both Mitchel and Griffins [15], and Roy [32] obtained stable numerical solution
of the Burgers equation for 4 €[0,1]and the numerical solution became unstable for the values
of 1 outside the interval [0,1] .

But it is not known what happens when 4 — — or when 1 — «.

To answer this question there is a need to find global solutions for 4 € (-, ).




Thus we have attempted in this study to solve the Burgers equation:u,+uu, = Adu

XX

for A e (—,), analytically, using Lie symmetry analysis .

1.3 Objectives of The Study

The objective of this study was to find the global solution of the Burgers equation

u,+uu, =Au, for anarbitrary 4 1i.e. for —o0 <1 < oo, using Lie symmetry analysis.

1.4 Significance of The Study

The results of this study provides an alternative method for solving the Burgers equation for

A € (—w0,0) and other similar nonlinear partial differential equations. This is a significant

contribution to the knowledge and further research.

1.5 Literature Review

The nonlinear algebraic theory of generalized solutions for large class of nonlinear PDE was

originated by Rosinger[ [23],[24 ] ] who has since developed the theory further , culminating

in the publication of four research monographs [ [25],[26],[27],[28 ] ] In these monographs

the algebraic theory, complete with applications in the study of nonlinear PDE, is well
presented. Some of the major results obtained by Rosinger in this line of research include:

e The solution of the celebrated impossibility results of Schwatz [35 ] regarding the
multiplication of distributions of Rosinger [30]

* The characterization of all possible nonlinear algebraic theories of generalized functions [29]

*The global solution of arbitrary nonlinear analytic PDE [27 ]




Lie symmetry groups for classical solutions of nonlinear PDE can be extended to symmetry
groups for global generalized solutions. Nonlinear Lie group theory for global generalized
solutions of nonlinear PDE was started by Rosinger [ [27],[31] ] In collaboration with

Michael Oberguggenberger [17] of Innsbruck, Austria, they have published a research
monograph on the solution of continuous nonlinear PDEs through order completion Group
Invariance of such global solutions have also been developed by ,Walus [38] and, Rudolph [33].
So far , some of the major results obtained by Rosinger and his collaborators are:

* The first nonlinear Lie Group theory of global generalized solutions of nonlinear PDEs

* Three solutions to Hilbert’s fifth problem considered in its full generality

* The first solution of .Lewy problem of solvability of smooth PDEs.

The use of Lie Symmetry Analysis of differential equations in solving nonlinear PDEs was
studied by Omolo-Ongati [19]. He particularly gave a stability approach to exact solutions of
nonlinear PDEs provided by symmetry groups.

Ames, Lohner and aAdams [3] studied group properties the nonlinear wave equation
u, =[],
Torris and Valenti [37] studied the unperturbed nonlinear wave equation

u, = [f (e, L. for f.>0,f,# 0. Intheir solution ,they assumed that f.> 0, f, # 0.

But Omolo-Ongati [20] later showed that these assumptions made were unnecessary since the
conditions present themselves naturally. He provided Lie symmetry solutions for approximate
nonlinear hyperbolic equations.

Ibragimov [10 | developed some invariant and symmetry solutions for heat equation and , for
Burgers related equation but only for A =1. Hopf[7] studied Lie groups and their inversions
as applied to PDEs. Stephani [36] made an attempt to solve the Burger’s equation by first

transforming the symmetry groups of the equivalent heat equation using Lie-Backund



symmetry analysis. But in his method, the solution only consider the value of 4 €[0,1]as in

the numerical methods.
Lie symmetry solutions for nonlinear first order ordinary differential equations was developed
for category of Abel’s differential equations. Schwarz [34 ] gave an algorithm for computing
infinitesimal symmetry for Abel’s equation. Ibragimov [ 8 ] ,Ibragimov and Kolsrud [9]
attempted to find some potential infinitesimal symmetries for an equation similar to the Burgers
.No corresponding solutions were obtained.

The literature available shows that all the attempts, both numerical and analytic , to solve the

Burgers equation have assumed the value of constant A , between Oand 1 ie. 0< A <I1.

In this study we have attempted to find exact solutions of the Burgers equation which is true

for anyreal constant 1:-o <A <o , using Lie symmetry analysis.

1.6 Research Methodology

The concept of Lie group theory has been used in solving the Burgers equation. These include :
Lie groups of transformations; infinitesimal transformations; prolongations; infinitesimal
generators and general applications of Lie groups to the solutions of differential equations.
Finally, Lie invariant symmetry has been applied in obtaining exact solutions to the given

Burgers equation.



CHAPTER 2

BASIC CONCEPTS

2.1 Lie Groups of Transformations

We first give the basic concept of a group.
Definition 2.1.1

A group G 1is anonempty set of mathematical elements with a composition ¢ defined
between the elements satisfying the axioms:
(1) closure property:
Vx,yeG,¢(x,y) eG..
(i1) associative property:
vx,y,2€G,4(x.4(y.2)) = ¢lg(x.y).2) €G.
(111)  1identity property:
3! identity element e G such that :
Vx e G,¢(e,x) = ¢(x,e) =x
(iv)  inverse property:
Vx e G,
3! inverse element, x' € G, ¢(x'1,x) = ¢(x,x‘1): e
Definition 2.1.2

Let

lie inaregion D < R".

Consider the set of transformations;




x* = X(x,¢) (2.1.1)
defined for eachx € D depending on real parameter ¢ where € € § — R.
Suppose
#(z.5)
defines a composition law of parameters & ,d €S then (2.1.1) forms a group of
transformations on D if

(1) for each

ceS,x*eD

(i1) S with ¢ forms agroup G .

(iii) x*=x when & =e ie. X(x,e)=x

(iv) if x*=X(x,e) and x**=X(x*,6) then x**= X(x,4(s,5))

that is the group transformation from x to x* via ¢ , followed by
x* to x** via, 0 is equivalent to a single transformation from x to x** via ¢(£,5 )

We say, a group of transformation which depends on a single real parameter
& defines, one-parameter (¢) Lie group of transformations if in addition

(v) ¢ isacontinuous parameter i.e. £ €S is an intervalin R.

(vi) X is infinitely differentiable with respect to X in D and ¢€S.
(vii) ¢(¢,8) is C* continuous .

Example 2.1.1

Consider a one-parameter (¢) group of transformations
= X(x,$)= x+¢

Checking for the properties of a one-parameter (&) Lie group of transformations,



we have
¥ = X(x,2)= X(x,0) = x.
x*¥*= X(x*,6)=x*+5 = x+ (s +8) = x + ¢(£,6)
Clearly
=X (x,e) defines a simple group onG .
Hence x* = X(x,¢) isa Lie group of transformations.

Example 2.1.2

For the two-dimensional group of transformations

x*=X(x,y;$)=(x+£, ad ),
xX+¢&

it is evident that

x¥*=x+e¢,
and
yr=—2
xX+¢

We therefore arrive at
x*¥* = X(x*,8)=x*+5 = x+ (e + ) = x + #(¢,5),
x.*

%
poe s T e gle.6)

and
X(x,5;0)=(x,»).

Hence the transformation

X(x,y;g)=(x+8, a4 )
x+¢&

forms a Lie group of transformations.



2.2 Determination of Infinitesimal Transformations

Liet

=X (x,g)

be a one-parameter (8) Lie group of transformations with identity & =0 and law of
composition ¢ .

Application of Taylor expansion about £ =0 gives

x* = X(x,e)= X(x,0)x + & [-a—){(i“—g—)} + g—z[a—X(x—g)-} T (2.2.1)
0s |, 200 oe

=0

If we let

&(x)= [?%E)J then (2.2.1) becomes
& &

-0
x* = x + g£(x)+*(s?) | 22.2)

The transformations

¥ = x+g§(x) in (2.2.2) 1is known as the infinitesimal transformation of the one-
parameter Lie group of transformations (2.1.1).

The components of f(x) are called the infinitesimals of (2.1.1)

The symmetry of a group G is a Lie group of transformations which maps solutions into
solutions, Stephani [36].

That is, image (¥) of any solution y(x) of a differential equation is again a solution of
the differential equation.

Example 2.2.1

Consider one-parameter (¢) Lie group of transformations

x*=x+&



and

YE=y+2e+&’y : -1< &€ <

We see that

X(x,y56)= (e, %) = (1 + ), (1 + ) y)

and from (2.2.2 ) that the corresponding infinitesimal is given by

E(x,y)= W}

—BX(x*,y *)

_ _a_..] ~[(x2t+e)y)l = (x.29)

Lemma 2.2.1

X(x;e+Ag) = X(X(x;€);0(e7", 6+ Ag)) (2.2.32).

Proof

X(X(x)0(¢7, 6 +A8)) = X (x:0(8,8(e7, 6 + Ag))
= X(x;0(d(e,€7"), 6+ Ag))
= X(x;(4(0, ¢ + Ag))

= X(x;& + A¢g)
Theorem 2.2.1 [Lie’s first fundamental theorem]

There exists a parameterization 7(g) such that the Lie group of transformations (2.1.1) is

equivalent to the solution of the initial value problem (IVP) for the first order differential

equations
k
BE r ) (2.2.3b).
dr
with initial conditions x* = x, when 7 =0 (2.2.3¢c).
In particular ‘r(e)= J:a(g’)dg’ (2.2.3d).

10



0¢(g,9)
00

where a(g) =

(2.2.3¢).

(£.8)=(c""¢)

and «(0)=1. (2.2.36).
[¢" denotes the inverse of & ]

Proof.

First we show that (2.1.1) leads to (2.2.3b), (2.2.3¢), (2.2.3d), (2.2.3¢). Expand the left-hand side

of (2.2.3a) in a power series inAg about Ae =0 so that

X(x;e+Ag) =x*+MA
£

e+o((Ag)?) (2.2.3h).

where x* is given by (2.1.1) .Then expanding ¢(¢™',&+Ag) in a power series inAg
about Ae =0 we have
d(e,e+Ae) = d(e7, &)+ a(e)Ae+o((Ag))

=a(e)As+o((Ag)?) | (2.2.3i).
where a(¢) is defined by (2.2.3e ). Consequently , after the right-hand side of (2.2.3a).in a
power series inAg about Ag =0, we obtain
X(x;e+Ag) = X(x*;4(s7",& + Ag))

= X(x*;a(g)Ae+ o((Ag)?))
- X(x50) + a(a)AsZ—";(x*;s)lg=o +o((Ae)))

= x* +a(e)é(x*)As +o((Ag)?)) . (2.2.3j).
Equating (2.2.3h) and (2.2.3j ) we see that
x*= X(x;¢) satisfies the initial value problem for the system of differential equations

dx*

de

= a(&)E(x*) (2.2.3k).

11



with x*=x, at £€=0. (2.2.31).

From (2.2.2) it follows it follows that (0) = 1. The parameterization 7(¢)= j;a(g’)dg’ leads

to (2.2.3b,c).

95(x)
ox.

1

Since s 4 =123 ,n is continuous , it follows from the existence and uniqueness

theorem for an (IVP) for a system of first order differential equations , that the solution of
(2.2.3b,c), and hence (2.2.3k,l), exists and is unique. This solution must be (2.1.1),which
completes the proof.
From the above theorem , without loss of generality , we assume that a one-parameter (&)
Lie group of transformations is parameterized such that its laws of composition
#(e,0)=¢€+0

and
&' =g, where £ =0 isthe neutral element. Thatis the one-parameter Lie group of

transformations (2.1.1) now becomes;

dx * "
7 = %)

with initial conditions x*=x,at £ =0 (2.2.4)

where &(x) is the infinitesimal of (2.1.1)

Example 2.2.2
Considering the groups of translations

x*=x+¢ (2.2.42)
y¥=y, (2.2.4b)
the law of composition hereis  ¢(g,0) =&+, and ¢ '=—¢.

Applying lemma (2.2.1) and theorem (2.2.1) we obtain

12




peag) 1 and hence a(g)=1.
0o
Let X =(x,y;¢).
Then the group (2.2.4a,b) is X(x,y;e) =(x+¢&,y).

0X (x,y;¢€)

i EET5E) 5 Hente S(w )= o=(10)
0 o¢
Consequently (2.2.3k,1) become
* *
L2 R (2.2.4¢)
de de
with x*=ux, y*=y,at €¢=0 (2.2.44d)

The solution of the (IVP) (2.2.4c,d) is seen to be (2.2.4a,b).
Definition 2.2.1
The infinitesimal generator of the one-parameter Lie group of transformations (2.1.1)

is the operator

V=V(x)=E&x)V

=§<x)(i,a,6, ........ 2]

Ox, Ox, Ox,

n a
—Zi él(X)gt

where , (2.2.5)

V is the gradient operator defined by where

y(2 2 0 @
o ox, o, ox

with E(x)=(& (x),&,(x)semrrerrrrrrnns & (x).

13



Theorem 2.2.2

The one-parameter Lie group of transformations (2.1.1) is equivalent to

- w &V
ety =X(xe)=) T (2.2.6)
yvhere
v=(x)
is defined by (2.2.5)and
P =™t m=123,. with V X=X

The transformation (2.2.6) aboveis called Lie series
Proof.

Let
V=V(x)= Zn: & (x) % ' (2.2.6a)

and

0

o *,

1

V()= Y & (%) (22:6b)

where
x*=V(x;¢) (2.2.6¢)

is the Lie group of transformations (2.1.1). From Taylor’s theorem , expanding (2.2.6¢)

about ¢ =0 , we get

Ly e &3V (x¢)
k=0 k! og*

0 gk dkx*
“°J= ZF[_dgk O] (2.2.6d)

k=0

For any differential function F(x),

= F(x*) =
de %) Z ox;* des

i=0

d 2 (akF(x*) gx_,.fJ

14



n E *
-$6 )(a — )J ¥ (F () (22:62)
dx*
Hence it follows that e =V(x*)x*, (2.2.6%)
£
d’x* d(dx
V (x*)V (x*¥)x* = V> (x*)x * 2.2.6
¥ dg[d] (x*)V (x*)x (x*) (2.2.68)
Consequently
k%
‘i’:k L=V =V, k=123 (2.2.6h)
which leads to (2.2.6).
Example 2.2.3

For the infinitesimal generator

we see that its corresponding Lie series may be obtained.

By theorem 2.2.2 we have
k., k

k_k
gV © &V
x _ \ % * _
e = Zk:o k! - y = Zk:O k! Y

2

The infinitesimal for (x*,y*) is

E(x)= (& (x,¥).& (x,7))

so that
«fl(x,y):y,/,‘z(x,y): —X

Weneed to find vx and vy ;k=1,2,3




...............

Vix=y Vx=v(¥'x)=vy=—xvx=—pv'x=x,Vx=y,

Vy=—xVy=—y Vy=xv'y=yvy=-x,

It is evident that
(2.2.61)

vx=xv" x=—y "’ x=-xy"x=y,n=123,
(2.2.6))

v4ny=y,v4n—1y=x, v4n—2y=_y’v4n—3y=_x,n=1’2,3,

Alternating and recurrent series for the above equations (2.2.61) ,(2.2.6j) yield

k. k
w £V
'x*:Zk=0 K
( g & & J ( g & £ J
i Y e e | el e y
20041 6! 357
w NV
V=Y Y
( g & & ) ('83 g & ]
B2 i F ple-f s E_E 4 Ik
20 4 6 357

Thus

x*=xcose+ ysing

y¥=ycose—xsing
is the corresponding explicit one-parameter Lie group of transformations

Example 2.2.4

Consider the infinitesimal generator,

V=—y—?—+x—a—.
ox Oy

We see that its corresponding Lie series are of the form:

16




k_ k k Kk

) EV © gV
x* = Zk=0 k! & y* = Zk=0 k! y

b

From theorem (2.2.2) we therefore have,

Vix=—y Vx=v'x)=vy=—xvx=yvix=x,Vx=-y, ...

1 2 3 4 5
VY=X, VY=Y, VY==K,V V=P,V V=X eeeriiirrreinrreieserennnnes

It is evident that
vx=x " " x=y " x=-x,v" x=—y ,n=123,........ (2.2.6k)
viy=y v ly=—x,v"Py=—y v"’y=x,n=123,.... (2.2.61)

Alternating and recurrent series for the above equations (2.2.6k) ,(2.2.61) yield

2 EV
W= x
2
(it & e I A
B TR TRE I 35 o i
k_ k
) EV
* —
YD T vabt
82 84 6 3 85 87
= T T D B e et Bz
21 41 6! o5 7

x¥*=xcose—ysing  y*=ycose+xsine
: 9

Example 2.2.5

The infinitesimal generator

V= xi + yi ,
ox oy
ko ok ko k
% EV 2., &Y
readily yields the series : x* = Z %, Je= Z y,
o k! e

where




= xVvVx=v(V'x)=vVy=xVx=x,v'x=x,Vx=%,cccccccccn... (2.2.6m)

Viy=yVy=yVy=y viy=yviy=y. (2.2.6In)
It is clear from equations (2.2.6m) , (2.2.6n) that

R =c’x

and

g=c'y

Hence the corresponding explicit one-parameter Lie group of transformations are determined.

2.3 Extended Transformations (Prolongations)

To be able to apply a point transformation

x*=X(x,;¢)

y*=Y(x,y;¢) } 2.3.1)

to the differential equation,

H(x,y,y’,y",y’”, ...... ,y("))=0, Yy ==, =—i- (2.3.2)

we must know how to transform the derivatives y(") , that is, how to extend

(or prolong) the point transformation to the derivatives. The task here is extending on the

transformation (2.3.1) acting on

(x, y) to the (x, Vo Vs Vas Vaeeree yn) space , with the property of preserving the contact
conditions relating the differentials

dx, Ay, dy, ;A0 5 vsvsicens dy,,..

e, : (2.3.3)

18




From (2.3.1) the transformed derivatives are defined by

dy*=y* dx*, dy* =y*, dx*, dy*, =y*;dx*¥, dy*, =y*,., dx*, (2.3.4)
Using (2.1.0) and (2.1.1 ) it can be shown in particular, that
oY(x,y;&) oY(x,y;¢)
b Ay ox Bt
W = TJF = Yl(x7y,y1a8) = GX(x,y;g) o 8X(x,y;8)
1
ox Oy (2.3.5)
dy, *
E - Y, (%, 3,31, 2:€)
5Y1(x,y,y1;8)+y 6Y1(x,y,yl;8)+y 0Y,(x,y,3156)
1 2
E Ox oy Y,
X (x,y;¢) 0X (x,y;¢)
3 +0
x Oy (2.3.6)
Theorem 2.3.1

The Lie group of transformations (2.3.5) and (2.3.6) extendto n—th extension, n >2 ,
which is the following one-parameter Lie group of transformation acting on

(x, Vo Vis Vs Vaeenen yn) -Space:




b= X(x,y;¢) \

X0 50)
Dt =Y (x,v,y,;¢)

y2*=Y2(x>y7y1’y2;g)

Y. =Y, (0,0, 910 V0 Ve Va3 €)
with

0 =Y, (5,9, i Vg i v P36)

AN ) AU
C ax 1 6_)/ 2 ayl na-)/n~1
oX\x,y;¢ oX(x,y;¢e
ye), |, Xyse) )
ox oy

For proof ,see Olver[18 ]

Example 2.3.1

Given the scaling group
= X(x, ;) =e"x

P = Y(x,y;e):eny

then it’s first extension y, * is given by

oY (x,y;¢) e (x,;6)

dy* Ox : oy
k — . — —
M= =K .556) = oX(x,y;e)  oX(x,y;¢) ~
)
Ox o

Its second extension y, * is given by

@37
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o an,”
2 dx*
oh(xyyise) | OHwyyie) | OK(y.nie)
L S ©
aX s ) aX o ,
(x}’8)+yl (xyg)
Ox oy

=Y, (%, 315 v3€)

=W

and by (2.3.7) the k —th extension becomes

Bk =Y, (5,7, V15 Vas Vyorenn Vi3 €)= €7y 3i =123 k

By definition of the Lie group of transformations, the k—## extension or prolongation of
example 2.3.1 above, is also a Lie group of transformations. Thus the study of extended Lie
group of transformations reduce to that of infinitesimal transformations. There we need to

determine explicit formula for developing extended infinitesimal transformations and

corresponding infinitesimal generators.

Consider , the one -parameter Lie group of transformations

= X(x, y;) = x-+ 85(x, )+ ole?)

v =Y(x,y;¢)=y+enlx,y)+ole?) (2.3.8)
with infinitesimal

E(x,y)=[£(x y)m(x,y)] (2.3.9)

and corresponding infinitesimal generator

0 0
V=0 y)==+n(ey) = |
o oy (2.3.10).

The k—th extension of (2.3.8)is given by

21



x*=X(x,y;s)=x+£§(x,y)+o(82) Y
E=Y(x,y8)=y+en(x,y)+ 0(82)

»*=Y(x5 3, 138) =y +en(x, 3,7, )+ ole?)
»*= Yz(x,y,}’1a)’2;€)= Y +877(2)(x’y’y1’y2)+0(82) >

yk*=Yk(x:y9y15y2 """ )’k;g)=J’k+377(k)(x,y,y1’)’2, ---- yk)+0(82) j
Then k —th extended infinitesimal of (2.3.9) will be
{ERY e R CRRR P LICRRN W (RN

with corresponding k —th extended infinitesimal generator

0 G0 CRE! 0
y® = 2 (e y)—+ 1"y ) —+ 0Py v, —+
f(x,y)ax+77( J’)ay l)ayl ( 1 2)5y2

......

