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ABSTRACT
The phenomenon of natural convection arises in fluids when temperature change causes

density variation leading to buoyancy forces acting on the fluid particles. Natural con-

vection flows are frequently encountered in physical and engineering problems such as

chemical catalytic reactors, nuclear waste materials, solar collectors, thermal regulation

process, security of energy systems etc. When a conductive fluid moves through a mag-

netic field and an ionized gas is electrically conductive, the fluid may be influenced by

the magnetic field. The change in wall temperature causing the free convection flow

could be a sudden or a periodic one, leading to a variation in the flow. Such oscillatory

flow has applications in industrial and aerospace engineering. However, the temperature

and concentration do not remain constant in so many fluid flow problems of practical

interests. Moreover, in natural convection flows, thermal input occurs at a surface that,

is itself curved or inclined with respect to the direction of gravity field. As a result, we

considered a plate at varying, linear temperature distribution to approach such real cases.

In pursuit of the objectives of the study, the effects of heat and mass transfer on a two

dimensional boundary layer of a steady free convection magnetohydrodynamics (MHD)

fluid flow on an. inclined heated plate in which the angle of inclination is varied has been

studied. The fluid was taken as viscous, incompressible, electrically conducting. over a

heated inclined flat plate. The plate wall and the ambient fluid medium were maintained

at constant and different levels of temperature and concentrations such that the heat and

mass transfer occurs from plate wall to the fluid medium. Also, due to coupling between

the fluid velocity field and thermal/concentration fields, different complex behaviours

were expected. To control such processes, we investigated the problem of combined heat

and mass transfer permeated by a uniform transverse magnetic field in MHD free convec-

tion adjacent to an inclined surface by taking into account effects of viscous dissipation

with sinusoidally varying surface temperature on velocity, temperature and concentra-

tion. Viscous mechanical dissipation effects are important in geophysical flows and also

in certain industrial operations and are usually characterized by the Eckert number. The

mathematical formulation yielded a.set of governing partial differential equations (PDEs)
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under a set of appropriate boundary conditions. The PDEs were transformed into ordi-

nary differential equations (ODEs) by some similarity transformation, which were then

solved using the shooting iteration technique with the fourth order Runge-Kutta numeri-

cal method together with the Secant technique of root finding to determine their solutions.

Computations were performed for a wide range of the governing flow parameters and the

effects of these flow parameters on the velocity, temperature and concentration shown

graphically. From the graphical analysis, it was established that the flow field and other

quantities of physical interest are significantly influenced by these parameters. The re-

sults of this study of flow over inclined surface is utilized as the basis of many scientific

and engineering applications, as the technique of inclination which enhances cooling of

materials is significant in industrial processes as cooling of towers, nuclear reactor cool-

ing and metallurgical processes. Finally, employment of an external magnetic field has

predominant role in material manufacturing industries as a control mechanism due to

generation of Lorentz force.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

A fluid is a substance whose constituent particles may continuously change their positions

relative to one another when shear force is applied to it. As fluid flows, heat is transferred

from one point to another. This form of heat transfer in fluids is known as convection.

Note that fluids do not exist in isolation rather in solid containers, as such, fluids flowing

in engineering devices occur within magnetic field. Fluid flow in the presence of a mag-

netic field is called hydromagnetic flow, and the study of hydromagnetic flows is called

Magnetohydrodynamics (MHD).

Magnetohydrodynamics (MHD) is therefore, is the fluid mechanics of electrically con-

ducting fluids in the presence of magnetic field, which is either applied externally or

self-generated within the fluid by inductive action. Some of these fluids include liquid

metals (such as mercury, molten iron) and ionised gases known by physicists as plasma,

an example being the solar atmosphere. The official origin of MHD dates back to pio-

neering discoveries of Hartmann and Lazarus [21], where they conducted a theoretical

and experimental investigation of MHD flows in ducts using mercury and observed that

a force is produced on the fluid in the direction normal to both applied electric and mag-

netic fields. Thereafter, a Swedish physicist Hannes Alfven [3] in the context of plasma

physics applications studied magnetohydrodynamics of astrophysical phenomenon as in-

dependent scientific discipline. Later, several authors [4, 32, 35, 45, 52] extended the

research on MHD in regard to its immense applications, precisely, in many engineering

applications, the knowledge of MHD is very vital as it has been used to explain certain

phenomena in the universe [12]. This has led to intensive scientific research in the field

of computational modelling of MHD fluid flow.
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Convective fluid motion is defined as the collective motion of particles of a fluid. In

this regard, there are two types of convection flow, forced convection and natural or free

convection. Forced convection occurs when an external driving force causes the fluid to

flow. For instance, use of a fan, a pump or a blower. Situations for which there is no

forced velocity, yet convection currents exist within the fluid are referred to as free or

natural convection. Free convection flow occurs frequently in nature and in such flows,

the velocity and temperature distributions are coupled. The flow originates due to buoy-

ancy force which is induced by temperature difference between the surface and the fluid.