0
n(k)(x,y,yl,yz, ...... Vi )ak

Theorem 2.3.2

(k1)
(k) — Dn _ Dé(x’y) .
17 (x’ y, y‘ 7y2 geecene yk ) Dx yk Dx , 77(0) — U(X, y)

where

0 0 0
D ___i+ y1i+y2—+y3—-——+yn+l—+ ....... k =123,

—D—; ox 5)’ ayl ayz ayn

(2.3.10a)

(2.3.10b)

(2.3.100)

(2.3.11)

(2.3.12)
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Proof

From (2.3.7),(2.3.8),(2.3.9),(2.3.10), (2.3.10a,b,c ), we have

DY, , D(y,_, +&n*™ +o(g)
o Dx _ Dx
(X, Y, )15 Y25 V350000 Vi3 ) M D[x+g§(x,y)+0(€2)]
Dx Dx
D%V 4 o(g?
Py D Dx( ) 2
= +o(&7)
14 £ 266Y)

Dx

Byt MEHES)

+o(e?) =y, +en® +o(e
Dx D :| (&) Vi €7 (&%)

which leads (2.3.11).

Example 2.3.2

Let us consider arotation group having first extension »* as
y*=Y (5,7, 5;:6) =y +en(x, 7,9, )+ole?)

Then using (2.3.11) and (2.3.12) we obtain ,

Dn®  Dé&(x,y) o 0 0 d
79 (x,,7,)= ———y 5(xy)=—77-+y ﬂ—y,[—é+ —g}—l—yzx

Dx ' Dx Ox ]—67 Ox ylay
Therefore

y1*=Y1(x’y’Y1;g)=.V1 +877(1)(x,%)’1)=y1 +8(_1_y2‘)

****)

The terms ¢ ¢, ¢(m),¢( , where *, ** *%x___ represent
X, 1Y, XX, VY, Xt, t, XXX, XXXX, cverennenn. in the prolongation are expressed as functions of

¢,&,7,u as below by using equations (2.3.11) and (2.3.12).
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 D.(p)=¢,+ud, :¢=0¢(x.t,u)

'

(§)=¢. +u g, (& =E(xt,u)

D (c)=7 +uz, :7=1(x,t,u)

D,(¢)= . +ud, +ug, : ¢=9(x.y.t.u)

bzx(¢)= Bt 2u bt u b, +u'd,,

D*(§)= &+ 2 U, +UTE,,

D’.(¢)=7, +2u 1, +u, 1, +u’T,

¢* =D, (¢—&u, )+ &u,, +au,

¢ =D,(p—&u, —w,)+éu, +,

¢ =D’ c(p~u, — )+ &u, +

¢" =D (p—u, ~mu,)+Eu,, +uu,

$ =D’ P~ Gu, — )+ Gy + 11,

n'=¢,~Eu 4@, —7 u, ~ S, —Tu] (2.4.12)
*n' =D,(p—&u, —mu, — )+ &u, +1u,, + o, (2.4.1b)
N =g -t 4@, —E, —Eu” —Tuu, (2.4.22)
*n" =D, (p-&u, —mu, — )+ Gu, +u, + (2.4.2)

*n* =D ($-&u, —mu, )+ Eu, +1u, +, | (2.4.3b)

0™ =+ (20—~ Tty + (B 26 0~ 20, = E

—rwuxzu, +(¢u —2§x)uxx -2tu,-3Cuu, —tuu, —2tuu

WX XX uxxt

(2.4.42)




RET =g+ 2u B, Fua, —u (En 2L bl FutE,)

~u, (nxx +2u m, U m, U, )— u,(z’xx +2u T, tu, T, +usT,, ) (2.4.4b)
—Zuxx(gx +ux§u)_2uyx(nx +ux77u)—2utx (Tx +uxru)

¢” = (4 + (2¢ul - z-uu )ut - guu.t + (¢uu - 2Tul )ltz - 2§ulu.\:ut - z-uuu!3 (245&)
ol guuuxuz' + (¢u - 2‘[, )un - 2§tu,r1 - 3Tuuluu - guu.vuu - 2§uutuxt

*¢“ =@, +2u,p, +u,p, +u2’¢uu —uy (é:tt +2u,, +u,s, +u2’§“u)
—u, (ﬂu +2um, +u,m, +ut, )—u, (T” +2u,t, +u,rt, +u2n'w) (2.4.5b)

e 2uxr (gt + utéu )_ 2ury (77t +un, )— 2un (rt +u,7, )

*ﬂyy = ¢yy +2uy¢uy +uyy¢u +u2y¢uu —ux(§W +2uyé:uy +u}{y§u +u2y§uu)
—uy(nyy +2u,m,, +u,0, +u2y77uu)—u,(ryy +2u,T,, +u,T, +u2yrw) (2.4.6b)
B Zuyx (§y + uy‘fu )_ zuyy (ﬂy tu,mn, )_ 2uty (Ty + uyTu)

¢m = ¢XXX +3ux¢uxx +3ux2¢uux +3uxx¢ux +ux3¢uuu +3uxuxx¢uu +uXXX¢M

2 3
—3u,(rm +3u.r, +3u 7, +t3u,. 1, +3uu, 7, +u't +umru)

XXX uu X uuu

3 (& 3,8 +3u 28 Bl +Bu i E uE,, b L) (2.4.7)
$7 =D x(P = Gu, =T, )+ Gl + U
¢ = D*(¢) —u,D*:(&) —u,D*.(c) - 4u_D*. () - 4u_D*:()

~du D (&) —4u, D*.(c)~4u, D (£)-4u,,D,(7) (2.4.8)

xxxt X

D*e(f) = + 1 B T3 1B + e +18 B )+

3 2uu @, +u'd,, +uid,. )+

(3675t o By 410 g+ By )F (U, + 1B 00 B, )+

( to @ +uu b, J3((Curup, W, +uup,, +u'u.g,, )

D4x(z')=r +u,t +3( Uy Ty +U T +U,T )+

XXXX X 7 UXXX X 7 Xuux x uuxx

3( 2u 1, T 0T ¥ UT,, )t

XXX T uux Xuux
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4
+u xruuuu )+( uxmru +umeu +uxuxxxruu )+

(3u2,u T +uleT

XX 7 uuu Xuuu

3( U T +uxxTxux +uxuxx7'-uux )+3( ( u3xx +uxuxx )Tuu +uxuxxrxuu +u2“"uxxruuu )

D (E)=E e + G i 8 Er +1, e )+
3( zuxuxxguux + uz"'fxuux + uSIé:uuwc )+
( 3u2xux.x§uuuu +u3x§xuuu + u4x§uuuu )+( uxxxxgu + uxxxgxu + uxuxxxé:uu )+

3( uxxxé:ux +uxx§xux +uxuxx§uux )+3( ( u3xx +uxuxx )guu +uxuxx§xuu +u2xuxx uuu )

2.5 Lie Algebras

Definition 2.5.1

Consider a k -parameter Lie group of transformations of partial differential equation with
infinitesimal generators {v,.} 1=123......... k
The commutator [Lie bracket] of v, and v, is another first order operator defined by

l"i ’ijz ViV, —Vv;

1

S (602 [602) {a0Z)a0Z] ) esn
From (2.5.1). it follows that

(R = Y skew-symmetry (2.5.2).
Theorem 2.5.1[Second Fundamental Theorem of Lie]

The commutator of any two infinitesimal generators of a k -parameter Lie group of

transformations is also an infinitesimal generator, in particular

v, v,z e, 2.5.3).
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~ where the coefficients "<t R are called structure constants, i,j,n=1,23,..... k

- For any three . infinitesimal generators V; ,v; ,v, itis always true that

R P A I VAN A N B (2.5.4).
For proof, see Olver [18 ]

Equation.( 2.5.4) is known as Jacobi's identity

Results (2.5.1), (2.5.2) and ( 2.5.3) yield the third Fundamental Theorem of Lie given below.

Theorem 2.5.2 [Third Fundamental Theorem of Lie]

The structure constants ,defined by the commutation (2.5.3) satisfy the relation s

& =—c; (2.5.5a).
i clu + il +ctucly =0 (2.5.5b).
and

[avi+ ;v 1=al v v, [+l v, v, Ll veav+ o, 1=l v v, [+ Bl v, |
For proof, see Bluman and Kumei [4 ].

For infinitesimal generators {v,} i=1,2,3,.....n defined above, bilinear property satisfy
the commutator equations

[avi+ B vy =alvi,v, 1+ Blv, v |

[v,., v+ P, ]=a[ Vi,V ]+,B[ Vi, V, ] (2.5.5¢).

Definition 2.5.2

A Lie algebra , L ,is a vector space over some field F with an additional law of
combination of elements in L (the commutator) satisfying, skew-symmetry , Jacobi' identity,

and the bilinear properties.




~ Example 2.5.1
Consider the 8-parameter Lie group of projective transformations in R’:

[(1+ 53)x+84y +85]
[81x+52y+1]

B (x,yc)=

2 *__Y( '8.)= [86x+ (1+87)y+88]
Al [e,x+&,y+1]

T I N— 8,6, € R with infinitesimal generator V' of the form

0 0

V=&x,y)—+nlx,y)—.

&) - +nlx.) %
From theorem (2.2.2) we obtain the generator

0 0
Vz(glx2 +82xy+g3x+e4y+85)a—+(Elxy+82y2 +€6X+57y+8s)'5y“ ”
X

Then the infinitesimal generators for the corresponding Lie algebra , L* are

B 2 +xa . 0 zav_xa i 0

1 a ya ) 2 ’-Oax y ay, 3 ax >V 4 yax»
0 0 0 0
vsza—,v6=x—, V=Y — ,Vg=—.

Below is the table for the commutators of the Lie algebra L* whose (i, j)th entry

is [v,, v; ]

[v,. , ij= vV, —viv].=0;i =y i =123 8.

S (I 3 AU G T QU WA B R
[Vl ’Vs]_ ViVs = VsV, (x ax+xy6y )( o )( )(x 5x+xy5y)

ox Oy

[Vx ,v2]= VgV, —V, Vg
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Other Lie brackets are computed similarly.

. ;Fhe corresponding Lie brackets table constructed is shown below.
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[v,,vJJ v, Vv, ¥y v, ' Vi B ¥y
v, 0 0 Y 4 v, =2v,-v, 0 0 -V
v, 0 0 0 0 -V, v, -V, -v,-2v,

vy 0 0 v, -V Ve 0 0
L&
v, Yy 0 Yy 0 0 R -V, -V
v, p A Yy Y 0 0 Vg 0 0
v 0 -V, -V -v,+y, ¥y 0 Vi 0
v, 0 v, 0 ¥y 0 Vi 0 -V
Vs Ve v, T2v, 0 Vs 0 0 Ve 0

Table 2 [Lie bracket for (L° )]

It should noted that the Lie bracket table can be used for finding additional infinitesimal

generators.
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CHAPTER 3

LIE GROUPS AND DIFFERENTIAL EQUATIONS

3.1 One Parameter Groups on The Plane.
Let us consider a change of the variables x,y involving a parameter &:

L x=0(xye), 7=wxye) (3.1.1)
with functions ¢ and y such that
T, =% = p(x,,0), 5 = y(x, ,0) 3.1.2)

It is assumed that (p(x, ¥, 8), and y/(x, y,g) are functionally independent, i.e. their Jacobian does

qox Q)y
V.Y,

not vanish =0 .

One can treat the equation (3.1.1) also as a transformation that carries any point P = (x, y) of
the (x, y) - plane into a new position P = (,%) and write P = T,(P). Accordingly, the in;/erse
transformation:

T, givenby T7.: x =0 '(x,7,¢), y =y ' (x,7,¢) (3.1.3)

P,

returns P into original position P, i.e. T~ (P)
Furthermore, the equations (3.1.2) means that 7, is the identical transformation 7, i.e.
T,(P)=P.

Let T, andT ; be two transformations of the form (3.1.1) with different values & and 6 of the
para;;neter. Their composition (or product) T; 7, is defined as the consecutive application of
these transformations and is given by

x = 9(%,5.6)= plp(x,y.€), y(x.7,¢), 6)

y =v(x.5.6)=vlo(x,y.6), v(x,v,¢), 5) (3.1.4)
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The geometric interpretation of the product is as follows. Since 7, carries the point P to the
] point P = T,(P), which T , carries to the new position P=T e (P_ ), the product7; T, is destined

‘to carry P directly to it’s final location P , without a stopover at P . Thus, (3.1.4) means that

ng T5<1_)):T5 7,(P)

Definition 3.1 .1

~ The one parameter family G of transformations (3.1.1)

obeying the initial condition (3.1.2 ) is called a one parameter group if G contains

- theinverse (3.1.3 ) and the composition 7; 7, of all its elements; 7; T, =T, ;.

The latter condition, invoking (3.1.4 ),may be written as:

olp(x.y.).w(x,v.£) .6)= p(x,y,6+5) }

v(p(r,y.) .w(x,.¢), 5) = w(x,y.e+5) (3.1.5).

3.2 Lie Groups and First Order Ordinary Differential Equations

Definition 3..2..1

The group of transformations (3.1.1) is termed a symmetry group of an ordinary differential
vy
equation, — = f(x,
q =)
if the form of the differential remains the same after the change of variables (3.1.1 ). It means
“dy — =\ . . . .. :
that = = f(x,7) with the same function f as in the original equation. A symmetry group of a

differential equation is also termed a group of admitted operator or an infinitesimal symmetry of

the equation in question.
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"' - Example 3.2.1
It is evident that the equation y' = f (y) does not alter after the transformation x* = x + £ since

the equation does not explicitly contain the independent variable x. Therefore the symmetry of

this differential equations is given by the group translations along the x axis, x* = x+¢

with the generator X = &
Ox

Likewise the equation y' = f (x) admits the group of translations along the y axis,

yi=y+e

with the generator X = 9

3.3 Lie’s Integrating Factor

Consider a first order equation written in the symmetric form
M (x,y)dx+ N(x,y)dy =0 : 334

Lie showed that if

= g(x,y)%wL ﬂ(x,y)%

is a symmetry for equation (3.3.1) then

p= (M -nN)" (3.3.1a)

is called Lie’s integrating factor.
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8 Example 3.3.1

g . 0 . .
‘We consider X = x%— y-f; a symmetry generator for the Riccati’s equation

E 2
y+y'-—==0.
=

) 2 . : :
Substituting into (3.3.1) £ =x,n=—y,M =y’ - = ,IN =1 we obtain the integrating factor

(33.1a) as; u=—— o

. After multiplication of the Riccati’s equation by this factor it
Xy —xy—2

xdy+ (xyz - Z)dx
) _o

Xy —xy—2

becomes :

Let us rewrite it in the following form for integration:

xdy + ydx- +£ 1. xy-2

s =d(Inx+—1In Ye=k),
¥y —xy—2 x 3 xy+1
. . . xy-2 C ) r . .
The integration yields: 3 = —, hence solving for y, we obtain the solution of the Ricatti’s
' Xy + X

equation as

2%’ +C
y=——7——, C-constant.
x(x—=C)
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3.4 Lie Groups and First Order non-linear Ordinary Differential Equations

3.4 .1 Introduction

Solving non-linear ordinary differential equations(ODEs) is dominated to a large extent by
various methods as may be seen from the collections by Kamke [ 11 ], Murphy [ 16 ] and
Tbragimov [10] .

The main deficiencies of these approaches are well known Roy [ 32 ]. If an equation is not
used exactly as given, it is almost useless in most cases. Worse still if an equation cannot be
solved by applying these collections or the various methods described there, it is by no means
guaranteed that a closed form solution does not exist. For first —order equation the situation is
even more intricate because in addition to the computational complexity there is the principal
problem that there is no decision procedure for the existence of nontrivial symmetries of a
general equation of this kind.

Contrary to( ODEs ) of first order, the existence of nontrivial Lie symmetries may always be
decided for higher- order equations. Some procedures concerning symmetry analysis of ordinary
differential equations may be found in standard text books publications like Olver [18 ], Bluman
and Kumei [4 ], Ibragimov [10 ] or Sophus Lie [13 ].

Let us now discuss the symmetry analysis . of first order (ODEs) of the form :
d—y+r(x,y)=0 (3.4.1)
dx

The symmetry analysis procedure will require that, r (x, y) be restricted to polynomials in y and
rational in x. The symmetries to be considered those point transformations that preserve the
structure of the given equation,; i. e. the transformed equation must again be polynomial in the

pendent variable of the degree in the same degree in the first derivative.
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- This requirement entails the general form x = f(u),y = g(u)v + h(u) for the admitted point

.' transformations; the corresponding symmetries called structure corresponding symmetries.
Abel’s equation is the simplest equation in this category beyond the well known cases r(x, y)
linear or quadratic in y.

In this section we deal with the first order non linear (ODEs) known as Abel’s equation. This

equation was introduced by the Norwegian mathematician Abel and is usually written as

Y+a,y o,y +ay+a, =0,y :%,ak =a,(x) for k=0]123 3.42)

This equation (3.4.2 ) is referred to as Abel’s equation of the first kind. A second equation

Y+ B y3 +ﬂzy2 +ﬂ1JJ>/+ B, =0, B =px), g=g(x) 343)
y+g

which is usually known as Abel’s equation of the second kind, may be reduced to (3.4.2 ) by

variable substitution change y=——0=—
v(x)

such that

a; = f, g3 -a,g+ pg-p,
o, =g -3B8" +2B.g-
o, =36g- 5

a, =—p;

(3.4.4)

Definition 3.4 .1
The rational normal form (RNF') of equation (3.4.1 ) with r(x, y) rational in its arguments is the

equation with the minimum number of variable coefficients that may be obtained from it by

rational transformations in x and y.
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Lemma 3.4.1.

There are two different possibilities for the (RNF) of Abel’s equation (3.4.2 ).

d
Case (a) —y+Ay3+By=0 .
dx

' dy 3 :
Case (b) E+Ay +By+1=0 with 4= 4(x), B= B(x).

(34.5)
The coefficients 4 and B are determined as follows;
Introduce a new variable function v into (342 ) by
¥ =v— hence y' =v'— %y
3a, ( 3a, )
and equation (3.4.2 ) becomes
vV +bv +byv+b,=0 (3.4.6)
a,’ oo 2a,’ a '
with b, =a,,b =, ——— ,by=q,———+—5—| —
a, 3a,  27a, 3a,
If b, =0 then first alternative is obtained by, with A=a,, B=b,,.

1.e. VvV +b,v* +bv=0 (3.4.7)
For the other alternative we introduce again a new functionw by
v=byw , V' =b,w' +b'w, ,which leads to

dw 5

“— + AW’ +Bw+1=0 (3.4.8)

dx

) by
A=b 0b3, B=bl ==,
bO

Equation (3.4.7) is a Bernoulli equation which reduces to
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2Bv—2A4 =0 first order linear solvable:

=§(2jﬁdx+ Cj L
B
a
‘Theorem 3.4.1 (a)
: dy 3 _
- The equation (RNF) . + Ay’ +By=0

1 always admits the two nontrivial generators:

B B (4
4 =E(ax _Byay) Vs = IEdX(ax —Byay)——%a

y

For proof see Schwarz [34]

Theorem 3.4.1 (b)
; dy 3
The equation (RNF) = + Ay’ +By+1=0
: A'-34AB+#0
admits symmetry group with infinitesimal generator

v =——:4§(3A6x — A'y0,)

The case when
A - 34B=0
then the equation admits the generator,

1 Ay
TOx T4 9,
A3 343

For proof see Schwarz [34]

A
If and only A and B B satisfy. A= K(B —3_A) K #0.

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12 ).
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3.4 Determination of Infinitesimal Transformations
for First Order Ordinary Differential Equations

~ In this subsection we seek to determine the two variable functions £(x,y) ,7(x,y) known as

infinitesimal transformations whenever

| o 0
Xzé:(xay)gx—*_na' 5

is an infinitesimal generator for the first order ordinary differential equation

¥ = f(xy).

It therefore follows that ,

n=n,+@, -& ) -&,0'F » (3.5.1)
Theorem 3.5.1

Given the first order ordinary differential equation

¥ =flx,y)

admits one parameter Lie group of transformation with infinitesimal generator
X=£a) 2+ n(x,y)% (3:52)
if and only if

n® =& fo+nf,, when  y'=[(xy) (3.5.3)
Thus comparing (3.5.1) and (3.5.3) the first order equation admits (3.5.2) if and only if
(g,n) satisfy

n" —nV=n,+0, -& =&,V -€ £, +1f,)=0

hence,

no+(, &b =&, 0 - € f, +1f,)=0 (3.5.4)
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is the desired determining equation for the infinitesimal transformation (3.5.2)

d_y+”(xy)=0<:>d—y—_ n _
A - =7(6y) = f(x,y) replacing f by —r and

y' by —r by we arrive at
7]x+gxrx—§yr2x+§rx =0 (3.5.5)
which is the determining equation for the infinitesimal transformation for the Abel’s equation

d
2 () =0.
dx

According to Bluman and Kumei {4} any substitution of the form 1 = f§+ x o

n =-r&+ x is knownto have infinite solutions ,where as 17 = f& yields trivial solutions.
But 77 =¢,(x)+,(x)y ,E=£&(x) gives non-trivial solutions Schwarz [34].

Applying n ,& for the non trivial solutions on case (a); (RNF)

& _ ~{ 4y’ + By }=- r(x,y) and further by equating to zero coefficients of, y"

dx

settingg, =0 ,4, =¢ leadsto equations

6+ &+ (log A€ =0, ()

(¢+B&) =0 (ii) (3.5.6)
-

6+ 2&+ (08 4YE =0, 0

[ &'+ ((logA)-2B)&] =0 (ii1) (3.5.7)

Integrating (3.5.7 ) we obtain,

£ =%ezf""*[ C, jAe‘ZI”"dx +C, |



* Casel:C,=0,C, =1 then

R Al
: oy A A
Case2: C,=1,C, =0 then
0 0 B ¢4 A = 2[Ba
L - tn— =— |—=dx ,g=— |—dx——y;B =
zﬁanayéABnAIBxye
B |0 B 0
- — )—-( By )
A " Ox A Oy
B (4 0 Bd, 1 0
h=( 2 e )L (2 Aty )2
A°B 0 A°’B 2° "oy
Example 3.5.1

Consider the Abel’s first order ordinary differential equation

w +2y +x=0.

yw' +2y +x=0 is Abel’s equation of second kind which is first transformed to
y - xy3 —-2y® =0 - Abel’s equation, first kind

then further transformed into (RNF)

. 4
y f—

2 ..
i y’ —§y2 +1=0 (i) of type (b).

4 2
ldy +( — o2y 1 )dx=0
d ( 724x3y 3xy )d

Ndy +Mdx=0 (i)

. 4 5 2 3
re. N=1, M=( - 25 41
( 724x° 4 3xy )

Then the infinitesimal generator

'V:( “34B )55_(___374'§j:y
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0 o .. _
V=(-3x ~)5;~(3y)5-cf— 3% ,=-3y

- The Lie’s integrating factor ¢ for equation (ii) becomes

1 2 !
_ - o _ . 1
e [-3x=3y( - xy+)]

Multiplying equation (ii) by x and integrating, yields the solution curve
27x

y_9x 62y+9x =C
x(2y+9x)

Example 3.5.2

The first order ordinary differential equation
x3yl __y3__x2y:O
is an Abel type of equation.

This is Abel’s equation of first kind which is first transformed to

then further transformed into (RNF)

: ——%y3—1y=0 (ii) of type (a).
x x

Ndy +Mdx =0 (1i1)
e N=1, M=( —%y3—1y )
X X

Then the infinitesimal generator

ox A )oy
B 4 o (B 4 0 G
=( 2 fha )2 (BB + 1|2 ne) 2 01 26 = ox =
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V2=(—x )i_'(y)(x—4 +2_1)%:§z ==X .1, =_y(x'4 +2_1)

_L ox

~ The Lie’s integrating factor u for equation (ii) becomes

= [-y-x( —;—3y3~%y ) I

3.6 Lie Groups and Partial Differential Equations

3.6.1 Transformation Groups of Partial Differential Equations

Definition of a symmetry group for partial differential equations is the same as that for ordinary
differential equations.

Let us consider partial differential equations of them —th order

u, =F (@, x,u,u_u_ ... u,,), 8F|8uxm #0. (3.6.1)

Definition 3.6.1

A set G of invertible transformations of the variables, 7, x, u, :

t = f(t,xu,&),x = g(t,x,u,&),u = h(t,x,u,c), (3.6.2)

is called a one parameter group admitted by the equation (3.6.1), if G contains the inverse to

it’s transformations, the identity 7 =¢,X = x,u =u, as well as the composition:

f(,x,u,8) = f(t,x,u,e+95),

g(t,x,u,0) = g(t,x,u,e+9),

Sl
I

W, %,7,8) = h(t,x,u,e+3),
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and if the equation (3.6.1) has the form in the new variables 7,x,u. :
— U I RTINS, u.,) (3.6.3)
The function F' has the same form in both

equations (3.6.1) and (3.6.3).

Again the construction of the symmetry group G is equivalent to determination of it’s

infinitesimal transformations
txt+er(t,xu), x=~x+elt,x,u), u~u+en(t,x,u) (3.6.4)
obtained from (3.6.2) by expanding into Taylor series with respect to the group parameter &

and keeping only the terms linear in & . The infinitesimal transformation (3.6.4) provides the

generator of the group G, i.e. the differential operator

0 0 , 0
b = r(t,x,u)a+§(t,x,u)a+n(t,x,u)5; (3.6.5)

acting on any differentiable function J(¢,x,u) as follows:

X (J ) = T(t, x,u)Z—{ £ é(t,x,u)Z—J > n(t,x,u)Z—J .The generator (3.6.5) is called an operator
X u

admitted by equation (3.6.1) or an infinitesimal symmetry for equation (3.6.1). The group

transformations (3.6.2) corresponding to the generator (3.6.5) are found by solving the Lie

equations ar (t,%,1), L o7, %), @z _ n(t,x,m),
de de de
with the initial conditions: ¢, , =¢, X, =X, U, ,=U (3.6.6)

Any symmetry transformation of a differential equation carries over any solution of differential
equation into it’s solution. It means that, just like in the case of ordinary differential equations,

the solutions of a partial differential equations, are permuted among themselves under the action
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of a symmetry group. The solutions may also be individually unaltered, then they are called
invariant solutions. Accordingly, group analysis provides two basic ways for constructions of

exact solutions: ] j
lutions: group transformations of known solutions and constructions of invariant

solutions.

3.7 Invariant Functions

Definition 3.7.1

Acurve F(x,y)=0 isan invariant curve for transformations (3.1.1) if and only if

2 (35,}) =0 whenever F(x, y)=0

Theorem 3.7.1

A surface written in a solved form F (x)=x,-f (35 0 5,V s Pyt y ,)=0is an invariant

surface for (3.1.1) if and only if
0 ) '
VF(x)=0 whenever F (x)=0: Vv =&(x, y)(—a— +7(x, y)—a—y— (3.7.1)
x

For proof, see Bluman and Kumei [4]
Theorem 3.7.2

A curve written in a solved form F (x,y)=y-f (x)=0 , is invariant curve for generator
0 0
V = V)~ SV )~
£l S+l

ifandif VF(x,y)=n(xy)- E(x,y)f'(x)=0 } (3.7.2)
whenever F(x,y)=y-f (x)=0

For proof ,see Bluman and Kumei [4]
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Definition 3.7.2

(i) A function F (x) issaid tobe invariant function of the group of transformations (3.1.1)
iff for any group , F(x*)= F(x)

(i1) A curve F (x, y) =0 ,issaid to be invariant curve for a one -parameter Lie group of
transformations (3.1.1) iff F(x*,y*)=0 when F(x,y)=0

Using results of (i) and (ii) we can solve (3.7.1) for the Lie group of transformations.

Example 3.7.1
We consider the Lie group of transformations,

x*=X(x,y;8)=ex y*=Y(x,y;6)=e*y 3.7.3)

T 0
with infinitesimal generator, V' =x—+ y—.

ox oy

Acurve , y—Ax=0,x>0,1 = constant, is said to be invariant curve for (3.7.3 ) since;

V(y—/lx)=xa(y_/lx)+ya(y_’h):

Ox oy

—Ax + y which is only equal to zero if y—Ax=0.

3.8 Invariance of Partial Differential Equations

In this subsection we apply infinitesimal transformations to the construction of solutions of
partial differential equations (PDEs). We will consider systems of (PDEs) and show that the
infinitesimal criterion for their invariance leads directly to an algorithm to determine
infinitesimal generators ¥ admitted by a given partial differential equation. Invariant surfaces
of the corresponding Lie group of point transformations lead to invariant solutions (similarity
solutions) Ibragimov [10]. These solutions are obtained by solving partial differential equations

with fewer independent variables than the given (PDEs).
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First we consider a k" order partial

differential equation in the form

; F(x,u,ul,uz,u3 ....... N )=0 (3.8.1)

‘:- coordinates corresponding to all the j—¢h order partial derivatives with respect to x.

In fact equation (3.8.1) becomes an algebraic equation which defines a hyper -surface in

written in solvable form in terms of some k” order partial derivative of u :
Fx,u,u,,u,,u...... )= Wit s mdy f(x,u,ul,uz,u3 ....... u, )=0, (3.8.2)
where f(x,u,u,,u,,u;....... ,u, ) does not depend on Uiy gy *
Definition 3.8.1

Let F,(x,u,u,,u,,u,.eytt, )=0 ,r=123............. / (3.8.3)

be system of differential equations. The system is said to of maximal rank if Jacobian matrix

oF, ,ﬂ of F' with respect to all the variables (x, u) is of
ox, " ou, :

i | whenener FGOWMG M ey =0

Definition 3.8.2

The one-parameter Lie group of transformations

x*= X(x,u;6) | (3.8.4)
w* = U(x,u;€) (3.8.5)
Jeaves the partial differential equation (3.8.1) invariant if and only ifits k — th

extension,

where x = (X;,%,, 25 recerernnns ,x, ) denotesn independent variables, u ; denotes the set of

(x,u,u1 T ,um) - space. We assume that the partial differential equation (3.8.1 ) can be
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Bt ou *ou s u,* leaves the surface F(x,u,u,,u,,u,

1
invariant.

Theorem 3.8.1

LetG be a Lie group of transformations acting on 7 — dimensional manifold M . Let

F:M — R',l<m ,define a system of algebraic equations
Fx )=0,r=1,23..... !
and assume the system is of maximal rank.

Then G is a symmetry group of the system ifand only if

V[F(x)]=0,r=123.... I whenever F.(x )=0 for every infinitesimal generator

V' of G.
For proof ,see Olver [18 ].
Theorem 3.8.2

Let

Fr(x,i,t,ul,uz,u3 ....... U, )=O ST =123 renennenes /

be a system of partial differential equations of maximal rank defined on M . If G is a group

of transformations acting on M and

VOL Fxu® ) 120 ,r =1,230ce 7,
where

F(x,u® )= F(r,uuy,t5,t...ooou, ) whenever Fx,u® )=0

for every infinitesimal generator V of G,
then G isasymmetry group of the system of partial differential equations
Fleu® )=0,r=123,....1 .

For proof ,see Bluman and Kumei [4 ]
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- Now we give a criterion for the invariance of a
partial differential equation.

. ’Theorem. 3.8.3

et

\F,(x,u(") )=0 be anon degenerate system of partial differential equations.

Let

0 0
4 :z;i(x,u)aﬂu n(x,u)a—u (3.8.6)

be the infinitesimal generator of the one-parameter Lie group of transformations
(3.8.4),(3.8.5)

and let

........... + ﬂ(k)iliz.“..ik (x, UyUy Uy, Uy )—i— (3.8.7)

7 = D= (D&, lyi =123, (3.8.8)
and 7Y, i, .is given by

ﬂ(k)i,i2i34i5 ............ i-=D, n(k_l)i,% ..... iy —-(Dik $; )”i,iz.‘.‘ik,, ; (3.8.9)
i, =123 JOF, f =123,k With & =123 in terms of (f(x,u),n(x,u)).

Then a connected local group of transformations G of the form; (3.8.4), (3.8.5) isa
symmetry group ofthe system of partial differential equations

if and only if
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V(k)[ F,(x,u(k) ) ]= 0 7 =123 5000 !/ , whenever F(x,u(k) )= 0 (3.8.10)

Proof
Sufficiency condition.
We assume that

V(k)[ Fr(x,u(k) ) ]= 0,r=123........ [ , whenever F(x,u(k) ): 0, such that

Fr(x,u(" ) )= 0 is anon degenerate system of partial differential equations, for every
infinitesimal generator V' of G .

Then we need to prove that group G is a symmetry of system of partial differential equations
F,(x,u(k) )=0.

Since the system of equations F,(x,u(") )= 0 is non degenerate i.e. is of maximal rank then
by theorem3.82 , V® the k - th extension of V leaves F,(x,u(k) )= 0 invariant and
hence G isasymmetry of system of partial differential equations

E(x,u(k) )= 0

Necessity of this condition.

We assume that

F,(x,u(k) )= 0 is anon degenerate system of partial differential equations and that a

connected local group of transformations G of the form; (3.8.4), (3.8.5) acting on open

subset M c X xU is asymmetry group of the system of partial differential equations

F.(xu® )=0.
We need to prove that
V(k)[ Fr(x,u(") ) ]=0,r=123... [, whenever F(x,u(") )=0.
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- From theorem 3.8.1 it suffices to prove that the subset 8. =1 F (x ul®) )=0 }is an invariant

subset the prolonged group action G* whenever G transforms solutions of the system to

other solutions.

et (xo,uo(k) )eSF .

Using local solvability , let u = f(x) be a solution of the system defined in a neighborhood
of x, suchthat u*) =(f(x)}" .

If g is agroup element such that g(")(xo,uo(k) ) is defined , then by approximately

shrinking the domain of the definition of f*, we can ensure that the transformed function

—

f =g.f is awell defined function ina neighborhood of X, , where

(2077'70(1() ): 8- (xo’uo(k) )

Since G is a symmetry group, u = f(x) is also a solution to the system.

More so by the condition of prolonged group action,

g0 ) =0, (e NG =i ) -

Hence transformed point (8,2, ) must again licin S, , thus , Flx,,u," ) = 0.
In general

ern® ) = NE) = )

Hence transformed point (5,2 ) must again licin S, thus Flx,u" ) =0.
Hence g¥(F(x,u®))=0, since Flr.u ) =0.

So without loss generality we obtain ,

This completes the proof.
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3.9 Invariant Solutions

| If a group of transformations maps a solutions into itself, we arrive at what is called a self-
similar or group invariant solution [ Ibragimov [10], Stephani [36] ].

Given the infinitesimal symmetry (3.6.5) of equation (3.6.1) the invariant solution under the
one —parameter group generated by a generator V are obtained as follows.

We calculate two independent invariants J, = k(x,t) and J, = u(x,t,u) by sblving the equation

r(J) = f(lf,x,u)g—i+~§(t,x,u)g—‘]+77(t,x,u)—gi =0 (3.9.1)

X u

or its system of characteristics

d_ dx _ du | (3.9.2)
r(x,t,u) g(x,t,u) n(x,t,u)
Then we designate one of the invariants as a function of the other e.g.
p1= (k) | (3.9.3)

and solve (3.9.3 ) with respect to u .Finally we substitutes expression for u ,in equation (3.6.1)
and obtain ordinary differential equation for the unknown function ¢(k) of one variable. This

procedure reduces the number of independent variables by one .
Example 3.9.1

We discuss the invariant solutions of the heat equation #, = u__ under the group generated by

the infinitesimal generator X = 2f— —xu—.
ox ou
It can be easily shown that the heat equation #, = u__admits the infinitesimal generators
V; :—6— s Vs :_a— > V3 :ui s Vy =xi +2t2 2
ox ot ou ox ot
0
Vs = 2t——q~ —XU— , Vg = 4txi +4¢° g [2ut + x*u ]_8_
ox ou ox ot ou
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- There are two independent invariants for X . One of them is ¢, while the other is obtained

~ from the characteristic equation

Integrating the equation yields the invariant

X2

J =ue* .Consequently one seeks the invariant solution in the form J = ¢(z) , or

= ¢(t)e_; :
Now substitute this expression into the heat equation u#, = u _ .We have the first order

ordinary differential equation

dt 2t

<

It follows that ¢() = £, C — consant .

Vi
Hence the invariant solution is

xZ

u= Te 4 C— consant
t

Example 3.9.2

We examine the invariant solutions of the partial differential equation u, =wuu_+u_

under the group generated by the infinitesimal generator V, = xgax- +2t2 — ui.

ot Ou

Note that the partial differential equation u, =wuu_+ u_ ,admits the infinitesimal generators

53



| o ,0 0
o= ix— +1"— —[ ut+x ]—
ox ot Ou

‘ 0
- For the infinitesimal generator V, = x— +2tE g,
ox ot  Ou

the corresponding characteristic system
dx _dt  du

Bkl Dt u

provides the following invariants; o =% i =uAlt .
t

Consequently one seeks the invariant solution in the form

u =Tw(a) ,Q =%. Substituting u , u, ,u_, u_ intothe partial differential equation
t 1

u,=uu, +u_,wearrive at the second order variable coefficients ordinary differential

equation

n 3 1 ’
V' w4 (ay'-y)=0.

Integrating once , one has
’ 1 2
7 +5(l// —0!!//)=C.

Let C=0

then we obtain the invariant solutions of the partial differential equation

u,=uu, +u, as,

2

2 e 4t
u = , B arbitrary constant. .

)
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3.10 Group Transformations of Solutions

The method is based on the fact that a symmetry group transforms any solutions of the equation
in question into solutions of the same equation. Namely, let (3.6.2 ) be a symmetry

transformation group of the equation (3.6.1), and let a function u = d)(x ,t) solve the

equation (3.6.1). Since (3.6.2) is a symmetry transformation, the above solution can also be
written in the new variables: & = ®(x, 7).

If w,x ,t aregroup transformations of the partial differential equation‘ (3.6.1) with u , of
the form u = ‘P(u,x,t,g), for some explicit function ¥, then applying the_inverse mapping, the
new symmetry solution # is defined by @ = ¥(®(g, " (¥),2,” (1)) g, (¥),g,” (?),& ™) where
u = ®(x,t) is any known solution of (3.6.1).

Having solved equation (3.6.6) with respectto u we obtain a one parameter family (with a |
parameter &) of new solutions to the equation (3.6.1 ) as

ca=lole, @8, O)e @re @) (3.10.1)

Example 3.10.1

Consider the infinitesimal generator V; = xtga— +12 T (tu+ x)@i admitted by the partial
X u

differential equation u, =uu, +u, .

| . [ - dx _- du -
The Lie equations have the form —=177, L ; . —(tu +X)
v de de
Integrating these equations yield the groups,
B - t —
F=— o = MU =u(l-&t)—¢ex
l=&1 l=&t
Hence we obtain the inverse mappings,
£ = ! I _ &
x‘l(x): e (t) = U= u+
1+et l+et l-gt l-gt

s = O(%,1), # = lI’(u,x,t,g) and finally our new solution based on the inverse groups,

- = t -
=2 =l @=u(l-&)- e takes the form
1+ &t 1+ &
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i=v(ole, @8 0O)g. @8, (.)
and we obtain the new symmetry solution
— & " 1 @ [ X ’ t ]

l+a l1+a l+a 1+a

where @[ x,¢ | is any known solution of the equation.

Example 3.10.2
We examine the groups admitted by the heat equation #, = u__ and its corresponding new
symmetry solutions under the infinitesimal generator X = 2t—é— —Xxu o
X u
. : dx - du __
The Lie equations have the form, LRy , L —(xu)
de de

Integrating these equations yield the groups,

=x4let d=t M= ue_(mgzt):ﬁ(u,x,t,g) = P(u,x,t,)
Hence we obtain the inverse mappings,
- (8 Dok 1:'2 t)

X' (x)=x-26t ,:'(t)=t ,u=1ue

If u=®[ x,r | is any known solution of the heat equation then
i =¥l ®e O)e. @2 0.0)

= e ®(x —2¢t,t) is the transformed function in this case and without any loss of

generality, we obtain

il = e D(x - 2et,1)

as the new transformed solution.

Example 3.10.3
; Aonet 2 2, 20 4
Consider the infinitesimal generator v, = (x -y 4t )—+ 2yx—+2xt— — xu—
Ox oy ot Ou
2 2 2
admitted by the partial differential equation ¢ Zl B l: @ l: =0.
o~ ox° Oy

56



2 2 2
It can be shown that the partial differential equation 0 ? i L; 9 L:
ot~ ox~ 0oy
infinitesimal generators
v——a— v——a— v—g v-—xiJr i+t§~
T Y at Y m e b
: 0 o 0 0 0 0 0
e =s=Ppe—t— — WV, =f— Fx—, Y =f—%p— ,
ox oy ot Ox ot oy ~ ot
Vg = (x2 —y2+t2)i+ 2yx£+2xt—§— ~xu—a—,
ox Oy ot ou
v, =2xy——+(—x2 +y? +tz)—+2yt— —yui,
15} ou
Vo = 2xti+ 2yzf~(?—+(x2 +y? +z‘2)2 —tui,
ox oy Ot ou
0 0
vy=u— , v, =alx,yt)—v, =a\x,y,t
n = (vt} v, =alx..1)
For the infinitesimal generator
Vg = <x2 -y? +t2)—(?—+ 2yx£+2xt2 —xui,
Ox Oy ot Ou
the Lie equations have the form
df = % 5 5 =5 A o diL __
—=2xt, —=Xx'-y -1, ==2xy, —=—(X
de de 4 de 4 de (xz)
Integrating the corresponding Lie equations yield the groups:
7= t 7 x+$(t2~—x2—y2) 5=

1—28x—82(t2—x2~—y2)’

L7=u\/l—-28x—82(t2—x2—y2).