Such flows (free convection) find relevance in many applications, for instance, it strongly

influences the operating temperatures of power generating and electronic devices thereby

plays a major role in a vast array of thermal manufacturing applications. Secondly, it's

equally important in establishing temperature distributions within buildings and in de-

termining heat losses or heat loads for heating, ventilating, and air conditioning systems.

Further, free convection distributes the poisonous products of combustion during fires.

To environmental sciences, it is relevant as well since it drives oceanic and atmospheric

motions, and the related heat and mass transfers processes. It is. therefore justifiable

that free convection is a buoyant flow that develops due to fluid density gradients and a

body force whose combined effect induces free convection current. Such buoyancy driven

flows are termed natural convection (NC) flows and can be modelled mathematically

[6, 27, 33, 34, 42]. Notice that in such buoyancy induced flows, heat is transferred as

a result of temperature gradients. It is definite that the energy transfer is always from

the higher temperature medium to the lower temperature one. The. science that deals

with the determination of such energy transfer is heat transfer. Hence, the study of heat

transfer forms an integral part of natural convection flow and basically belongs to the

class of problems in boundary layer theory. The quantity of heat transferred is highly

dependent upon the fluid motion within the boundary layer. Many practical heat trans-

fer applications involve the conversion of some form of mechanical, electrical, nuclear or

chemical energy to thermal energy in the medium.

Along with the free convection flow, the phenomenon of mass transfer is equally very

common since temperature and concentration are coupled. When a system contains two

or more components whose concentration vary from point to point, then there is a natural

tendency for mass to be transferred, minimizing the concentration differences within the
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system. Convection mass transfer therefore, involves the transport of materials between

boundary surface and moving fluid. Mass transport always plays an important role in

many industrial processes, for instance, removal of pollutants from plant discharge. An

interest to investigate this phenomenon and in particular, the case of mass transfer on free

convectional flow, is noble. Several researchers have studied problem of free convection

flow [19, 11, 28, 48, 55]. However, in the mentioned investigations, viscous dissipation

is neglected yet such effects are important in geophysical flows. For instance, in the de-

sign of MHD generators and accelerators, in certain industrial operations as in polymer

processing flows such as injection moulding or extrusion at high rates. Since viscous dis-

sipation changes the temperature distribution by playing a role like an energy source, it

leads to affected heat transfer rates and thus are usually characterised by Eckert number

(Ec).

Also, during convective motion, both heat and mass of fluid are transferred by a phe-

nomenon called double diffusion or combined heat and mass concentration transfer con-

vection. Such phenomena are observed in buoyancy induced motions in the atmosphere,

in bodies of water, quasi-solid bodies as the earth and so on.

In many natural and technological processes, temperature and mass or concentration

diffusion act together to create a buoyancy force which drives the fluid.· Because of the

coupling between the fluid velocity field and the diffusive (thermal and concentration)

fields, double-diffusive convection is more complex than the convective flow which is as-

sociated with a single diffusive scalar, and many different behaviours may be expected.

Such double-diffusive processes have applications in many of engineering processes such

as heat exchanger devices, petroleum reservoirs, chemical catalytic reactors and pro-

cesses, geothermal and geophysical engineering among others. Such coupled heat and

mass transfer convection flows occur frequently in nature not only due to temperature

difference, but also as a result of concentration differences or rather a combination of

these two. In addition, such processes are only of interest in the boundary layer, how-

ever, the boundary layer flows adjacent to inclined plates or wedges have received little

attention. Recall that there is no component of the buoyancy force along the surface,

therefore the accelerating flow must be driven indirectly by a buoyancy induced pressure

gradient which leads to the variation in wall temperature. The changein wall temper-

ature causing the free convection flow could be a sudden or a periodic one, resulting in
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a variation in the flow. This finds application in nuclear engineering, where cooling of

medium is more important from safety point of view. During this cooling process the

plate temperature starts oscillating about a non-zero constant mean temperature, hence