Then the inverse mappings are;

1—-28x—82(t2—x2—y2)’

= (0 admits the

<

1-2ex=—a P =~}
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t sl y)
- 1+2(¢:x—82(t2 -x —yz)’

<
Sl

=1+28x—82(t2—x2—y2) and = \/1—2$x—82(t2—x2—y2)

It u =(D[ By st ] ;1s any known solution of the wave equation with u = LP(u,x,t,g) then
a=v¥ole, @8, 0) e, @8, 0.¢)

Ox L,y ]
\/1+2$x—82(t2 -x —yz)

. =

is a new symmetry solution.
The next chapter illustrates the basic methods for determination of infinitesimals ,infinitesimal
symmetry and symmetry transformations where we discuss: Korteweg-de-Fries, two-

dimensional wave and the Boussinesq equations.
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CHAPTER 4

DETERMINATION OF SYMMETRY OF PARTIAL

DIFFERENTIAL EQUATIONS

In this chapter we illustrate the procedure for determining symmetry of partial differential
equations by discussing examples involving ; Korteweg-de-Vries, two-dimensional wave and

Boussinesq equations.
4.1 Korteweg-de-Fries Equation
Korteweg-de-Fries equation is a nonlinear third order partial differential equation of the form

ou Ou Ou

=3 ua:o (4.1.1)
We need to determine its infinitesimals, infinitesimal generators and all the groups it admits.
This equation arises in the theoryv of long waves in shallow water and other physical systems.
Here the required symmetry groups of transformations are of the form

t*=T(t,x,u;e), x*=X(t,x,u;¢), u*=U(t,x,u;&) (4.1.1a)

with corresponding infinitesimals

oX(t,x,u;¢e oT(t,x,u;¢& ou(t,x,u;¢e
E(t,x,u) = gh=O ,T(t,x,u) = Tt xu8) ceo Pt x,u) = U,xu;2) -
oe Oe oe
We let the generator V' ,of (4.1.1 ) be of the form
0 0 0
V=E@,x,u)—+1(t,x,u)—+@(t,x,u)— 4.1.1b
é(xu)ax (xu)at ¢(xu)au ( )

We determine all the coefficient functions & ,7,¢ so that the corresponding one-parameter Lie
group of transformations t* =T'(¢,x,u;¢), x* = X(t,x,u;¢), u*=U(¢,x,u;¢) form a symmetry
group of (4.1.1).

For the symmetry condition to be satisfied by (4.1.1) then
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ou Ou 8u
VO —+—=+u=— ]=0 412
[ o ox’ 6x ] ( )

ﬁsuch that ¥® is the third prolongation with

0 0 0 0 0
VO = E(t,x,u)—+7(t, x,u)— T P(t, 5, u) — +7F ——+ ' =+
5 xu)@x ( x”)at 9 ”)au 7 ou, 7 ou, 7 Ou

nxt a + ntti_l_nxxx 6 g 77xtx o+ 77 EE 77 +-77 .
Ou ou,, Ou ou . ou,, ou,, ou,,

xt XXX

Equation (4.1.2 ) becomes

B o) 2o, ) L o ) D gt Dy
: ox ot ou . u

nxx_____}_nxti_‘_ntt_
ou ou

XX xt

xxt 0 ttx 0 it 0 1
i S — —+—+u— |=0. 4.1.21
77 Ou 7 ou,, 1 ou,, ] [ o ox’ ! ox ] ( )

xxt

This can further be simplified to give

ou o'u ou ou o'u Ou
t = +u— |+7(¢ - +u— |+
f(x)x[& ] (xmt[& o on
ou ou Oou 0 ou 0Ou Oou
1,%,U)— te— ypt—f — = tu— &
MX)u[& e el ate s
i 0 ou 0u  ou w O ou 0Ou Oou
et | = +u— [t —[ =+ —=+u— |+
f Ou, [ o ox’ 0x ] 7 aum[ o ox’ ox
3 3
D[ Pu oy L0 P oy,
0 o 0 ox ou, Ot Ox ox
o O ou Ou  Ou w O ou 0u  ou
P s T N S
0 ot 0 Ox Ou, O ox Ox
o O ou 0Ou ou g O ou 0Ou ou
[ 2022 e D[ 2, T B,

Ou

xxt
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tt

3
7 +———+u—g—”i ]=0. (4.1.2i1)
X

2
ou, ot o’
Here we differentiate partially with respect to the partial variables u,,u _,

u u,.,,u u u u

xx:2 gL 2

u and u,¢,x as algebraic variables.

xt? xxt? xxx? xtx? xtt’uttt’

We obtain the infinitesimals condition to be
du +nu+n +n™ =0 | (4.1.3)

which must be satisfied whenever u, = —u__—uu_.

XXX

When (2.4.1a), (2.4.2a),and (2.4.7) are substituted into (4.1.3 ) we obtain:
b~ G+ (@, — T, — L, —r ] Hu gt

ul v+, &~ T, ]+

B+ 30 B + 30 B+ 30 B 10 B+ 3008, F 1,

—3u, (’L’m +3u.7,  + 3ux2rw +3u, 7, +3uu, 7, + ujruuu +u .7, )

=30, (8 e 30, B 30, G+ 30+ 30,0 By 10, B+ )
“3u(E + 2,8, ud, e E)

—3u,, (rm +2u., tu, 7, + uxzz'uu ) —3u_, (fx +u g, )

T R TR PN v

23 [ ¢tx + (2¢m — fm)ux —T.U, o (¢W - 2‘:;;“ »xz - 2Txuuxut - guuux3 (4131 )

2
Tl U+ (¢u - 2§x )M.Xx - 2Txuxt - 3§uu.xuxx - U, 2Tuu.vu)ft ]= 0

Onreplacing u, by —u_ —uu_ wherever it occurs ,and equating the coefficients of the various

monomials in the first , second and third order partial derivatives of u ,we obtain the resulting

determining equations for the infinitesimals for the Korteweg —de Vries equation (4.1.1): to be
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Monomial terms Equation

- T, 4u.r, =0 1)

U e r, =0 (if)

T ~3E =0 (iii)

uu,, - 7, =0 (iv)

Ul ¢.=0 v)

U,: 3¢, =39, (vi)

Uy G030 — 08, — 96, = (vii)

wls 3,..=0 (viii)

u: ¢ E+ [ g & b +34,, =0 (ix)

I P+ up + ¢ =0 (x)

Solutions of equations (i)-(x) yield the infinitesimals &, 7, ¢ as follows:.

E=c tet+e,x (4.1.4a)
T=c,+3c,t (4.1.4b)
$=c, + (-2c,u). (4.1.4c)

We express & ,7 ,¢ inthe standard basis form as

B R
E=1lc+0c,+tc;+lcix =c +ot+cex
7=0.c,+1l.c, +0.c;, +3.c,4 =c,+3¢ct > (4.1.5)

$p=0.c,+0c, +1lc; —2.c,u =c;+ (— 2c4u').
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We form the corresponding Lie algebra of the basis generators v, ,v,,v, ,v, in(4.1.5) ofthe

form

=¢ § 62 +, EQ . &, 7,, ¢ are the coefficients ¢, in the standard solutions

of £ ,7 ,¢.Hencethev,'s i=1,2,3,4 areobtained from the tabulation in equation (4.1.5) as

follows:
. R S L N YL N (4.1.6)
ox ot ou ox Oox ot ou

4.2 Lie Groups Admitted by Equation (4.1.1)

The one-parameter groups G, admitted the by the infinitesimal generators, v, , are determined

by solving the corresponding Lie equations which yield groups (4.2.1) shown below

Wenowuse v, ,v,,v; ,V, tosolve for each G, .

Thus

12 =§-; G;: X(x,t,u;g)—» Xl(x+g,t,u) (4.2.1a)
X

v, =%;G2: X(x,t,u;€) —> X, (x,2+ &,u) (4.2.1b)
0 0

v, =—+1t—;G;: X(x,t,u;e)—) X, (x+et,t,u+g) (4.2.1¢)
ou ox

0 0 0 ¢ e, -2
v, =xa +3t5 _2“5;;’(;4: X(x,t,u;s)—-) X, (e x &%, e u) (4.2.1d)
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4.3 The Wave Equation

The wave equation described in two dimensions is of the form

2 2 2
oo, 0% pu_ 4.3.1)

ot° ox~ Oy
We need to determine its infinitesimals, infinitesimal generators and all the groups it admits

.We let the infinitesimal generator V' for (4.3.1), be of the form

0 0 0 0
V= t, s Vs —F t’ s Vo —t ta s Vs o t, s Vs A 432
f(xyu)ax T(t,x,y ”)ar ﬂ(xyu)ay ¢(xyu)au (4.3.2)

Then we now determine infinitesimals & ,7, 77, ¢ so that the corresponding one-parameter

Lie group of transformations,

*=X,x,y,u;¢), y*=Y(t,x,y,u;¢) , t*=T(t,x,y,u;€), u*=U(t,x,y,u;&)
form a symmetry group of (4.3.1).
We know that the equation

2 2 2
yol 2322 94 ]
ot~ oOx~ 0oy

=0 (4.3.3)

is the symmetry condition for (4.3.1) and we observe that 7@ is the second prolongation

0 0 0 0 0
with 7@ = £, x, y,u) —+1(t, x, y,u) —+ u(t, x, y,u)—+ (¢, X, y,1t) —+1* —— +
E@t,x,y )ax (t,x,y )ar u( xyu)ay #( xyu)au n ou.
B2y L L L g L g 8 e O
aur auy auxx auyy auxt au)ty auxt 6uyt autt

Hence equation (4.3.3) becomes
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0 0 0 0 0
£,%,y, —*t7 1,x,y,u —+ [,X,Y, —+ LL,X,y,u iy e
[ Syt elon, y) ot o) o+ 4620 o

which must be satisfied whenever u, =u  +u,, .

When (2.4.5a), (2.4.4b) and (2.4.6b)are substituted into (4.3.4)

we obtain;

ou,
it a y a xx a yy a xt a Xy a xt 6 yt a it a
—+ + - +n"—+ + o+ +
Yo, T, T, b, o, " aw, " oow, | ou, ! ou, ]
[ azu_62u~62u ]_0
orF ot oy '
which takes the form;
o0 0u 0’u 0u 0 Ou o’u 0O’u 0
¢ t: s Vs P - - +7 taxa 5 . - - + taxs SU)—
Ltmrmg | om—an 57 Ieemrig | o757 Irutryug
o’u 0*u 0’u 0 0’u 0u 0Ou
[ 5 A2 5 ]+¢(t9x’yau)_[ L 5 ) ]+
ot° ox° oy Ou ot° ox° oy
. 0 o’u 0*u 0’u 0 [ ’u 0’u 0O’u
n [ 2 A2 A2 ]+77t [ SR A ]+
Ou, 0Ot ox~ Oy Ou, 0Ot~ ox° 0Oy
0 o’u 0’u o’u o O o’u 0’u du
n’ [ 2 A2 A2 ]+77 [ 2 A2 A2 ]+
ou, ot ox° Oy Ou, Ot° 0Ox° Oy
o @ [ 62u_82u_62u ]+ G [ 62u_62u_62u ]+
T, o o o ou, o o o
5 O [ Ozu_ﬁzu_ﬁzu ]+ w O [ 62u_82u_~82u ]+
T, o a au, o o o
., 0 1 O'u d*u d'u g O ’u d*u d’u
n’ [ i e — ]+77 ][ S ]: (4.3.33)
Ou, ~ Ot° Ox~ Oy ou,, ot~ ox~ 0oy
Thus we obtain the infinitesimals condition to be
n"-n"-n"=0 (4.3.4)
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2 2
¢tt +2ut¢ut +uﬂ¢u +tuQ,, —u, (gﬂ +2ut§ut +utt§u +u téuu)
2 2
uy (77” + zutnut +u,n, tuan, )_ut (Tﬂ + 2utTut +u,r, +u ’Tuu)

G zuxt (é:t + utfu )_ zuty (’7; +umn, )"' zutt (Tt +u,T, )

o, +2up, +u ¢ +u’g, —u ( +2ux§ux+uxx§u+u2x§uu)

—uy(nxx +2un, +u.n, +u xﬂuu) u (z'xx +2u.t, +u,T, +u2xruu)

B 206, + 0.8 )-2u,n, +um, )20, (5, +u7,) |

~[ ¢, +2u,4, +u,é, +u’\4, - ux( +2u &, +u, &, +ut i, )

—u (nyy+2uynuy+uyynu+u yT]uu) ,(yy+2u T, tU,T, +uyr, ) 4.3.5)
B S Ty A T A T

On replacing u, by u  +u, wherever it occurs ,and equating the coefficients of the various

monomials in the first and second order partial derivatives of u ,we obtain the resulting

equations for the Wave equation (4.3.1) as tabulated below i.e.

Monomial terms Equation

., g, + uxr; =0 (1)

U s r, =0 (i1)
u,’ 3£ =0 (iii)
Ul it 7, =0 (iv)
U e =0 )
u, 3. =39, (vi)
uu, +3¢,-65,-95,. =0 | (vii)
u’ 3¢,,. =0 (viii)
u, p-&+ [ 6, - & b +34,, =0 (ix)
1 Pt U+ 4, =0 (x)

The solutions of (i)-(x) yield the infinitesimals& ,7, 7, ¢ as below, Bluman and Kumei [4 ].
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L= Fex—cy+edte (x2 -y +t )+ 2¢,0p +2¢,xt (4.3.6 )

T=c,+cx+c,y+e,t+ cm(x2 +y° +1? )+ 2ty +2c,xt (4.3.6b)
n 4 le, +1le,y+lex+1l.ct+2.6xy+c¢, .(— x*+ 3yt + t2)+ 2.1t (4.3.6c)
¢ = (c“ =X =)= cmt)u + a(x,y,t) (4.3.6d)

a 1is an arbitrary solution of the wave equation.

We express & ,7 ,17 ,¢ inthe standard basis form:

N 2 £ \ \ \ \
E=1c, +0.c, +0.c, +c,x—csy+ct+0.c, +c|x” —y* +12 )+ 2¢c,xp +2¢,,xt +0.c;, +0.c
1 2 3 4 5 6 9 10 11 o

=0.c, +1l.c, +0c, +1c,y+lcx +0.c, +1.ct+2.coxy +c, |- x* + y* +¢% )+ 2.¢,,yt + 0.c;, +0.c
77 1 2 3 4y 5 6 7 8 9 10 i1 a

z=00g +0i, +1, +1le, 2+ 0k, +le.x+ 1o,y +20,x5 + 2.0, Jrcm.l(x2 +y? +t2)+ D&, +0e,

= 0.6, +0.6;+ 06y + 08, +0:€,++0i6; +0:6; = L&l xdi =&l yau=e:lue  + legtitle o

We form the corresponding Lie Algebra of the basis generators

vl ’v2 ’v3 ’v4 ’VS ’v6 ’v7 7v8 9V9 ’vlo ,vll ’Va Ofthe fOI’m
-~ 0 0 _ 0 ~0 = _ _ - ) )
v=(—+n—+7,— +d,— : &, 7, T,, ¢, arethe coefficients ¢, in the standard
Ox oy ot ou

solutionsof & ,7 ,77 ,¢ .

Hence the v,'s are obtained from the tabulation as follows:
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VV=— , V,=— ,V, = , Vy,=x— ty—+t—,
S 3 By P 4 y@y P \
0 0 0 0 0 0 0
Vs=—y—tx— t— ,vg=t— tx—, v,=t—ty— ,
ox Oy ot Ox ot oy - ot
Vv, = (xz—y2+t2)—+ 2yx—+2xt— —xui,
X ¢ Ou
v9=2xy—+<—x2+y2+t2)—+2yt——yui, >
o ou
0 0
v, =2xt—+ 2yt—+x* +y? + 12— —-tu—,
d x 4 ( 7 )6t ou
0 0
Vy=u— , v, =a\x,yt)—v, =alx,y,l
1 u ( b )8 ( b ) j

4.4 Lie Groups Admitted by Equation (4.3.1)

(4.3.7)

The one-parameter groups G, admitted the by the infinitesimal generators, v, , are determined

by solving the corresponding Lie equations which give the groups as beIow, see Olver[18]

v =§; G;1 X(x,y,t,u;g)—> Xl(x+8,y,t,u)
X
0
v, =5—;G2: X(x,y,t,u;e)—) Xz(x,y+g,t,u)
Y
0
Vv, =5;G3: X(x,y,t,u;g)—> X3(x,y,t+8,u)
v, =x§ +y§—+t§;; G,: X(x,y,t,u;s)—é X4(e‘9x,e*’y,e5t,u)
Vs =—ya%+x% t%; G;: X(x,y,t,u;g)—> Xs(x—g,y,y+gx,egt,u)
0 0 _
Ve =t— +x—; G X(x,y,t,u;s)—-) X6(x+51,y,t+gx,u)
ox ot

(4.4.1a2)

(4.4.1 b)

(4.4.1¢c)

(4.4.1d)

(4.4.1e)

(4.4.1f)
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Vv, =t§y—+y§;; G,: X(x,y,t,u;6)—> X, (x,y+et,t+5y,u) (44.1g)
I 0
. = (x -y  +t )-——+ 2yx—+2xt— —xu—; G,
ou
x+8(t2—x2—y2) y

X D 929 ; X 2 ’
% (.xytu 8)—) g( 1_23x_g2(t2—x2—y2) 1—28.x—82(12_x2"y2)

1—2gx—-gzt(t2 2 _yz)’“\/l‘z“’x‘gz(’z -¥-y") ), (4.4.1h)

5 5 8 o
vy =2xy—+=x+y* +17 ) —+2yt— —yu—; G
’ yax( 4 )ay g

X y+g(t2 —x* —yz)
1-Zey— P~ = p*) 1- 20— P - —52)"

X(x,y,t,u;g) - X9(

t
ul—2ey— &2 (2 — x> — 7 4415
1—28)/—82(12—)62—)/2) u\/ ‘c‘y € (t X y) ) (4.4.11)
0 0 0 0
Vio =2xt5x—+ 2yt5+(x2+y2+t2)5; —'tua; Gw:

o 4
1—25t—82(t2—x2—y2)’ 1—28t—52(t2—x2—y2)’

X(x,p,tu8) > X,

g2 D
1-ztg+f_(tg2(;_xy2—)y2) fi-201-2 -2 -7) ) @4.17)
7 :”56"; G,: X(ny.tue)—> X eyt et u) (4.4.1k)
u
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4.5 Boussinesq Equation

The fourth order nonlinear Boussinesq partial differentiation equation is described by

ou  ou _0'u &1,
= + +c u 4.5.1).
ot ox? p ox* ox? ( ) ( )
where « f,c¢  non zero- real parameters .

We need to determine its infinitesimals, infinitesimal generators and all the groups it admits.

The required groups of transformations will be of the form:

t*=T(t,x,u;e), x*= X, x,u;¢), u*=U(t,x,u;¢) (4.5 .2).
with corresponding infinitesimal transformations ¢, £, 7,  where;

oX\t,x,u; oT\t,x,u;& oU\t,x,u;
f(t,x,u):%)h:o, T(t’x’u)z_(-—a;u—)|€=0’ ¢(t,x’u)=%i) s

The infinitesimal generator of (4.5 .1) is
0 0 0
V=&t x,u)—+t(t,x,u)—+¢(t,x,u)— 4.5 .3).
é( )ax ( )6t & )au (4.5.3)
with once ,twice ,thrice and four times extended generators respectively as

bo) 0
vy @y s t,x,uu, u )—+ @ (¢, x,u,u, ,u_)—
¢( t x)a . ¢ ( t x)au

X

0 0
2 1 it ©x
y@ —pyo +¢ (t,x,u,ut,ux,u”,uu,uxx)a—+¢ & xu,u,u u, u,,u, )—-=+

it utx

¢xx(t,x,u,u,,ux,ux,,u,,,uxx)a—.

ped

V(3) _ V(Z) +¢m 0 +¢nx 0 + ¢xtx 0 +¢xxx 0
aum auttx auxvc auxxx

V(4) _ V(S) +¢tm 0 +¢tttx 0 4 ¢txtx 0 +¢txxx 0 +¢xxxx 0
aumt aumx autxtx autxxx auxxxx
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where n',n",n",n™, are known functions of the derivatives of ¢ & 7 and variables

ut’ux’uxt’utt’uxx

here subscripts denote partial differentiation
From (4.5.1), F =(u, —au, — pu,..)— 2c(ux2 +uu ) =0
By theorem 3.8.3 we have,

VOF =V (u, —om, — pu,.)- 2c(ux2 + uuxx) ]=0 when F =0 and so we obtain

a a a t a 2 a it a x a XX a tt a ttx a
—+T—+Pp—+ + + + - +¢" —+p"™ ——+
s ey o w w  wt w a  a
0 0 0 0 0 0 0
Xix I XXX s tt + ttx A xtx + xxx + XXXX
¢ auxtx ¢ auxx.x ¢ autﬂt ¢ auttlx ¢ autxtx ¢ autxxx ¢ auxxxx ]
X [ (wu,—au, —pu_ . )- 2c(ux2 2 uuxx) ]= 0 (4.5.4).
The infinitesimal condition (4.5.4) reduces to equation,
P" —2cPu, —4cu ¢* — (a+2cu)g™ — ™ =0 (4.5.5).

with ¢”, 9%, 9™ ,¢™" defined as in section 2.4 of chapter 2.

Substituting equations (2.4.2a), (2.4.4a), (2.4.52) and (2.4.8) into equation (4.5.5), we obtain

equation ,
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[ 6, + @ — 7 =&+, ~ 20, 0 = 28,1, -
guuu‘u o+ (¢u —21")14” —2§lu 3Tuutu11 uu, 26 uu, 20¢u_“

—4cu, {¢x —tu, +(@, —& )u, —éuuzx - z'"utux}

i (a + 2CM)[ ¢xx + (2¢xu - 6xx )ux - Z-xxut + (¢uu - zgxu)l 2Txuuxu fuu X
= Tuuuxzu! + (¢u - 2§x )uxx - zr,tuxt - 3é:uuxuxx - Tuutu ZT uu ]

u - xxt

—ﬂ[ —4uxm{ §x+ux§u } xxxt{ T, tu,rt, }

2 2
—4um{ gn + 2ux§ux +uxx§u +u X§uu } _4u,txt{ z-)cx + 2uxru.\' +uxxru +u xruu }

2
—4ux,(rm+3uxrm+3ux T, +3u T, +3uu 1, +u’'T, +umz'")

XXX T uu

S (o U B+ 30 E g A BU L B Ey U E U E

2 2 3
{¢xxxx + ux¢uxxx+3( uxx¢uxx + ux¢xuux + u, ¢uuxx )+3( 2uxuxx¢uux +u "¢xuux +u -‘7¢uuux )+
( 3u2xuxx¢uuu +u3x Xuuu +u4x¢uuuu )+( uxxxx¢u +uxx.x¢xu + uxuxxx¢uu )+
3( uxxx¢ux +uxx¢xux + uxuxx¢uux )+3( ( u3xx +uxuxx uu +uxuxx¢xuu +u2xuxx uuu )}

+3(u,t,, vur,, +u’ )+3( 2uu +utt,, )+

—ut{ z-xm+uxr x ¥ xuux x Cuer uux+u xT

UXXXx xx Xuux

+u xrum )+(u T, U, T FUU T )+

X7TXXX T uu

(3u’au 7, +u’st

XX T uuu Xuuu

Nu v, +u, 1, +uu, 1, )3 (wtuu, ), +uu, z, +u*wu,1,, )}

XX 7 Xux

2 2 3
" u.\f { 5.&\’)&‘.\’ + uxgu.rxx + 3( uxxguxx + uxéxuux + uX équX )+ 3( 2uxuxx§uux + u xﬁxuux + u xiuuux )+
( 3u2xuxx§uuuu + u3X§xuuu + u4x§uuuu )+( ux[x.xgll + um&xu + uxuxxxguu )+

3( umém + uxxéxux + uxuxxguu.x )+3( ( u3xx + U, )guu + uxuxxéxuu + uzxux.\' uuu ) }

XXX T uu

—4u, (rm +3u.7,. +3ux2ru +3u, 7, +3uu, 7, +u, r +umru)
A (B + 30 E g, 43, E 43U B A BU Uy 1 E e E,) ] ] =0 (4.5 5a).

whenever (v, —au,, — fu,.)= 2c(ux2 +uu,, )




Equating to zero the coefficients of the monomial terms , we end up with a minimum of 32

equations in the partial derivatives of infinitesimals £, 7, ¢ which yield:

=k, +kyx (4.5.6a.)

r=k, +2kt (4.5.6b.)

6=k, {x +2t —(ﬁ— ZuH ,  (45.6c.)
C

see Mehmet Can [14]

The infinitesimal generators V; are expressed as:

1

A LN Y VAL L (4.5.7)
ot ox o ox |c ou

The terms ¢ 4", ¢ in the prolongation are expressed as functions of

¢,&,7,u as in chapter 2, section 2.4.

4.6 Lie Groups Admitted by Equation (4.5.1)

The one-parameter groups G; admitted the by the infinitesimal generators, v, , are determined

by solving the corresponding Lie equations which yield groups as follows:

Vlzg; G;: X(x,t,u;s)—) XI(X,tJr S,H) , (4.6.1a)
v, =§;G2: X(x,t,u;6) —> X,(x+e,t,u) ; (4.6.1b)
X .

v, =21g+x£— & _ou i;G3: X(x,t,u;g)—» X, egx,ezgt,(ezg—gb)u (4.6.1c)
ot ox |c ou c

where b is arbitrary solution of the Boussinesq equation.

73



Remark. All the three groups admitted by the Boussinesq equation (4.5.1) namely

@ X(xtue)—> X, (x,2 + &,u)

G,: X(x,t,u;6)—> X, (x+e.tu)

G,: X(x,t,u;6) > X, (egx,ez*’t,(ezg —-gb)u) ,

C

are trivial groups.
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CHAPTER S

THE BURGERS EQUATION
In the solution of Burgers equation, the solution function of the generalized heat equation
becomes apart of coefficient in the infinitesimal generators.
We therefore begin this section by first obtaining the solution of the generalized heat
equation
5.1 The Generalized Heat Equation

Generalized Diffusion heat equation is defined by

ou o’u

—=1— 5.1.1
ot B ( )
Here the required Lie groups of transformations are of the form

*=T(, xu,8); ¥*=X({t,x8), w*=U(t, x,u58)

with corresponding infinitesimals

oX(t,x,u;& oT(t,x,u;é& ou(t,x,u;¢e
£, xu)= _¥|g=o ,T(t,x,u) = o1t x,u;8) e P, x,u) = U,x,u;¢) =
oe oe oe
We let the generator V' ,of (4.1.1) be
0 0 0
V=E,@t,x,u)—+1(t,x,u)—+d(t, x,u)— 5.1.2
$(t,x,u) ax (,x,u) Py o(t,x,u) - (5.1.2)

We want to determine all the coefficient functions & ,7,¢ so that the corresponding
| one-parameter Lie group of transformations

=T, x,u;¢e), x*=X(t,x,u;¢), u*=U(t,x,u;€)

form a symmetry group of equation (5.1.1).

Extended transformations of equation (5.1.1). withn=2 are of the form
u,* =U,(t,x,u,u,,u_ ;&)

u*=U,(t,x,u,u,,u_ ;&)

u,*=U, t,x,u,u,,u_u_,u,,u_E)

u,*=U,t,x,u,u,u_ u,u,u_;E)

* — 3
u, *=Uy,t,x,uu, u u, u,u,.;E)
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- . .
u, *=U(t,x,uu,,u u,u,u, .;E)

xt?

The infinitesimal generator of equation (5.1.1).is
0 0 0
V=@t x,u)—+t(t,x,u)—+o(t,x,u)—
(t,x,u) -~ (t, x,u) o o(t, x,u) o
with once and twice extended generators respectively as

o . 0
. V((l) — V+77’(t,x,u,ut,ux)5u—+ n (t,x,u,u,,ux)a

t X

0 0
V(2)=V(1)+ * t,x,u,u SU LU U u —t txu7 nu U 12 ;pu s i
n( 1oty )au” n"( . )auﬁ
i L XU Uy U U Uy Uy )
m( )auxx
Thus ,
0 0 0 0 0 0 0 0
ye = t,x,u)—+z(t, x,u)—+o(t, x,u)—+n" + n' +n™ +n™ +n"
S e R e R e U e T o T Y
For the symmetry condition to be satisfied by equation (5.1.1) then
e ——,1 0 | 5.1.3
Vo[ —-a— |- (5.1.3)
such that ¥ is the second prolongation with
0 0 0 0 0
VO = E(t,x,u)—+7(t, x,u)—+$(t, x,u)—+1° +n'—+n" +n" +n" :
< )ax ( )at # )au T "o " . ! 6w, ! ou
Equation (5.1.3) becomes
0 0 0 0 0
txu—+z'txu—+ txu—+ —tn —+ +n" +n"
[ S0 +2(xu)—+ 4Gt xu) T Tt T a T a a ]
[u,—/lu_“ ]=O.
which simpliﬁes to
[ &, xo) — [u —Ju,, |+z(, xou) — [ —Ju,, |+, xo1) — [u —Au,, ]+
0 0
7 b ]mfa—%[u,-zun e R NENERER
xt 6 1
" —— [, ~ A, 1" — 1lu,~2u, ]=0.
aux! aut{ /

76



From equation (5.1.3a) we readily obtain the infinitesimals condition to be
0t — A =0 (5.1.4)
which must be satisfied whenever u, = Au_ .
The terms ), 7™, 7" in the prolongation are expressed as functions of
¢,&,7,u as in chapter 2.

When equation (2.4.1a) and (2.4.4a) are substituted into equation (5.1.4) we obtain ;
¢t - étux + (¢u - Tt)ut - éuuxut - Tuutz

i l[ ¢XX + (2¢ru - 6.{( )lx - TXXut + (¢uu - 26“4 )4\'2 - 2TWuXu[ - 5““”13 (5'1.4a)
i Tuuu.\‘zut + (¢u A= 2§\f )‘XX - 2T.Xuxf - 35 u u - z- u u - 21— u u.\'l ]= 0

u x xx urXxx u - x

On replacing u, by Au_ wherever it occurs ,and equating the coefficients of the various

monomials in the first and second order partial derivatives of u ,we obtain the resulting

equations for the Lie symmetry group of the heat equation (5.1.1):

Monomial terms Equation

uu, =24z, = ()
u, -2, =0 (b)
uxx2 -t ==, ©
u’su, -Xr, =0 (d)
U, -, = =207, -31¢, (e)
u,, 206, —Ar,+ g, =A¢, —At,, ®
u’ —1E, =0 (8)
u’ 2080 = M, (h)
U, =& 249, =-4c, )
1 ¢ =19, (k)

Subscripts indicate partial derivatives.

First (a) ,and (b) ,with 4 #0 = 7 bejusta function zonly i.e. r=r(t)q Then from (e)
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7,=0andso £, =0 ie. £ doesnotdepend on usince &= §(x,t) . Equation (f) gives

2& =1, therefore &, =0 soclearly & is linear in x i.e. £=alt)x + b(t).

Also (f) = ¢ =%rtx+0'(t) where, o is some function of ¢ only.

c =a(t)x + b(t).
£ =%T,x+0‘(t) . } (5.1.4.1)
that is a(t)%ft, b(1)= olt).

Using (h) we find that ¢,, =0.

So ¢ isatmostlinearin u.

ie. ¢=px,0)u+alxt) (5.14.2)

. for some functions S(x,¢) ,c(x,t).According to (j) therefore,

-& =29, =—-A¢.., —-¢&, -21¢, =0 since 2& =7,=0 = & =0,

so . =—24¢, =2 .
e =2ApB, (5.1.4.3)

 but E=alt)x + b()

So f, ==l =Ll 0x41,0) J=-52 [ Srx+0,0) 1.

24 22
Bo=—olt)-= [ 2rxt0,0)] (5.1.44)
% 21 t 22 2 it t R
po=-— el -0, ] (5.145)

integrating equations (5.1.4.4) , (5.1.4.5)  we obtain

p=-oz [ rt+o 0 1+pl)

1 1
ﬂ:-_—-é—/-{z'”xZ -——ZIO't(t)X+p(t) (5146)
B= —an - b Ok ple)... (5.14.7)

Finally ,equation (k) requires that both ,B(x,t) and a(x,t) be solutions of the generalized heat

equations,
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é = B(x,t Ju +a(x,1). (5.1.4.8)
Thus

¢,=B,(x.0u+a,(x.1) (5.1.4.9)
B =B (5. 0u+a (x,1) (5.1.4.10)
and by equation (5.1.1) 8, (x,2Ju + e, (x,£)=A( B, (x,t)u+a (x,¢) ) . Equating coefficients of
u™ and other terms we obtain

B,(x.1)=2p(x.1) , (5.1.4.11a)
a,(x,t)=2a,(x.1) (5.1.4.11b)

Using equations(5.1.4.6), (5.1.4.8) upon equations (5.1.4.11a), (5.1.4.11b) we arrive at

1 1
ﬁt = [ mrmxz _ﬂan(t)x'*'pt(t) ] 5 (51412)
B.= ﬁanxz —Elzb,, (hx+p,(¢) (5.1.4.13)

so Af =—%rn, or /I,Bxxz—%a, and (5.1.4.11a) =

1 1 1
mrm'xz —ao,,(t)x+p,(t) Z_ZT”
ﬁa“x2 = Eli—b” ()x+p,()= ——;—at )... and on equating coefficients of x”

we obtain a,=0,b,=0,7,=0,0,=0, p,(t)=—%rtt, p,(t)z—%a,

thus 7 ,is pure quadratic and a ,b ,o are linear, functions of ¢ respectively.

We may therefore write

alt) =a,+at (5.1.4.14)
b(t) = b, +b,t (5.1.4.15)
ol)=——ra, =pH=—iadl) =—2 ayrap Jra
t 2 t 2 2 0 1 2
p () =-%[ a,+at |+a, (5.1.4.16)

p(t)=—%r, = 1(t)=a, +2a,t+a,t’

t(t)=a, +2a,t+a,t’
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If @ ,b aresubstituted into equation (5.1.4.1) we arrive at
E=b, +a,x+axt +bt.

t(t)=a, +2a,t +a,t’

Using equations (5.1.4.6) , (5.1.4.8) , and substituting a, =a, ,b, =b, ,
1

P (t) =_E[ a, +at ]+a2
we obtain,
Blx,t)= a,x’ —Lblx —-1—[ a,+at ]+ a,

-4 24 2
Finally , with ¢=(x,t)u +a(x,t);
p= [ L a,x’ ———1—be ——1-[ a, +a,t ]~i-a2 ]u +a(x,t)

—44 24 2
For consistency we set,
b, =¢ ,a, =c, a, —%ao =c¢;, ,2a, =¢, ,2b =¢; ,a =c¢,

And hence with ,V = §(x,t,u)—a— +r(x,t,u)2Jr(}ﬁ()c,z‘,u)i
Ox ot Oou

=c +c,x+2c.t+4c xt
1 4 5 6

T=c, +2c,t +4c,t’

2

b X
¢= (03 —c51—2c6t —€ —E—Ju +a(x,1):

a 1s an arbitrary solution of the generalized heat equation.

Weexpress & ,7 ,¢ the infinitesimals of (5.1.1) in the standard basis

v, v, vV, Vs Vg v,

1 I I ¥ & I €
&=1c +0.c,+0.c, +c,x+2¢c5t +4ctx +0c, =c¢+cx+2ct+ 4c6xt\
=0 +1c, +0.c, +2.c,1+0c, +4c,t> +0c, =c,+2ct+4ct’

$=0. +0.c, +1.cu+0c, —l.cs);—u+ [- 261 —xz% ]c6 +e o

2
= [c3 = % =264 =C, %]u * a(x,t) :

(5.1.52)

(5.1.5b)

(5.1.5¢)

(5.1.6)
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We form the corresponding basis generators v,'s of the form

Vv, = A,—a— =l 7 L + A,i : &, 7,, ¢ are the coefficients ¢, in the standard solutions
Ox t ou
of & ,7.,¢
Hence v,'s the infinitesimal symmetries of equation (5.1.1)  are obtained from the tabulation
as follows:
v1=i , vz—ﬁ,v —ui 5 Vy —x£+2t2 h
Ox ot ou ox ot
0 x 0 0

v, =2t— ——u— , v, =4tx— +4t> — —[2ut + ¥’ — |— 517

ST A ou Ox 6t | ] 1 ©-17)
v, = al(x,t) a,(x,t)=2a_ (x,1) p

5. 2 Lie Brackets of Equation (5.1.1)
In evaluating the Lie brackets (commutators) for the Lie algebra of the

infinitesimal symmetry< > we have

lyi ,VjJ= V.v. —V.V.]

iV; Vi Bd =123, Q.
[vl ’Vs]= ViVs — VsV,
0 0 o p)
=( —_ ) AL o 0
(&)(taxx )( l@u)(ax)
o
ou :
[vz ’v4] VaVy — VY,
0 0 0 0 0 0
=% —+2t— )-( x—+2t— =
5 Je i e iRl )
:'23=2v2
ot

at ox ot Ox ot Oou ot

2 2
)( 4txi+4t2—a——(x7+2t)u% )-( 4txi+4123—(’67+2t]ui L}

— g g gt 4y, —2v,
x o u
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[vs > vs]: VsVe —VeVs

2
=( 21f£—£ui )( 4txi+4t2i—(x—+2tJui )
Ox A Ou Ox o (4 Ou

2
~( 4tx§+4t22—(£—+2t}ti ) ( 20 2,0 )
X ot A ou ox A Ou

S T YA A
ot ot ou

Other Lie brackets are computed in the similar way.

The corresponding Lie brackets table is constructed as shown below.
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v, v, vy v, Vs Ve v
l"i ’ij
) 0 0 0 v, -V, 2v, Ya.
v, 0 0 0 2v, 2V, 4v,-2v, v,
e

V3 0 0 0 0 0 0 -V,
Vi -V, 2v, 0 0 Vs 2v, v,
Vs v, 2v, 0 -V 0 0 v,
Ve 2vy  2v,-4v, 0 2v, 0 0 V.
Va -V, “Va, v, -V, -V -V 0
T5.1 [Lie bracket for L]
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5. 3 Lie Groups Admitted by Equation (5.1.1)

The one-parameter groups G, admitted the by the infinitesimal generators,

v, V,,V,,V,,V,,V,,V_are determined

by solving the corresponding Lie equations which give the groups as indicated below :

0

v, =6—; G: X(x,t,u;6)— X, (x+&,t,u) (5.3.1a)
x
v, =§;;G2: X(x,t,u;6) — X, (x,t +&,u) (5.3.1b)
0 :
Vv, =uE;G3: X(x,t,u;g)—> X3(x,t, e u) (5.3.1¢)
0 0 2
v, = x— +2—; G,: X(x,t,u;6) > X,(e°x, e*t,u) (5.3.1d)
Ox ot
Nex +62
Vs =2ti —iui; G,: X(x,t,u;6)—> Xs(x+251,t,u.e—’~( r)] (5.3.1¢)
ox A Ou
Ve :4txi +4122 —~[2ut+x2£ ]i, X
Ox ot A “ou
X(x,t,u;e) > pg| s a— ,u\/1—4€te[l(;ia)J (5.3.19)
T | 1-4a’1-4de
v, =a(x,t)§l- G, X(xtu;6) > X, (x,2,u +sa(x,t)) : (5.3.1g).

5. 4 Group Transformations of Solutions of equation (5.1.1)

By symmetry group inversion theory of section 3.10 of chapter 3 , if each G, is a symmetry
group and u = dD(x,t) is a known solution of the generalized heat equation (5.1.1), then the
functions u; below are also solutions of equation (5.1.1), Olver[18]:

i, = D(x—¢,1)

U, = (D(x,t - 6‘)

i, = e"®(x,1)
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u, = CD(e'gx, e“zgt)

i, =2* )CD(x~28t,t)

- 1 /1(;?:51) x £

U, = —=——=¢ O ———,

° Vl+4a 1+ dat 1+ det

i, = D(x,1) + salx,1)

a

We note that groups G, , G,,G,,G,, are merely translations and scaling 1i.e. trivial groups. It

is only G;,G,,which are the non trivial groups .

5. 5 Invariant Solutions of The Generalized Heat Equation

If a group transform maps a solutions into itself, we arrive at what is called a self-similar or
group invariant solution.

Given the infinitesimal symmetry (5.1.7) of equation (5.1.1) the invariant solutions under the
one —parameter group generated by the infinitesimal generator V are obtained as described in
section 3.9 of chapter 3.

We calculate two independent invariants J, = k(x,z) and J, = u(x,,u) by solving the'equation

V(J) = r(t,x,u)a—J+g(t,x,u)a—J+77(t,x,u)é]— =0
ot ox Ou

or its system of characteristics
dt dx du
= = 5.5.1
T(x,t,u) g(x,t,u) n(x,t,u) ( )

Here we consider the group transformations that arise from all the infinitesimal generators of

the generalized heat equation;

0 0 0 0 0 v 0 x O
V=— , V= Wy =lU— , V,=X— F2U— , Vv, =2U— ——Uu—,

ox ot ou Ox Ot ox A Ou
Case 1

’ . ! 0
Invariant solution under transformation generated by generator v, = . has system of
A

characteristics
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Integrating the equation ,we obtain x =« x=u and

u=g(x).
o y o do . . .
Substituting u ,=0,u =¢":¢"= I into the generalized heat equation
x
We obtain the solution
u=¢(x)=cx+d. (5.5.2)
Case 2
Invariant solution under transformation generated by generator v, = ai , has system
X

of characteristics

dt  dx

0 1

Integrating the equation ,we obtain ¢+ =« ¢ =pu and u= ¢(t).

d¢

Substituting u ,=¢' ,u_ =0:¢' =—— into the generalized heat equation
g t xx dt q

One obtains the solution u = ¢@(z)=k (5.5.3)
Case 3

; ; : 0
Invariant solution under transformation generated by generator vV, =u Pl has system of
u

characteristics
dr _ dx_ du
0 0 u

Integrating the equation ,we obtain u =e : a=t, u=x
as invariants and so we set, u = g(t).