the justification of sinusoidally varying surface temperature. Such, oscillatory flow has

applications in industrial and aerospace engineering. Numerous authors [45, 38, 28, 26],

have studied MHD free convection flow with some extended effects along vertical or hor-

izontal plates. However, MHD free convection flow with some extended effects along an

inclined plate with sinusoidal temperature conditions has received inadequate attention

yet in many natural convection flows, the thermal input occurs at a surface that is itself

curved or inclined with respect to the direction of the gravity field. Equally, it is noticed

that temperature and concentration do not remain constant in so many fluid flow prob-

lems of practical interest, thereby a need to consider a plate at varying angles to approach

such real cases. Further, partial differential equations exhibit different general solutions

depending on imposed boundary conditions hence we anticipate a unique solution for this

choice of boundary conditions. Therefore, the study considered heat and mass transfer

characteristics phenomenon on MHD free convection steady buoyancy induced flow of an

incompressible, electrically conducting fluid over an inclined heated infinite plate with

varied inclination angle under the influence of an applied uniform magnetic field. In

addition, we also considered combined effect of double diffusion, where dissipation and

thermal diffusion taken into account with periodically varying surface temperature, when

the temperature of the plate oscillates periodically about a constant mean temperature.

4



1.2
IMASEN;? UNNERSI VI

- S.G. ~..:tJBRAR . ,
Statement of the problem ---=--= ""Y.

Convection is a major mode of heat and mass transfer in fluids and plays an important

role in a wide range of fields such as engineering, science and industry. The change in wall

temperature causing the free convection flow could be a sudden or a periodic one, leading

to a variation in the flow, which has applications in nuclear engineering, where cooling

of medium is more important from safety point of view. However, the temperature and

concentration do not remain constant in so many fluid flow problems of practical interests.

Moreover, in natural convection flows, thermal input occurs at a surface that is itself

curved or inclined. Further, due to coupling, double-diffusive convection is. characterised

by complexity than one associated with a single diffusive scalar, and many different

complex behaviours could be expected. In this thesis therefore, we considered an inclined

heated plate at varying angles of inclinations under the influence of applied uniform

magnetic field. An analysis of effects of heat and mass transfer permeated by a uniform

transverse magnetic field in MHD free convection adjacent to an inclined surface, taking

into account viscous dissipation with sinusoidally varying surface temperature on velocity,

temperature and concentration was done to control such processes .

1.3 Objectives of the study

General objective

The general objective of this study was to investigate the effects of heat and mass transfer

on a steady buoyancy driven MHD fluid flow past an inclined infinite flat plate under

Boussinesq model.

Specific objectives

The key objectives of this study were;

(i) To formulate a mathematical model describing heat and mass transfer effects on

steady buoyancy driven MHD fluid flow past an inclined infinite flat plate.

(ii) To numerically solve the formulated problem in (i), with periodic surface boundary

conditions ..
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(iii) To analyze the effect of variation of inclination angle of the plate so as to determine

the optimal inclination for effective fluid flow.

(iv) To analyze the effects of parameter variation on velocity, temperature and concen-

tration profiles.

1.4 Significance of the study

This study of natural convection flows finds application in material manufacturing in-

dustries as a control mechanism where there arise situations in which the heat generated

during certain operations may be disadvantageous to the production of equipment. The

undesirable amount of heat can be removed as much as possible by Lorentz force, that is

generated by the existence of magnetic field. Secondly, such flows likewise find relevance

in many applications, for instance, it strongly influences the operating temperatures

of power generating and electronic devices thereby plays a major role in a vast array

of thermal manufacturing applications, in establishing temperature distributions within

buildings and in determining heat losses or heat loads for heating, ventilating, and air

conditioning systems.

Moreover, buoyancy induced convective flow is key in many heat removal processes in

engineering technology since both science and technology have interest in passive energy

storage systems, such as the cooling of spent fuel rods in nuclear power applications and

the design of solar collectors.

Last but not least, the study of flow past an inclined surface can be utilized as the

basis of many scientific and engineering applications, including earth science, nuclear

engineering and metallurgy. In nuclear engineering, it finds its applications for the design

of the blanket of liquid metal around a thermonuclear fusion-fission hybrid reactor. In

metallurgy, it can be applied during the solidification process. The results of the problem

are also of great interest in geophysics, in the study of interaction of geomagnetic field

with the fluid in the geothermal region.
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1.5 Research Methodology

The study of natural convection buoyancy induced, heat and mass transfer effects in the

presence of a magnetic field past an inclined surface are mostly experienced in industries

and engineering which are practical in nature. To formulate this problem, consider the

heat and mass transfer of a steady two-dimensional laminar flow of a viscous, incompress-

ible, electrically conducting and dissipating fluid moving past an inclined infinite plate.