¢

Substituting u ,=¢" ,u  =0:¢4"= Cciz’_t into the generalized heat equation

We obtain the solution u = ¢(t) =k (5.5.32)
Similarly if u = ¢(x) then we obtain solution as

u= ¢(x) =cx+k (5.5.3b)
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Case 4

Invariant solution of heat equation under transformation generated by the generator

v, = x—a—— +21.‘E , has system of characteristics
Ox ot
di_ dv
2 X
.
Integrating the equation ,we obtain xt > =«  and
ot .
u=¢la).a,=-2"t 2x a, =t?2
. . X 1 nm ’ d¢ . . . F
Substituting u ,=-— ,u,, =t ¢" ¢’ = a ,into the generalized heat equation (5.1.1)
= a
2t?
we obtain the equation
LA (5.5.4)
24

According to Wylie [42 ] equation (5.15.4) reduces to

byg' +b¢ =c:
o (5.5.5)
b,=e** , and b =6

If weset c= 0 into equation (5.15.5) and finally integrating it ,we obtain

e
¢(a)=2—\/7'[e do.
K\/;erf( X )
adr 7\ 2

where the error function erf(x) is defined as ,

d(a) = + G,
2 2
erf(x)=—= | e " du
@)= [
and the complementary error function erfc(x) defined as
erfe(x) =1—-erf(x) = el fe‘"zdu , see Abramowitz and Stegun [1 ].
N

Hence we obtain,

+ 1, (5.5.6)

u=gla)= - NrS erf(zji? J
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Case 5

Invariant solution under transformation generated by the infinitesimal generator

0 x O
Vs =2t— ——u—
ox A Ou
has , system of characteristics
de_ de_ Jd
2t 0 —xu

x2

Integrating the equation ,we obtain ue'# =q |t invariant, and

xZ

u=gt). e W
o , do . : :
Substituting u, ,u, ¢ = I into the generalized heat equation (5.1.1)
we obtain the equation

L

"+
¢ 2t

which on integration yields

1

#(e)=Ct 2
¢ =i '
Hence u =—.e (5.5.7)
Vi
Case 6
Invariant solution under transformation generated by the infinitesimal generator
v, = a2 vapr 2 —[out+ x> 2 9.
Ox ot A “Ou
has system of characteristics
di_ ds__—7du
42 4x  2Mu+ux®
1 2
; ; - 2tud +
Integrating ,we obtain xe ' =a and u= %: = ¢(a)

i 0
u:¢(aX P ) — ax =€ ’at:—tfz—e t; ¢t =¢(Zat ’¢x =¢aax

208+ x%*

Substituting u, ,u_ into the generalized heat equation (5.1.1), we get

XX

" + A(x,t)¢'+ B(x,t)¢ =0



which reduces to the first order linear equation

b +bo =c

a*

where by=e? +K
Hence we get
_QU+x?)? =201+ A)

2

t*e! (24t + x2)

(o) = CI ¢ 2" da where a*

Finally we arrive at the solution

u(x,t)= Cix erf’ xe% Jax + C _ A
e+ x* N2a* 2 2 ' QA+x?)

(5.5.8)

5.6 Symmetry Solutions of Equation (5.1.1)

According to section 3.10 of chapter 3, symmetry transformations convert known solutions
into new solutions, Bluman and Kumei[4 ],0Olver[18 ].

We consider the group transformations that arise from the infinitesimal generators admitted by

equation (5.1.1);

12 =_8_ , Y, =2 A -—-ui , v, =2x—2 +4t-Q- > Vs =2ti—£u—§— ,

ox ot Ou ox ot ox A ou
Ve =4txi +412E—[2ut+x2£ i,

ox ot A “Ou

thus

0
12 =a; G,: X(x,t,u;g)—) Xl(x+g,t,u)

0
v, _5;G2: X(x,t,u;6) > X, (x,t + &,u)

0 "

Yy =u£;G3: X(x,t,u;e)—) X3(x,t, e u)
v, =xa—i +2t§;; G,: X(x,t,u;6) > X4(e£x, e“t,u)
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1 2
== 7t X(x,t,u;g)—> Xs(x+2gt,t,u.e—‘( t)]
i

Vg —and 4 2 —[2ut+x2u—]i; G,:
Ox t A Ou

X(x,t,u;6) > x| X ! ,ume[m]

1-4g 1-4«

We note that groups G, , G,,G,,G,, are merely translations and scaling i.e. trivial groups. It

is only G;,G,,which are the non trivial groups .

Thus the genuine and therefore significant transformation groups we consider are only
G, and, G;.

Casel

First we consider the group G;:

1 2
Yo = B2 _ﬁi; Gs: X(x,t,u;S)—» X x+2a‘,t,u.e—‘( /)
’ ox A Ou

Then the new symmetry solution of (5.1.1) under G, becomes

(—ax +£zt)

u=g(x—2¢et,t)e * (5.6.1)

whenever u = ¢(x,t) is a known solution of the generalized heat equation, see Olver [18] .

Solution (i)

Consider the simple invariant solution of generalized heat equation. u = ¢

Substituting # = ¢ into (5.6.1) we get

!-a( +£2t)

TET (5.6.11)
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Solution (ii)
Inserting invariant solution # =cx into (5.6.1) we obtain,

(—gx +ezt)

u=(cx—2cetle *

Solution (iii)

xZ

Inserting invariant solution u = 4 into (5.6.1) we obtain,

c
— e
JF

_(x-2a) (—ax +ezt_)
u=" ¢ e *
t

Solution (iv)

cir

X
Inserting invariant solution u = er + C
: w7 (zﬁJ 2

into (5.6.1) we obtain,

b cJZerf(x_zgt) eL—>
42 2t

Solution (v)

Inserting invariant solution

u(x,t) = Cix erf xe; Ja* + C A
" 2ar+ P N2a* 2 V2 b QA+ x)

into equation (5.6.1) we obtain,

CNZerf[(x etk %*]

uwn = 24 +(x—2a) N2a*2 +(21t+(x—2gt )’)

Cll ]x !—ar +£2t?

A

(5.6.1ii)

(5.6.1iii)

(5.6.1iv)

(5.6.1v)
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Case 2
Secondly we consider the group Gi:

X(x,t,u; 5) —> X ol ; ! ,uNl— 46‘[6[/1(1_451)J , from which we develop new
1-4g 1-4& _
symmetry solutions of equation (5.1.1):
u(x,t)=0( il , ! ) . el;:;“) 2 (5.6.2)
l+4a 1+4a "1+ a

where CD(x, t) is a known solution, of the generalized heat equation (5.1.1).
Solution (i)
Consider the simple invariant solution of generalized heat equation, u = ¢

Substituting u =c¢ into equation (5.6.2) we obtain,

—6‘){2

Lel(ma) (5.6.21)

u=
Vli+ &t

Solution (ii)

inserting invariant solution # =cx into equation (5.6.2) we obtain,

Cx 1 —

u(x,t)= g A0 (5.6.2ii
(5) 1+4e 1+ g ( )

Solution (iii)

XZ

Inserting invariant solution u = 4 into equation (5.6.2) we obtain,

—.e
7

T (+45)x’
(% 1)= 'C1—+4516 A(1+4et) (5.6.2ii1)

Vi
Solution (iv)
Inserting invariant solution u = CNr erf ( al ) + C,

ar T\ 2
into equation (5.6.2) we obtain,

C\r x 1 o

u(x,t)= er + C, |——=—=¢"" 5.6.2iv
| afa f(,/4/1t(1+4af)j ’ ]\/1+a 2]
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Solution (v)

caln f( 1«/_a_j} .

Inserting invariant solution u(x,t) = Eﬂl > )\/2 i er,
+x"N2a

into equation (5.6.2) we obtain,

1+d4¢et —
/a *

1+4etf CAT T e
(+4e0) ﬂerf[1+48te JEJ 1
+ C ]x——

1) =
uxn = (2a(1+4e0)+x* N2a* 2 1+et

c—*
(At +x7)

—€X2

g (5.6.2v)
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5.7 Lie Group Solution of The Burgers Equation
The Burgers equation we are solving which is referred to as (1.1.0) in chapter 1 is the partial
differential equation
u, +uu, = Au_ A - real parameter
Here the required symmetry groups of transformations are of the form
t*=T(t,x,u;e), x*=X(t,x,u;¢), u*=U(t,x,u;¢)
with corresponding infinitesimals

oX (t,x,u;¢€)
o€

oT (t,x,u;¢)
o€

oU(t,x,u;¢e
£=0 ’¢(t’x’u) = -¥\e=0
o€

E(t,x,u)=

s T(E,X,U) =
We let the generator V' ,of (1.1.0 ) be of the form
0 0 0
V= 1, x, ==t 1, x, —t L, X,u)—
Eltxu) (0 0)—+ Bt xu) =

We determine all the coefficient functions & ,7,¢ so that the corresponding one-parameter
Lie group of transformations
t*=T(t, x8), X*= X, %86), u*=UQ xu.8)
form a symmetry group of equation (1.1.0).
Extended transformations of equation (1.1.0 ) with n=2 are of the form
u” =U,(t,x,u,u,,u;e)
u*=U,(t,x,uu,u_;c)
u,* = U (6 x0,0,0 0,0, ;)
u,*=U,(t,x,uu,,u_ u,u,u_E)

* — .
Uy _U22(t’x’u’ut’ux’uxt’utt’uxx’g)

* 5
u,*=U(t,x,u,u,u_u,u,u, .;§E)
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The infinitesimal generator of equation (1.1.0) is
0 0 0
V=E@tx,u)—+7(t,x,u)—+¢(t,x,u)—
&( )ax ( )6t & )au

with once and twice extended generators respectively as

0 0 0 0
V(l): t’ ) + ta ) —= t, > et X__+
g( XU)—‘ax 7( xu)@t #( xu)au ey

X

nt a + nxx a + nxl a + 77"
ou, Ou Ou

XX

0
; 3.7.1
xt autt ( )

i 0 % 0
y@ V+n (t,x,u,u,,ux)g+ n (t,x,u,u,,ux)a

t x

0
2) _ 17 tt tx
ye =y 4p (t,x,u,ut,ux,u,,,ua,uxx)a—+17 (¢, x,u,u,,u ., u, )—+

1t x

(@, x,u,u,,u u

xt?

0
B 0. )— o2
)3 (572)

xx

where n',n",n",n"™, are known functions of the derivatives of ¢ ,&,7 and variables -

U U U Uy U

Here subscripts denote partial differentiation.

From equation (1.1.0), F=u, +uu, —Au =0

By theorem (3.8.3.) it follows that

VOF = VO, +uu, — Au_) =0 (5.7.3)

when F =0 , and so we obtain

[§i+rﬁ+¢—q—+ ‘O g2 +7" O 4ye0
> o ou ow ow ! om, | ou

0+0+¢u, +n" +n"u+0+0+0-An™ =0

~ The infinitesimal condition above reduces to




du_+n' +n*u—An™ =0. (5.7.4)
with n',n",n™ defined in section 2.4 of chapter 2.

Substituting 7',7",7™ into equation (5.2.4), we obtain equation
[ ¢ux + {¢t - gtux + (¢u - Tt )ul - guuxut - Tuuzt }+u{¢x - 7'-)cut + (¢u - gx)ux - guuzx - z-uutu)c}

- A’[ ¢XX + (2¢xu - gxx )‘X - T)cxut + (¢uu - 2§Xll )'{xz - 2TquXuf - guuuxa’

— ' u,+ (B, —2& u, —2tu, -3 uu, —Tuu, —27T,uu ]= 0 (5.7.4a)

uu"x 7t u-xxt

Equate to zero the coefficients of monomials in the first and second partial derivatives of u

and on substituting u, +uu, = Au  ;u, =Au,, —u_ ; wuu, =Au_—u,;  wherever it occurs

in (5.7.4.a) we arrive at the determining equations:

uu, +31E,-24E +2A1, =0 (a)
U T,A —-7,=0 (b)
unu, — —2A1,—A7,=0 . ©
T Xz, =0 (d)
U M@, =7 )+ AT — AP, - 28, )+ AlB, - &, )=0 ©
T £, =0 | €]
Wi —A@, -2, )=0 ()
u (¢, 7, )=, -& WA, —(4,-2£ )=0 (h)
u,: 9=&-224, ¢, )=0 | @)
u,: 24t =0 )
uu,: 24r,=0 (k)
uu: 247 +3& +& =0 ()
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I ¢4,=129, (m)

We see that (a) , (b),and (c) = 7, ¢, areindependent of u ,using (j) then 7 , is further
independentof x andso 7 = 7 (t) only but, &, = & (x , t) . Equation (g) =
¢ 1islinearin u

ie. ¢ = B(x,tu+ a(x,t) (5.7.4.1)

JFrom equation (¢) we obtain

$p, =7, -6, (5.7.4.2)
and (h) =
¢, = —7,+ 3¢5, (5.7.4.3)

Then equation (5. 7.4.2 ) add equation (5. 7.4.3 ) , we arrive at

$p, =&, (5.7.44)
Similarly equation (5. 7.4.2 ) subtract equation (5. 7.4.3 ) gives ,

T,=2¢, (5.74.5)
Partial differentiating equation (5. 7.4.5 ) with respectto , x we get,

T, =0=2¢&  thus, & =0 =

E =a(t)x+ b(t) .

Applying equation (5. 7.4.4) on ¢ we obtain

Blxt)=1,-¢, (5.7.4.6)

Also, B(x,t)=-r,+3¢, (5.7.4.7)
Differentiating partially equations (5. 7.4. 6) , (5. 7.4. 7) , we obtain

B.=1.—¢&, =, (5.7.4.8)
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B.=-1,+3, =38, (5.7.4.9)
B =7,—Gx (5.7.4.10)
Equations (5.7.4.8) ,(5.7.4.9) imply ;

B.=¢, =0 (5.7.4.11)
It follows from equation (5.7.4.11 ) that ¢ is linear X and, S is independent of X and

therefore depends on, 7, only i.e.

B=rt+k (5.7.4.12)
E=a(t)x+b(t) (5.7.4.13)
Equations (5.7.4.1) ,(m) give
B=AB, (5.7.4.14)
a,=q ' (5.7.4.15)
Equations (5.7.4. 14), (5.7.4.15) implies « , B are solutions of heat equation.

Equations (5. 7.4.14), (5. 7.4.7) implies that ,
Ty =36, (5.7.4.16)
Differentiating partially twice equations (5.7.4.7), (5.7.4.14) we get

Bi=AP =348,y =0 (5.7.4.17)
By = —ty+3a, (5.7.4.18)
Comparing equations (5.7.4.17), (5.7.4.18 ) we get
T = 30 (5.7.4.19)

Comparing equations (5.7.4.6 ), (5.7.4.7 ) we get

B=¢, (5.7.4.20)

Differentiating partially twice equation (5.7.4.6) ,we get
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Ty =6y =, =1 (5.7.4.21)
Differentiating partially twice equation (5.7.4. 19) ,we get

Ty =3, =—B,=0 (5.7.422)
Comparing equations (5.7.4. 21), (5.7.4.22 ) we get

Ty = 0,8, =0 (5.7.4.23)
From equation (5.7.4.23 ) we deduce that

T is purely quadraticin 7 , and & is linear in both , X and f.

We note that £ is linear in f hence we deduce:

E =m+nx+1t+ jxt (5.7.4.24)
T =my+ngt+1t (5.7.4.25)
¢=(m+nt)u+lx+j, : (5.7.4.26)

Differentiate partially equations (5.7.4.24 ), (5.7.4.25), (5.7.4. 26) and substitute into
equations (a),(h) and (e). |
On comparing the coefficients of ,x and ¢. tx,u,tu we get:

I=0,ny=2n+j, ,m=—j .l = j,m=—-n;m,,m, arbitrary.

For uniformity we set m, =c,,m=c,,j, =¢c;,n=c¢,,j = ¢;

Hence the relations (5.7.4.24), (5.7.4.25) ,(5.7.4.26) yield the infinitesimals 7, & , ¢ as:

E=c,+cx+coxt (5.7.52)
T=¢ +(c, +2c,)t +cit’ (5.7.5b)
¢=c, —cu+cx—cgu+alxt): a = Aa, (5.7.5¢)

a , 1s an arbitrary solution the generalized heat equation.

We express & ,7 ,¢ inthe standard basis




=
o
N
e
w
<
N
<
w
<
N

E=0g+ le+ Oe,+ ex+ 6ix +0.c

t=le+ Oc,+ legt+ 2ct+ let’ +0.c, (5.7.6)

=0+ 0Oc,+1lc, —-lecu+ le(x—tu)+ le «
1 2 3] 4 5 a

7

We form the corresponding basis infinitesimal generators v,'s of the form

f 62 62 ¢3 ai o < ¢ are the coefficients ¢, in the standard solutions

of £ ,r,p Hence v, ,Vv, ,v,,V, ,V, ,V_ arelisted below as the infinitesimal

generators for the Burgers equation.

0 0 0 0 0 0
V=— , V,=— v, =t—+ , V= X— +2%— —u— ,
ot Ox Ot ou Ox ot ou
, 0
v, =tx— +t ——[ut—x ]—,va—a)— 0, =Llo,,.
Oox Ot ou

5.8 Lie Brackets of The Infinitesimal Generators of The Burgers Equation

The set (vi> of the generators of the Burgers equation forms a Lie algebra, we therefore
construct a Lie bracket table for (v,).

A Lie bracket [vi , V jj for any two operators , v, , v, is give by,

Construction of the Lie brackets table for the infinitesimal generators (v,);

employs the definition

[viv ,ij= v, =vy,=0 i f=123 . 5.
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It follows that [vj ,ij= vy, =V, =0 ,lv,. ,ij=-lv vJ; Li=L23 . . Q.

i Vi

0 0 0 0 0 0
V=— , V=— W =l—+ — , V=x—+2U——u—,
Ot ox ot  Ou ox ot  Ou
v, . +1? — —[ut-x ]i,va — o, =lo,
0. ot Ou Ou

[vl ’v4]: W =Vl

0 0 0 0 0 0 0 0 0
={ = ) o— %= —u— - z2— 20— —u— J{ — }=2( — )=
(o Wmg, + 25 g, MHlag g g 15 )2 2 =

0 0 0 0 0 0 0
[V1 »Vs] Viv; — V3V (5 )[ o ]“[’5 2 ]( E )—§=Vz

(oo v s [u-x |2 |+ S [u-x 12 ](2)

ot Ox 0. ot
=xi +21£ Eghe— =Y,
Ox ot Ou

[vz > v4]: Vs =WV,

(D)2 v22ul [aZsud -l )( 2 )

5
o " ou & “ou 5)_vz

(92, % 11,9, 9212
[vz ,v3]— V)V — V3V, (6x )[t8t+ on ] [tat+ ou ]( ox ) 0

Other Lie brackets are computed in the similar way. On application of skew symmetry

property of the Lie brackets , Lie brackets table is fully constructed as shown below .
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v, 0 0 vV, 2v2 Vi vot_‘r

v, 0 0 0 v, L Va,
/

Vv, v, 0 0 2v;-2v, v, “Va

v, 2v, -v, 2v,+2v, 0 0 Vi

Vs -V, =Yy =g 0 0 Var

Va -V, -val Vv, -V, -V 0

Table5.8 [Lie brackets for L]
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5.9 Lie Groups Admitted by Equation (1.1.0).

The one-parameter groups G, admitted the by the Burgers equation , are determined by

solving the corresponding Lie equations

dt dx dc - du dt - dx _ du _
wi—=k wi—=k wpi—=f, —=Ly—=2, —=5 —=-4,;

de de € £ £ de de

dF e M e R . =
Vei—=xt, —=t°, —=Xx—-1lu

de de de
with initial conditions:t,_,=t, X,_,=X, U,_, =U
which lead to;
VG X(x,tu;e) > Xl(x,t +8,u)
v,;G,: X(xt,u,8) > Xz(x+ g,t,u)
V3G X(x,tu;8) > X3(x+£t,t,u+ g)
v G, X(x,t,u36) > X4(e5x, ez‘”t,e‘gu)

X t
Vi3 Gyt X(x,t,u;8) > X( s u(l—¢gt)+ gx)
l-¢t 1-¢t

v,;G,: X(x,t,u;6) > X, (x,t,u +8a(x,t)) :

5.10 Group Transformations of Solutions
By symmetry group inversion theory of section (3.10) of chapter 3 , if each G, is a symmetry

group and u = (D(x,t) is a solution of the Burgers equation (1.1.0), then
transformation groups of the Burgers equation (1.1.0), solve the equation (1.1.0).

The above solution can also be written in the new variables: iz = ®(f, %)
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If w,x ,t aregroup transformations of the Burgers equation (1.1.0) with « , of the form
u= ‘I’(u,x,t,a), for some explicit function'¥, then applying the_inverse mapping, the new
symmetry solution # satisfies relation u = LP(CD(gg"l()?), g, )) g, (%), gg’l(t_),?‘)
where u = ®(x,?) is any known solution of (1.1.0).

vi;G, + X(x,t,u36) > X, (x,t +&,u)

X=xt=t+&u=u : X '=x,t =t—-&,u =u

u(x,t,u,e)= ‘I’(u,x,t,g) =>Y(x,tu,e)=u
Then the new symmetry solution #, , is defined by

a,=w(oFE" )5 )= oF )= (n-z)

Similarly

it,= O(x—&,t)

u, = CD(x— £t |t

u, = e’gCD(e‘gx,e_zgt)

P EX N 1 X t
> 146t l+et \l+et' l+et

i, =®F",1")+ealx)

a
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5.11 Invariant Solutions of The Burgers Equation (1.1.0)

(a) The invariant solution of the Burgers equation u, + uu =Au . under the transformation

group generated by generator

=2
ox

has the system of characteristics

du dt d L .

a4 f.= , withinvariantas ¢ =t u=t hence

u 0 1

u=¢(t)

Substituting » ,u, ,u, ,u, into equation (1.1.0), we obtain

the ordinary differential equation

$'(t)=0
which leads to solution

u=C

(5.11.1)

(5.11.2)

(5.11.3)

(b) The invariant solution of the Burgers equation u, +uu =Au_ . under the group generated by

generator V = id
Ot

has the system of characteristics

=T with invariant as ¢ =x = x ,hence
u

u=4(x)

Substituting u ,u u, into equation (1.1.0), we obtain

X ¥Uxx

t’u

the ordinary differential equation
29"(t)-99'= 0
Integrate it twice, we get

22d¢
-[ ¢ +C

= Idx where C 1is a constant .

Hence we obtain the solution:

(5.11.4)
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x4+ C
(5.11.5)
u=ktan C>0:C=k*: (5.11.6)
uz—scothsx-i_c1 : C<0:C=-s’ ~ (5.11.7)

(c) The invariant solution of the Burgers equation u, + uu =Au  under the Galilean

transformation group generated by generator

V= ti + 9
ox Ou
has the system of characteristics
fllﬁ:%:% , with invariantas ¢ =¢ satisfying

= 3;-+¢(z) with

= —i+¢’(t) U :—i— u, =0

t t2

u into equation (1.1.0), we obtain

X 27K

Substituting u ,u, ,u

the ordinary differential equation

p(0)+L=0 . (5.11.8)

t
Integrate it, we get

u=2-% (5.11.9)

t t

(d) The invariant solution of the Burgers equation u, + uu%ziuxx under the group of dilation

group generated by
V=2t 2 + X 1 u L
o8 Ox Ou

has the system of characteristics
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o=—=. 5.11.10
N ( )
and so
u=¢—(a—). . B.11.11)
Ji
Substituting # ,u, ,u, ,u, into equation (1.1.0), we obtain
the second order ordinary differential equation with variable coefficients
z¢”+?iéﬁi—¢¢u=o : (5.11.12)
Integrate it, we get the first order nonlinear equation
2
gt 2 (5.11.13)

T2
which is Abel’s (Riccati’s) equation of the first kind.

We integrate it to , yield solution

u=[Vic, -(@V2a) Ve terf@) T' :C=0 (5.11.14)
(e) The invariant solution of the Burgers equation u, + uu =Au  under the transformation

group generated by
V=t g+xt—a—+(x—tu )i
ot Ox ou

has the system of characteristics

du _dt dx

xX—tmu t

such that the invariant « 1is defined as

I T, (5.11.15)
t t t
Substituting v ,u, ,u, ,u, into equation (1.1.0), we obtain

the second order ordinary differential equation
AP +dp'=0 . (5.11.16)

Integrate it, one has the first order nonlinear equation

107



se?_c (5.11.17)

We integrate it, to give solution:

27t

¢ = :C=0
b o i 4
- (5.11.18)
=T
(S &
¢=kﬁtanh[ﬁ’“+cz] C=k’ :C>0
21t
uz%— ?Etanh{‘/z;":‘ C}: C=k> :C>0 (5.11.19)
¢:r\/5tanC3—ﬁFx « C=-¢* 1C<D h
24t
>~
———\/_t {C —‘/——r:} C=-r> :C<0 (5.11.20)

7
(f) The invariant solution of the Burgers equation u, +uu =Au_ under the infinite-dimensional

0
group generated by generator v, = a)a—: 0w, =Aao,.
u

2

. g == e
(1) o= —=e ** has the system of characteristics
t

du _dt dx . .
- , which is invariant under both ¢ ,x

o 0

and we integrate to give,

2

ul %e_mqﬁ(t) ["'=a ,u=¢(t): @ =constant (5.11.21)

which we reduce to equation

2

= %é%}(t). (5.11.22)

u
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Substituting » ,u, ,u, ,u, with ¢ =1 into equation (1.1.0), we obtain

X 2T

the ordinary differential equation

3 2
w2 —— do
"o ——e ¥ Jolt)=0 '=—— 5.11.23
¢-( e ™ W) = (5.11.23)
Integrating the above equation leads to
J{”Zﬂ}’ 1 40e Wi ]
#(t)=e =g ROV (5.11.23a)

and finally we get
I - -l 4?6 Z;J«/?]
U =—=e W [e @) +K ] (5.11.24)

Vi

w Vv, = a)i (0, = Ao
Ou

@=cx has the system of characteristics

xx 2

— e which is invariant under both ¢ ,x
cx 0

L and on integrating ,gives

w'=a ,u=¢():a=t (5.11.25)
which leads to equations.

u =xp(t), or u =xg(x). (5.11.26)
Casel

u =xg(t). (5.11.27)

Substituting u ,u, ,u, ,u into equation (1.1.0), we obtain

XX

the ordinary differential equation

¢ + $>=0 ¢'s-‘% . (5.11.28)

Integrating the above equation leads to go(t) = (t - c)_1 ,and finally we get
u(x,t)=x(t-c)" ' (5.11.29)
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Substituting # ,u, ,u_ ,u_ into equation (1.1.0), we obtain

the ordinary differential equation

XAg" 4208 —di{xzz"’z} - ¢'EZ_¢ .
X X

8 d ’ ! _i xz ¢2 —
ie. Aa( x¢' )+ dx{ : } 0 (5.11.30)

We integrate the above equation to get

Ixd + —[xz ¢2]=C (5.11.31)
or

WLy |x #_1

¢+x¢ [ o } (5.11.32)

This is Bernoulli equation which yields

hence
G4 (5.11.34)

U=
6cA —x°

0 ; .

() V= a)—a; 0, =0, 0= k(x,t)erf l(x,t)xe’ has the system of characteristics

SE which is invariant under both 7 ,x

and on integrating , we get

u=wc ,u=¢@):a=torc=g(t), (5:11.35)

which leads to equations

u = a)¢(t),
Substituting u ,u, ,u, ,u, into equation (1.1.0), we obtain

(5.11.36)

the ordinary differential equation
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5 {w,—ﬂwm}%wmz:o g (5.1137)
@ dt

This is a Bernoulli or Abel’s equation, hence .(5.3.37) reduces to

¢ +o,9°=0 . (5.11.38)
#(¢) =[ K [a,1(x,0)it+C T (5.11.39)
and finally we get

u=Ck(x, t)erf{l(x, t)xe' :|[c3 + ijdt]_l .(5.11.40)

Ck(x,z)e;f(l(x,z)xe? ) +L

u= » (5.11.41)
C, +F(x,t) :

w) vV, = a)ai o, =A0, 0 :\/éerf {x\/—%} has the system of characteristics
u

———— e which is invariant under both ¢ ,x

2

and on integrating , we get
u=wc ,u=¢(t):a=torc=¢() . (5.11‘.42)
which leads to equations.

u =od(t), or u =wp(x)

u into equation (1.1.0), we obtain

x 27 xx

Substituting v ,u, ,u

the ordinary differential equation

" J{“’r — Ao, J¢+wx¢2=0 5= (5.11.43)
@ dt

This is a Bernoulli or Abel’s equation, hence '

¢ ++o,$*=0 (5.11.44)

) =[ K [o,dt+C T

and finally we obtain
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T A
K\/;erf[x\/gj +L

Gy +F(x.0)

WV, = a)—a— L0, = A
Ou

and on integrating ,gives
u=a ,pu=¢t):a=t

» which leads to equations

b b0 w =4,

] Casel

L w =40

Substituting u ,u, ,u

u

¢'(t)= 0 which leads to trivial solution

# =C
Case2
u :¢(x),

Substituting u ,u, ,u, ,u

the second order ordinary differential equation

9" —¢9'=0 .

Integrate it, we get the first order nonlinear equation

Yy

We integrate it, and obtain solution:

_-22

X+¢

-2
u=

x+¢

xx

x 27xx

x 27xx

—=—= 0 which is invariant under both ¢ ,x

$C=0

@=c has the system of characteristics

into equation (1.1.0), we obtain

into equation (1.1.0), we obtain

(5.11.45)

(5.11.46)

(5.11.47)

(5.11.48)

(5.11.49)

(5.11.50)

(5.11.51)
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¢ = ktan £+Cz} C=F -C>0

| 2t
e 2
u=ktan—+C,| C=k :C>0 (5.11.52)
| 21t
¢ = rcoth C3+i C=-r> :C<0 a
20t
rx . >~
u=¢g=reothlC;+—— | C==r" :C<0 (5.11.53)
20t
—

5.12 Symmetry Solutions of The Burgers Equation (1.1.0)

We consider the infinitesimal generator

v, :zxiﬂz2 +[ x—tu ]—a—,
ox 0 Ou

of the Burgers equation as the only non trivial symmetry ;

X t

G.: X(x,t,u; X
’ (x ug)_) 5(1—81‘ 1-¢&t

au(l—-egt)+ ex)

which has the groups:

X

i=
1-& 1-&

X= u=u(l—&)+ &x.

We apply the _ inverse mapping, in section 3.10 of chapter 3.

If w ,x ,t are group transformations of the partial differential equation (3.8.1) with u , of
the form u = \P(u,x,t,g), for some explicit function ¥ , then the new symmetry solution 1 is
defined by @ = ¥(®g,”" (¥).2,” (1)) g, (¥).g,” (?).£) where  u = D(x,7) is any known
solution of (3.8.1).

If u=®(x,¢) is any known solution of (1.1.0) then,

= B(%,7), i = ¥(olg, (.8, D)e, (®)g, @)z
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and finally our new solution based on the inverse groups,

X -

o 1 t
X = . =
1+et 1+a&

i = vole, @2, 0)e. @2, 05

and we obtain the symmetry solution of equation (1.1.0) as

u(l-e&)+ ex takes the form

Il

N7

& 1 b 4 t
u(x,t) = + (0] i . 5.12.1

50 l+a 1+« [ l+& 1+ ] ; ( )
where u = ®(x,¢) is a known solution of the Burgers equation .

Solution (i)

Consider the simple invariant solution of the Burgers equation. u = ¢

Substituting u =K, say K =4 into equation (5.12.1) we obtain,

: &x 1
u(x,t) = +A 5.12.2
(%) 1+ &t [1+8t] ( )

Solution (ii)
Inserting invariant solution

-21
U=

b g se

into equation (5.12.1) we obtain,
&x 1 -2+ &)
—| ]

(5.12.3)
l+a l1+a x+c(+a)

u(x,t) =
Solution (iii)

Inserting invariant solution u = & tan[ﬁJr Cz} into equation (5.12.1) we obtain,

2t
el gL R 2 (5.12.4)
l+ag l+4a 2t
Solution (iv)
Inserting invariant solution u = rcoth[C3 + —2’?/% into equation (5.12.1) we obtain,
u(xr,f) = -2 [ Jreoth| €, +—F— (5.12.5)
l+a l+a 2AQ+ &) |
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Solution (v)

2k

o +C} into equation (5.12.1) we

X
Inserting invariant solution u# = — — —J— tanh|:

obtain,

& 1 rx  k(l+&) V2kx
M&0_1+a+H+a”t t 2 tank Lha+a)(z}] (5.12.6)

Solution (vi)

Inserting the invariant solution of the Burgers equation

Z_ _f 2ta { ﬁrj } into equation (5.12.1) we obtain

_ a1 e x r+a) _\/Erx
u(x0) = — +[1+61][t —~ Jitan[c3 m}] (5.12.7)

Solution (vii)

Inserting invariant solution u = [ N/ 5 = (2\/ 22 )_] Jim e erf (@) ]—1 into equation (5.12.1)

we obtain,

&X wl trwr 52—2 o A =g ‘
u(r) = 1m][ 3—(2ﬂ) ‘/1+gte erf (@) ] (5.12.8)

Solution (viii)

_xz

. [ 4% tH

- 2
Inserting invariant solution u =—=e ** [ e ¢V 4 K]

it
into equation (5.12.1) we obtain

[ AA0+a’e PO aa(+a)e e
> N

S 2 (4A(1+et)t +x2)
u(r, ) =2 L[ — e P [ g ‘/j +K | (5.12.9)
1+e&t 1+et t

1+¢&t

Solution (ix)
Inserting invariant solution u(x,7)=x(t —c)™

Into equation (5.12.1) we obtain,
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u(x,t) = + [——1[x(z —c(+ &))" (5.12.10)

1+ & 1+ &t

Solution (x)

. ) : 64 : : .
Inserting invariant solution u= into equation (5.12.1) we obtain ,

6¢cA —x*

& L [ 6A(1+ &)’ ]

u(x,t) = 5.12.11
(1) l+a l+a 6cA(l+ &)’ —x° ( )
Solution (xi)
Inserting invariant solution u = ;—; into equation (5.12.1) we obtain
=l g > q FeCred, (5.12.12)
l+a l+a t
Solution (xii)
Inserting invariant solution
1
Ck(x, t)erf[l(x,t)xe’ ] +L
u=
C, +F(x,t)
into equation (5.12.1) we obtain,
1
Ck(x, t)erf(l_ (x,t)xe’ J $ L
&x
u(x,t) = + = 5.12.13
i) 1+ & [1+51] C, +F(x,t) ( )
Solution (xiii)
Inserting invariant solution
K \/Eerf x\/z +L
A 4t ' _ .
u= into equation (5.12.1) we obtain,
C, +F (x,)
K\/Eerf x  [ad+a) o
ax 1 A 1+ &) 4t
u(x,t) = +] ] = (5.12.14)
l+a l+é& Cs +F (x,t)

Solution (iv)

o : : % 22
Inserting invariant solution wu=——
t x+icg
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into equation (5.12.1) we obtain,

[ x 2A(+¢1)
t X+ ¢

(5.12.15)

5.13 General Symmetry Solutions of the Burgers Equation (1.1.0)
Consider the Lie groups G,, G,, G;, G,, G, admitted by equation (1.1.0)

12 =%; G, : X(x,t,u;g)—> Xl(x,t +g,u)
0
v, =a—; G,: X(xtuz8)—> X, (x+&,2,u)
X
o 0
¥y El—4—:; G, X(x,t,u;g)—) X3(x+f,1,t, u+ g)
Ox Ou
o 0 0 S T
v, =xa +2t5—ua; G,: X(x,t,u;a)—) X4(e x, e*t,e u)
0 5 O 0 b t
=tx— — (x-tu)—; G.: X : X 1-
Vs tx8x+t Py (x tu)au, L (x,t,u,g)—> 5(1-—gt et ,ou(l—et)+ ex)

We transform solution (5.12.1) using G,

Thus

& l(D[x t]

u(x,t) = + >
(%) l+a l1+e& l+a 1+&

is further mapped by G, into a new solution

Ex—28’t~¢ o] 1 I* af x—Et =1 t ]

M 1+ &t 1+ & l+et l+et G-13.1)
where u= ®[x,?] as a known solution of the Burgers equation (1.1.0).

Solution (i)

Consider the simple invariant solution of the Burgers equation. # =¢

Substituting u =K, say K=A4 into (5.13.1) we obtain,

iy =X 25 t=e+ A (5.13.2)

1+ &t
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Solution (ii)
Inserting invariant solution

-21

X+

U=

into (5.13.1) we obtain,

ex—2&*t-¢ o 1 1*[ —2A(1+ &) ]

u(x,r) = 55
1+& 1+ & x=&1 —et+c(l+ &)

(5.13.3)
Solution (iii)

Inserting invariant solution u = k tan[§+ Cz} into equation (5.13.1) we obtain,
t

_ 2 _ _ 22_
MLl W 1| ktan| FE=E =D (5.13.4)
l+a l+a 20

Solution (iv)

Inserting invariant solution u = rcoth[C3 + %:| into equation (5.13.1) we obtain,

ey ' e
wpfy=SE 218 1 1 Bl o IO BT — 6D (5.13.5)
1+ & l+a 201+ &)

Solution (v)

Inserting invariant solution u = i - —\/_ tanh[\/;kx +C j' into (5.13.1) we obtain,

2
ex—2&t—-¢ +[ 1 ]*

u(x,t) =
1+ &t 1+

: x-g' et -k+e) oo Dkt —e0) ] (5.13.6)
| s : 13.

Solution (vi)

Inserting the invariant solution of the Burgers equation

- _J_ 2 tan |: ﬁrx } into equation (5.13.1) we obtain
t
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ex—-2&'t—¢ 1
,[ = + N
u(x1) 1+ & [ 1+ & ]
20 B a2t
[x £l —&t r(l+8t)ﬁtan C3_\/5r(x g1 —¢l) ] (5.13.7)
t 24t
g .
u(x,t):gx 2et—¢ +[ 1 ]* CD[ X=EL=& [ t ]

1+ & 1+ & 1+ &t 1+ et

Solution (vii)

Inserting invariant solution u = [ Jt C, - (2\/ﬁ )_1 Jir e7erf (a) ]_] into equation (5.13.1)

we obtain,

sx—28°t=& 1, t i 2 .

= —0C, —\2+42 2 .13.
uy = ZEZELZE [ [l V2] [ et @) I s139)

Solution (viii)

x2

2 Y
M 4e

i . : I == =
Inserting invariant solution u = Te i [ o @ K]
t

into equation (5.13.1) we obtain

u(rp= 2208 L
1+ & 1+ 2
i ‘[@]
[ [ S ] (5.13.9)
t
1+a
where

x=x-¢&t’ —¢et
Solution (ix)

. . . . ]
Inserting invariant solution u(x, t) =x(t = c)

into equation (5.13.1) we obtain,

_ex-28't-¢ L effm 22 B <3
u(x,t) === +[ — [*[(x—&F —et)t—c(+a)) "] (5.13.10)
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Solution (x)

Inserting invariant solution u= 5 /16/1 = into equation (5.13.1) we obtain,
cA—x
_ 2 _ 1 3
uory= X227 1 1 ). el — TSR T
l+a l+a 6cA(l+ ) —(x—¢gt" —¢t)
Solution (xi)
Inserting invariant solution u = ;—% into equation (5.13.1) we obtain
_ 24 _ 0242 _
u(x,t):gx 2e°t—¢ +[ 1 ]*[ x—&t —et—c(l+¢t) ] (5.13.12)
1+ &t l1+e& t
Solution (xii)
Inserting invariant solution
1
Ck(x,t)eif(l(x,t)xe’ ) +L
u=
C, +F(x,t)
into equation (5.13.1) we obtain,
1
, Ck()?,t)e;f(l(?c,t))?e’_ ] +L
u(ry= 837287078 1 1 - (5.13.13)
1+ & 1+ & G +F(x.t)
where
x=x-¢&'t’ —¢t
Solution (xiii)
Inserting invariant solution
K \/Eerf x\/Z +L
A 4t . , .
u= into equation (5.13.1) we obtain,
C3 +F;(x,t)
, ng#((lx )\ﬂ(l:a)J+L
— {— 1 + &t t '
o L el J* . (5.13.14)
1+ & 1+ & C, +F(x,1)
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Solution (xiv)

. . . X 22
Inserting invariant solution u=——
t x+iq
into equation (5.13.1) we obtain,
ex—2e%t—¢ 1 x—&tt —¢t 2A(1+ &1)
wEd) = + * - 5.13.15
e 1+& [ 1+& I t x—&t’ —¢et+ic, ] ( )

5.14 Global Symmetry Solutions of the Burgers Equation (1.1.0)
Consider the Lie groups G,, G, ,G;,G,,G; admitted by equation (1.1.0)

v, =%; G, : X(x,t,u;g)—> Xl(x,t+g,u)
0
v, =6—;G2: X(x,t,u;g)—> Xz(x+e,t,u)
X
0 0
v, =t—+—;G,: X(x,t,u;8) > X,(x+a,t,u+¢)
Ox Ou
0 0 0 p £, -¢
v, =3 +215—ua; G,: X(x,t,u;6) > X4(e x, et e u)
el 8 o P o : x t _
Vs —txax +t = (x—tu) o Gy X(x,t,u;6) > XS(I—gt —— s u(l—gt)+ ex)
v, =a(x,t)§— : G, X(x,t,u;g)—é X, (x,t,u +8a(x,t)) 4
u

By symmetry group inversion theory of section (3.10) of chapter 3, if each G, is a symmetry
group and u = d)(x,t) is a known solution of the Burgers equation (1.1.0), then the functions
u; below are also solutions of the Burgers equation (1.1.0), see Olver [18].