The motion is in the presence of a uniform magnetic field of intensity Bo applied normal

to the plate surface. Assume the x axis of a cartesian coordinate system (x, y) is directed

along the plate and the y axis is perpendicular to the plate surface. Then the origin of the

coordinate system is taken to be the leading edge of the plate. The acceleration due to

gravity 9 is taken to be acting vertically downwards. The plate surface is inclined to the

vertical direction by an angle T This formulation yields a set of non linear coupled partial

differential equations (PDEs) governing the motion of fluid under a set of appropriate

boundary conditions [47].

To achieve the second objective, the system of non linear coupled PDEs so formulated

were reduced by suitable similarity techniques, mainly because similarity technique trans-

forms easily the PDEs into a set of non linear coupled ordinary differential equations

(ODEs). Such ODEs were solved numerically under the boussinesq approximation, using

shooting method with the fourth order Runge-Kutta method and the Secant technique

of root finding.

In the analysis, a Mathematica program was developed in order to analyze the effects of

variation of inclination angler and pertinent parameters involved. The results obtained

were displayed in graphs.

1.6 Preliminary Concepts

This section gives detailed information on concepts used in the thesis. However, these

concepts are not exhaustive, therefore, most of these literature can be found in [13, 23,

24, 25, 37, 47, 48, 51, 54, 60], for further reading.
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1.6.1 Laminar and Turbulent flows

1.6.1.1 Laminar flow

A fluid is a substance which offers no resistance to shear deformation and the continuous

deformation of a substance is known as flow. A smooth regular flow in layers is called

laminar flow. Here, fluid particles remain in motion in respective layers or no fluid

particles will be exchanged from one layer to another. As a result, laminar flow is also

referred to as streamline or viscous flow. These terms are descriptive of the flow because

in laminar flow;

(i) Fluid particles move in definite and observable paths or streamlines

(ii) The flow is characteristic of viscous (thick) fluid or is .one in which viscosity of the

fluid plays a significant part.

1.6.1.2 Turbulent flow

When the motion becomes disorderly, eddies and vortices occur, then it is known as

turbulent motion. The pattern of flow in this case is no longer smooth and stable but

becomes irregular and chaotic. It is complex flow and the pattern changes continuously

with time. The velocity of the particles at each given point varies abruptly with time.

A transition from laminar flow to turbulent flow occurs very suddenly as the flow rate

increases, therefore, fast flow increases the chance of turbulence. When the flow becomes

turbulent there is a decrease in the volume flow rate. Therefore, when a fluid flows around

an object the shape of the object is a very important parameter in determining the type

of flow. For instance, the flow of blood through a normal artery is laminar. However,

when irregularities occur in artery the flow becomes turbulent.

8



Streamline
Pi •.

v V-~

Turbulent
region

Buffer layer
, Laminar

sublayer

••x
Laminar ...• Turbulent

Transition

Figure 1.6.1: Boundary Layer Transition (Source: [54])

1.6.2 Classification of Flow Phenomena

1.6.2.1 Steady and unsteady state flows

Steady-state flow refers to the condition where the fluid properties at any single point

in the system do not change over time t while the flow in which anyone of these pa-

rameters changes with time is considered to be unsteady. These fluid properties include

temperature, density, velocity among others. One of the most significant properties that

is constant in a steady-state flow system is the system mass flow rate i.e. there is no

accumulation of mass within any component in the system.

1.6.3 Viscosity and Incompressibility

1.6.3.1 Viscosity

Viscous fluids tend to be gooey or sticky, indicating that fluid parcels do not slide past

one another, or past solid surfaces very readily (but in a fluid they do always slide).