By applying the new symmetry solution inversion formula;

i =0l @8, 0)e. " @re. De)

on each group G; we obtain the new symmetry solutions
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_ £X 1 x t
us = - o s ]
1+t 1+¢t 1+t 1+et

i, = ®(x,t)+ eax,t)

a

The most general one-parameter group of symmetries is obtained by considering a general
linear combination

Ve=ewtoy, + oy teyv, +ovs +¢,v, ofthe given vector fields. We may represent an
arbitrary group transformation g as the composition of the transformations in the various one-
parameter subgroups G,, G,, G,, G,, G;, G,.Inparticularif g isnear the identity, it can
be represented uniquely in the eprnential form

g= exp(e,V,) * exp(e, V;) * exp(e,V,) * exp(e, V) * exp(e, V) *exp(s, V).

Thus the most general solution %, .i.e. global solution of equation (1.1.0) is obtained by

u

_ _ -£4 —&4 _ _ 2 _ 24 _
g:ng £,E8 — &, +[ e ]Xq)[xe (6,85 + &)t —6,68° — &, te™ —gegt e,} (5.14.1)

1+e5t 1+¢st 1= &t ' 1+egt
where u= @[x,¢] as a known solution of the Burgers equation (1.1.0).

Solution (i)

Consider the simple invariant solution of the Burgers equation. u = ¢

Substituting u =K, say K =4  into equation (5.14.1) we obtain,

o = EsX — E36 — &, + A ) (5142)
¢ 1+t

Solution (ii)
Inserting invariant solution

=2

u=

x+¢

into equation (5.14.1) we obtain,
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EX—EEL—E e
=5 3¢5 3 + ]><
1+ &t 1+ ¢t

y

[ = 21(1 . Sst) ]
xe ™ — (6,8, + N — & &L — &, +c,(1+ &)

(5.14.3)

Solution (iii)

Inserting invariant solution u = ktan[a—+ CZ] into equation (5.14.1) we obtain,
f

—&4 __ _ 2 _
y BT E € | KAC T EHEENCEEL —6) o) (544
g €4 _ _

1+ &t 1+ &4t 2A(te £EL— &)

Solution (iv)

Inserting invariant solution u = rcoth[C3 + %] into equation (5.14.1) we obtain,

(5.14.5)

>
P L EelTE +-€ *rcothl:C3+

r(xe™® —(& +&,e)t —g,6° — &) }
¢ 1+¢&,t 1+¢&g

2A(1+ &)

Solution (v)

2k

. . . k
Inserting invariant solution u = X —«/5 tanh
t t 2t

+ Cz} into equation (5.14.1) we obtain,

—&4

_EX—esl—E e
1+¢t L+egt

*

g

[ xe ™ — (g6, + &) —g &t — &,
te? —get—g

3 , (5.14.6)
k(1+&4t) ﬁtanh|:ﬁk(xe ' (&8s T EN - EEL — &) s :| ]
2

-0 =2
te"™ —ggt—¢ 2(te™ " —ge5t — &)

Solution (vi)

Inserting the invariant solution of the Burgers equation

U= r_ 1\/5 tam[C3 - ﬁrx } into equation (5.14.1) we obtain
t i t
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—&4

_EXTEEL & + e

X
g

1+ ¢4t 1+ &4t

[ xe ™ — (6,6, + &N — 88’ — &, —r(1+ &t) Ix

—2&3

et —get—g

(5.14.7)
/ sy ~ -
\/Etan C,— 2r(xe RN s A gz) ]

2A(te* —get—g)

Solution (vii)

Inserting invariant solution u = [ ot C, - (ZV 24 )lﬂ eTerf (@) Tl into equation (5.14.1)
we obtain,

—£&
_EsX—EEt 8 o e

u X
£ 1+&5t 1+st ]
—2
te‘254—£8t—8 1 te_zg“—ggt_g T Laie -
[\/ T ot 1C3_(2“2’1>\/( % o D o2 ey (@) I (5.14.8)
5
where a(x,t) =a(%,7)
and
E=xe —(g+5&)t et —¢&,
[ =te”™ —gegt—¢
Solution (viii)
XZ
1 & L 4de
Inserting invariant solution # = —=e * [ e @aeae =y K]

t
into equation (5.14.1) we obtain

Ee X — EiEL =&, . I

¢ 14+ &5t 1+ &4

32

[ 41(“64022 42 (1+1g)
3 =

(€3] 7 ]
J1+ &t = = (AA(1+e40)t +7%) f
[ 5 e Mlren?i *[ e R ]

~2¢
\/te S =B ET =

(5.14.9)
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Solution (ix)

Inserting invariant solution u(x,z)=x(t —c)”

into equation (5.14.1) we obtain,

u =BEEE 8 1 € gy 3F-c(+en) ] (5.14.10)
1+&5t 1+¢4t
where
£ =xe" — (& +&,e)t— €68 —&,
f=te™ —get—g
Solution (x)
.. ) . 64 ) ' :
Inserting invariant solution u= o i into equation (5.14.1) we obtain ,
cA—x
3
, _EXmeEd—E e . 6/1(1‘“955) _ ] (5.14.11)
£ 1+e&.t 1+t 6cA(l+ &) —x
where

T=xe™ —(g+&,e) -6l —¢,

Solution (xi)

Inserting invariant solution u = ——— into equation (5.14.1) we obtain
r ot

_ _ & x—c(l+et
y o EXEEL-g o e oy Eoclran (5.14.12)
¢ 1+e&t 1+ &t t
where

T=xe% — (g +&,6)— gL —¢,
[=te™ —get—g

Solution (xii)

Inserting invariant solution

Ck(x,z)erf[Z(x,z)xa ] +L

U=
G +Fx1)

into equation (5.14.1) we obtain,
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—&4

1
Ck(ﬁ,f)erf(z(ﬁ,f)xe? J +L

_EX—&EL 8 I * - (5.14.13)

i 1+¢,t 1+t G +F(x,1)
where
$=xe" —(g+&,8)—eet’ —¢,
f=te™ —get—g
Solution (xiii)
Inserting invariant solution

, A
K \/Eerf X — [+ L
A 4t . . .
u= into equation (5.14.1) we obtain,
C, +F(x7)
X 1+e&t
K\/gerf[ o 1’1( Ags )J+L

S St 2 et 2O e A (1+&5t) 4t (5.14.14)

¢ 1+£,¢ 1+ &t G, +F(%0)
where
£=xe" — (&, +&,&)t -t —¢,
f=te™ —get—g
Solution (xiv)

. : . X 22
Inserting invariant solution u=—-
r x+ic
into equation (5.14.1) we obtain,

= Ssx—8385t—£3 L e * i_zﬂ’(l+85t) ] (51415)

¢ 1+&.t 1+&t 4 X+1c
where

X=xe — (g, + 6,8t — &L — ¢,

2 gam2E
1 =te ™ —g&il—&
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6.1 Tabulation of The Solution of The Burgers Equation Results

CHAPTER 6

RESULTS

Invariant and symmetry solutions of the Burgers Equation are given in the tables below. Each

generator V; has the corresponding solution u;(x,?).

Generators of the generalized

0 0 0 0 0 0 x 0
V=E— , V,=— V= u— , V,=x—+2U— , V;=2t——-——u—,

Ox ot ou Ox ot ox A Ou
Ve =4txi +4t2£—[2ut+x21 —Q,,

Ox ot A “Ou

Generators of the Burgers equation (1.1.0):

0 0 0 0 0 0 0
Y E— o, V= = te—th e y, =x— U — —f—

ot Ox Ox Ou Ox ot ou
vy =tx— +1* — —[ut—x ]—(?—,v(Z o 0, =lo,

Ox Ou Ou '

heat equation (5.1.1):

6.2 INVARIANT SOLUTIONS OF THE BURGERS EQUATION

From section 5.6 we see that the invariant solutions of the Burgers equation are:

Generator (V;) Invariant solutions ()
\ \
u(x,0)= i . (6.6.1)
v x+C,
k4G
,t) = ktan L. 6.6.2
u,(x,1) T (6.6.2)
sx+C,
u,(xt) = —scoth (6.6.3)
v, u,(x,t)=C (6.6.4)
Vs B ) (6.6.5)
r t
Vi 1 @ 1
u (= tC, - (2\/2,1) Vizererf(a) | (6.6.6)
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b 22
1)=—— : 6.6.7
Vs 4s(mh=s x+1%c, (6.6.7)
u,(x, t)_.f— —\/_t nh[J;IIOC+C} (6.6.8)
\2rx
¢ _———\/_t 6.6.9
us(x,1) { oy (6.6.9)
P u,, (x,0)= = : (6.6.10)
x+c
kx
,0)=ktan| —+C, | , 6.6.11
uwl(x ) n|:2ﬂ,l‘ 2i| ( )
rx
,t) =rcoth| C, + — 6.6.12
u,(x,0)=r [ 3 thjl ( )
Viass u,, (x,t) :x(t - c)_1 3 (6.6.13)
64
5(x,0)= 6.6.14
s (51) 6cA —x° ( :
V.. KJ%erf[xJ%jnLL
w t
u. ,(x,t)= 6.6.15
w4( ) . C3 +E(_x, t) ( )
g e |
s ,,s(x,1) = %e % [o @R g (6.6.16)
t
1
V.o Ck(x, t)erf(l(x,t)xe’ ] +L
o(X,1)= e 6.6.17
uwé('x ) C3 +F(_x,t) ( )

Table 6.1 INVARIANT SOLUTIONS OF THE BURGERS EQUATION
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6.3 SYMMETRY SOLUTIONS OF THE BURGERS EQUATION
From section 5.7, we can extract the symmetry solutions of the Burgers equation to obtain :

Generator Symmetry solutions (u)
) ¥ ¢
v, ex 1 —22(1+&)
1) = e 6.7.1
th (1) l+& 1+6‘t[ x+c,(1+&) J ©.7.1
v
! el 3 — | ﬁw} (6.7.2)
l+a l+& 22t
v
: O LI 0 O P R . e (6.7.3)
l+a 1+4 21+ &)
£ 0, (%,8) = lf‘a +,1[1+1a] (6.7.4)
& 1 x—c(l+ &)
Vs Uy (1) = 1+ &t +[1+51] [ t ] (6.7.5)
& 1 t -1 |t « )
1) = 5 C, 12422 2ef@) ' (6.7.6
Vs uy(%,1) 1+& [1+51][ l+a ° ( ) 1+ae erf(a)] ( )
1 .+ x  k(l+e) 2k
1) = - S L i O 6.7.7)%*
s 4 = [l+gt][t t Y21 [ut(l%t) 2} | 617
V. & 1 x 20+«
5 B = stee] [ 2t 2 ]
1+ 1+4& t X+ 1o
[ ﬁ—r(l-m‘t)\/iteln Q—ﬁrx ] (6.7.8)**
t t 214t
f uy(xit) =~ 4] (6.7.9)%*
1+eat 1+et
Vo u,,(x,f) = —— +[—1—] [x(t—c(+a))"] (6.7.10)
l+a l+ea
V., & 1 6A(1+ &)’
1) = + 6.7.11
s (5:1) 1+ [1+gz] [6c;t(1+a)3—x3 ] ( )
, K\/Eerf( x /,1(1+a)j+L
. 1 A7\ Q+e) 4¢
U, (x,1) = +[ ] = (6.7.12)
1+&  l+a C, +F(x,0)
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2

e
sz uws(x,t)= &X +[ 1 ][ e 42 (1+¢t) *

q 4l(l+e‘t)ze_“"“““ ]

[e (4}.(1+51)t+x2)‘/g e ] ]

(6.7.13)
Vie CE(X,t)eif(l_(x,t)?ce?J+ L
&x
uws(x’t)—Ha +[1+51] C, +F(x,1) (6.7.14)

Table 6.2 SYMMETRY SOLUTIONS OF THE BURGERS EQUATION

Remark. The solutions marked **, are regarded as non pure symmetry solutions of the Burgers
equation since these solutions are generated from invariant solutions corresponding to generator

V, and are merely transformed by the same transformation G, .
This concept may be generalized.

6.4 GENERAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION
From section 5.8, we can extract the general symmetry solutions of the Burgers equation to get :

Generator Symmetry solutions (u)
) y
1 1+ & 1+ &t x—&t —gt+cq(l+a)
u(xt)_gx—282t—g o 1 I ktan_k(x—gztz—gt)+c_ (6.82)
{ n 1+ & 1+ et I 21 ’ o
924 B 20 b
- By =R e EE ] J* reoth| ¢, + ZE=E L —€1) (6.8.3)
1 1+ & 1+ &t 2AQ+a) |
£x=28t-c+1
iy f)= 6.8.4
V2 2( ) T+ &t ( )
V. 2% —
3 u,(x,0) = <2 ol e +[ L [*[(x—&% —ent—c+ )] (6.8.5)
1+ & 1+ &
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ex—-28t—-¢ 1
u.(x0) = *
V4 4( ) [1+gt ]
t 2
[,f ~(v2 )J r —e7af(@ (6.8.6)
ex—-2&%t—¢
u.(x,t) =
Vs s(n) = 1+ & [l+a ]
_e¥ _gf_ _gEs
[ st—k(l+en) 5 o 2k(x -t 5t)+C2 ] 687
t 20t
ex—26’t—¢ 1
u.(x,t) = + *
Vs s(0.1) 14 &t [1+a ]
_ p242 _ _ 0242
[x £l —¢t r(l+gt)\/—2_tan Cg_«/fr(x £t —¢&t) ] (6.8.8)
t 24t
ex-2&t—¢ 1 x—&t’ —¢t 2A(1+&t)
us(x,t) = + i - 6.8.9
Vs s(50) 1+ & [1+a I t x—&t —st+1c leses
ex—2&t—¢ 1 x—&t* —et—c(l+e¢t)
u (x,t)= + & 6.8.10
v, wton) ==———+[ — ]*| t | (810
ex—2&'t—¢ 1
u .(x,t)= + o
Vs (1) 1+e 1+a]
61(1+ &)’
[ 3( . )27 - ] (6.8.11)
6cA(l+g) —(x—¢&'t" —&t)
) K\/Eerf  [A+e) g
w4 —2g%t— A 1+&t 4¢
u (=222 178 d+a) - (6.8.12)
1+a (1+ &t)(C, +F(%,1)
V 22—
ws uws(x,t)=8x 2e°t—-¢ +[ 1 ]*

1+ &t 1+ét
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=2

X
[ 41(“’-67)28 4 (1+te)

. s ]
1 ———r (AA(1+ent+72) | ——
[ o A0’ [e \/; +K ] (6.8.13)
t
1+ ¢t
where X=x—¢&’t* —¢t
1
j Ck()?,t)e;f[l()?,t))?e’_ ] + L
v uw6(x,t)=gx_28 t—¢ 2l 1 ] (6.8.14)

1+ & 1+ & G, +F(X 1)

where Xx=x— &%’ —¢t

Table 6.3 GENERAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION

6.5 GLOBAL SYMMETRY SOLUTION OF THE BURGERS EQUATION
From section 5.9, we can extract the global symmetry solutions of the Burgers equation to get :

Generator Symmetry solutions (u)
v) y
EsX — E,68 — & e 1,
=22 4
4 “ath) 1+ &t [ 1+t ]
—2A(1+ &)
[ — : | (6.9.1)
xe " — (6,85 + &) —6,68 =&, +¢(1+&5)
_EX— 68l — &, e 2
Y, (%) 1+t L &t
k &4 _ _ 2 _
ktan[ (xe ™ — (&, + 8 &8l 26y C} (6.9.2)
2A(te"* —g et — &)
_EX -8l — & e
¥ g (1) 1+ &5t ! 1+ &4
reoth| C, + r(xe™® — (& + &, )t — 6,6° — &,) 69.3)
201+ &42)
_EsX—EEL— & + Ae™ % (6.9.4)
I/z ugz(xyt) 1+85t
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Es X —E,EL — €& e % afn -1
, u (o= X mem 8 e TR —c(l+et)) ] (6.9.5)
3 1+ &t 1+e&yt
— {— —&4
) o (5,0) = EsX : £,6d — &, e .
4 + &5t 1+ &
te” —get—¢ 1 [(te™ —get—&)m il :
[ Ll W WYY ) &8 @) T (696)
1+ 1+ &
where @(x,t) =a(%,1),% = xe™™ — (&, + £,6)t —e,64° — &,
{=te™ —get—g
EsX — E,E1 — & e’ .
u,(x,t)= +
Ve s (5o1) 1+ &5t 1+ &g
[ xe ™ — (6,8, + &) — g8’ — &,
te —get—¢ 697
k(1+ &) V2k(xe ™ —(£,6, + &)t — 6,64 — €,) .
-2& ﬁtanh -2¢ +G, ]
te ™ =g oi—5 2A(te " —get —8;)
EsX— &6 —&; e
U, (x,t)= +
Vs i 1+est 1+e&4
[ xe ™ — (5,6, + &) —5,68" — &, —r(l+&8) ,
te " —get—g
(69.8)
= 2
V2tan| C, - 2r(met e,0 + &)t~ 6 — %) ]
’ 2A(te* —get— &)
— — —&4 .i 21 1+ Ecil
V. T L Y R P [ B 24+ et) | (6.9.9)
: 1+e&5t 1+egt t X +1c
where
T=xe" — (& + &8 — &6’ —&,
{=te™ —get—eg
= ~ e x—c(l+e&t
% y =BETEEETE g €8 [ FTECFAD (6.9.10)
v 14-£.1 1+¢et t
where
F=xe™ — (&, + &6t — g6t — ¢,
f=te™ —get—g
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,
EsX—EE4— & e
U, (X,1) =

6A(1+ &)’
L ( ‘953) = ] (6.9.11)
V., 1+ &t 1+ &gt 6cA(l+ &) —x
where, £ = xe™® — (&, + &,&)t —&,64” — &,
X A+ eyt
14 e"”‘K\/Eerf ad / e g
e AYORRTA A (1+¢&4) 4t
uy (o )= S E L 6 - (6.9.12)
1+ &5t A+ )C. + Flx1)
where, X = xe™™ — (&, + £,&,)t — &£ — &,
[=te? —get—g
|4 EsX— 564 — € e
K Ugys (x,1) = = 1+3851 =+ *

1+&d

22

[ 4&(]4—641)26 42 (1+15)

- (41(1+£4t)t+£'2)‘/ :
o e’ *[ e
-2¢,

\/te ‘-t -

e K] (6.9.13)

where, £ =xe™® — (&, + £,,)t — £,64° — &,

{=te™ —get—¢

VW6 ’1:
Ck(E,Derf| IR, Dfe |+ L
_ESX—EEL - & R (6.9.14)
u,_ . (x,t)= — 9.
e (1) 1+ &t 1+$5t] C, +F(&,0)

A = 2
where, X = xe ™ — (&, + £,6)t — £;,64° — &,

2 3 ~2E
t=te ™ —g&d—§

Table 6.4 GLOBAL SYMMETRY SOLUTIONS OF THE BURGERS EQUATION
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6.6 CONCLUSIONS

In this thesis , we have managed to find global solutions of the Burgers Equation using the Lie
symmetry approach. The solutions ( 6.9.1 - 6.9.14 ) are appearing here in literature for the
first time. Other previous attempts to solve this very important equation only managed to find

solutions when the coefficient 4 isrestricted to A € [O,l]. These solutions have been
presented in terms of the infinitesimal generators V, (i = 1,2.,....... ,5,a) and their corresponding

symmetry solutions u;(x,?) , u . (x,t) (i =12,.... L [ . ).

&ij
We have verified the validity of these global solutions taking cases where A =1.
In this case the global symmetry solutions obtained compare accurately with some of the

solutions obtained by Gandarias [6] for specific values of the arbitrary constants and real
parameters & ,&; with value of 4 =1.
In particular
-2
x+ [ ’

(11) solution (6.9.2 )reduces u=-2cotx ,

(1) solution (6.9.1 ) reducesto u=

x—=x +6(1+¢)
1+t -x°

(i11))  solution (6.9.11 )reduces to u=

which are in agreement with Gandarias [6] solutions of the form

N 2(—2k,cosx—2ke'x —2k,e")
T —2k,sinx—ke'x> - 2k,e'x— 22kt + 2k)e’ ’

B 2(12k,x> +2(36k,t —12k;)x + 8k,)
3k,x* +(36k,t—12k,)x> + Skyx+36k,t> — 24kt + 24k,

**

The solutions obtained is a contribution to knowledge in mathematics.
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