Such fluid interacts with the surface it comes in contact with resulting in a kind of fluid

friction called viscosity. It is thus a property of a fluid which determines its resistance

to shearing stresses between the layers of the fluid i.e. it measures the resistance of the

fluid to deforming due to a shear force.
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It can also be thought of as the internal friction of a fluid which makes it resist flowing past

a solid surface or other layers of the fluid. This property of fluid is especially important

right near fluid boundaries because viscous forces bring the fluid to a complete stop at the

boundary. In addition, it stabilizes those flows that would otherwise become turbulent,

or chaotically unsteady. The boundary effect produces drag forces on objects moving

through fluids and therefore, viscosity depends on fluid properties and dimensions. The

viscosity of the fluid in motion cannot be neglected in all regions, since at the surface of

the solid, there is a significant condition known as the no-slip condition i.e. flow at the

surface of the body is at rest relative to that body, At a certain distance from the body,

the viscosity of the flow can again be neglected since it is usually significantly dependent

on the temperature of the fluid and relatively independent of the pressure. For most

fluids, as the temperature of the fluid increases, the viscosity of the fluid decreases. An

example of this can be seen in the lubricating oil of engines. When the engine and its

lubricating oil are cold, the oil is very viscous or thick, after the engine is started and

the lubricating oil increases in temperature, the viscosity of the oil decreases significantly

and the oil seems much thinner. In mathematics, this can be expressed as;

au
T=J..L- ay

where T is called the shear stress and J..Lis the coefficient of dynamic viscosity. Such fluids

which obey this relation are referred to as Newtonian fluids.

1.6.3.2 Incompressibility

Fluids are either gases or liquids that take the shape of the container. In fluid dynamics,

the compressibility of a fluid is a very important factor. In nature, all the fluids are

compressible. The concepts of compressible and incompressible fluids playa major role

in fields such as fluid dynamics, fluid statics, aviation and many other fields. It is vital

to have a proper understanding in the concepts of compressibility of fluids in order to

understand such fields. An incompressible fluid is a fluid that does not change the volume

due to external pressure. Most of the basic calculations done in fluid dynamics are

done assuming the fluid is incompressible, The approximation of incompressibility is

acceptable for most of the liquids as their compressibility is very low. However, the
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compressibility of gases is high, so gases cannot be approximated as incompressible fluids.

The compressibility of an incompressible fluid is always zero (do not change in volume)

whereas, compressible fluids reduce in volume when an external pressure is applied.

1.6.4 Natural Convection and Buoyancy Induced Flows

The convective heat transfer depends also on the details of the flow field, this leads

to further classification of convection based on the flow field namely, natural or free

convection and forced convection.

1.6.4.1 Natural Convection

""';
I' :

x

,
,.!

, g

~~~~----------~~ y

Figure 1.6.2: Convection flow (Source: [43])

In free or natural convection, the macroscopic fluid motion is due to body forces and

their dependence on fluid density, which itself is sensitive to the temperature or the

concentration (or both) of the species that constitute the fluid. Free convection is common

in nature and has numerous applications and occurrences in industry. It is a major cause

for atmospheric and oceanic recirculation and plays an increasingly important role in the

passive emergency cooling systems of advanced nuclear reactors. Duringheating process

of a fluid, the fluid density varies with temperature, and a flow is induced due to the

force of gravity acting on the density variations. The buoyancy results in a force acting
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on the fluid, and the fluid would accelerate continuously if it were not for the existence of

viscous forces. Therefore, viscous forces oppose the buoyancy forces thereby causing the

fluid to move with a velocity distribution which creates a balance between the opposing

buoyancy and viscous forces. Thus, buoyancy driven flows are classified as viscous flows

of incompressible fluids. As such, free convection can be categorised as a buoyant flow

that develops due to fluid density gradients and a body force whose combined effect

induces free convection current (results from body force due to gravitational field acting

on a fluid with density gradient. (b.p due to 6..T)). An interesting property about natural

convection is that the velocity and temperature fields are completely coupled which makes

any analytical analysis extremely difficult. Furthermore, the velocities encountered in

natural convection flows are relatively low, therefore, the momentum and viscous effects

are of the same order.

Figure l.6.3: Free convection (Source: [54])

1.6.4.2 Forced Convention

In this type of flow, fluid arises from an external agent, for instance, a.fan, a blower, the

wind, or the motion of the heated object itself, which imparts the pressure to drive the

flow.

20 C
5 mJ,

IR

50 .

Figure l.6.4: Forced convection (Source: [54])
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1.6.4.3 The Boussinesq Model

The governing equations for natural convection flow are coupled partial differential equa-

tions and are therefore of considerable complexity. Another problem in obtaining a solu-

tion to these equations lies in the inevitable variation of the density p with temperature

or concentration. Several approximations are generally made to simplify these equa-

tions. The most important one being the Boussinesq approximations. The Boussinesq

approximation involve two aspects first, the density variation in the continuity equation

is neglected. Second, the density difference, which causes the flow, is approximated as

a pure temperature or concentration effect (i.e., the effect of pressure on the density is

neglected). Therefore, for many natural convection flows, the Boussinesq model provides

a faster convergence than just setting up the problem with fluid density as a function of

temperature (p varies with respect to 1'). In fact, the density difference is estimated for

thermal buoyancy as

(p - po)g :::::;-po(3(T - To)g (1.6.1)

where Po - is the constant density of the flow at temperature To, which is the operating

temperature. Equation 1.6.1 is obtained by using the Boussinesq approximation

p = Po(1- (3/:,1') to eliminate p from the buoyancy term. This approximation is accurate

as long as changes in actual density are small, an important condition for the validity of

these approximations is that

(3(1' - To) ~ 1

[25]. Therefore, the approximations are valid for small temperature differences if (3 is

essentially unchanged.

1.6.5 Convection Heat Transfer

Convection heat transfer takes place between a surface and a moving fluid, when they are

at different temperatures. In a strict sense, convection is not a basic mode of heat transfer

as the heat transfer from the surface to the fluid consists of two mechanisms operating

simultaneously. The first one is energy transfer due to molecular motion (conduction)

through a fluid layer adjacent to the surface, which remains stationary with respect to the

solid surface due to no-slip condition. Superimposed upon this conductive mode is energy

transfer by the macroscopic motion of fluid particles by virtue of an external force, which
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could be generated by a pump or fan (forced convection) or generated due to buoyancy,

caused by density gradients.

When a fluid flows over a surface, its velocity and temperature adjacent to the surface

are same as that of the surface due to the no-slip condition. The velocity Uoo and

temperature Too far away from the surface may remain unaffected. The region in which

the velocity and temperature vary from that of the surface to that of the free stream

are called hydrodynamic and thermal boundary layers, respectively. The velocity tends

to vary from zero (when the surface is stationary) to its free stream value Uoo. This

happens in a narrow region where there is a sharp velocity gradient. The narrow region

is called hydrodynamic boundary layer. In the hydrodynamic boundary layer region

the inertial terms are of same order of magnitude as the viscous terms. Similar to the

velocity gradient, there is a sharp temperature gradient in this vicinity of the surface if

the temperature of the surface of the plate is different from that of the flow stream. This

region is called thermal boundary layer, denoted as St, as displayed in the diagram below;

y
••

~Dt(X)
!----:)II!-I--

Thermal
boundary

layer

••x ••

Figure 1.6.5: Thermal boundary layer (Source: [54])

In the thermal boundary layer region, the conduction terms are of same order of magni-

tude as the convection terms. The momentum transfer is related to kinematic viscosity

v while the diffusion of heat is related to thermal diffusivity a hence the ratio of thermal

boundary layer to viscous boundary layer is related to the ratio ~, which is Prandtl num-

ber. Therefore, the ratio of thermal boundary layer thickness to the viscous boundary

layer thickness depends upon Prandtl number. The rate of heat transfer Q due to free

convection is described by Newtons law of cooling
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where h is the convection heat transfer coefficient, A is the surface area of plate, Tw is

the temperature of the plate wall, Too is the temperature of the surrounding and 6T is

the temperature difference. The temperature gradient near the wall depends on the rate

at which the fluid near the wall can transport energy into the mainstream. Thus the

temperature gradient depends on the flow field, with higher velocities able to pressure

sharper temperature gradients and hence higher heat transfer rates. Hence, determination

of convection heat transfer requires the application of laws of fluid mechanics in addition

to the laws of heat transfer.

1.6.5.1 Determination of convective heat transfer coefficient

Evaluation of convective heat transfer coefficient is difficult as the physical phenomenon

is quite complex. Analytically, it can be determined by solving the mass, momentum

and energy equations. However, analytical solutions are available only for very simple

situations like 1- Dimensional cases, hence most of the convection heat transfer data is

obtained through careful experiments, and the equations suggested for convective heat

transfer coefficients are mostly empirical. Since the equations are of empirical nature.

each equation is applicable to specific cases.

1.6.5.2 Thermal Diffusivity

The product pCp, which is frequently encountered in heat transfer analysis is 'called

the heat capacity of a material. Both the specific heat Cp and the heat capacity pCp,

represent the heat storage capability of a material. Another very important material

property that appears in the transient heat conduction analysis is the thermal diffusivity

which represents how fast heat diffuses through a material and is defined as

Heat conducted
(X=

Heat stored

Note:

The larger the thermal diffusivity, the faster the propagation of heat into the medium

while the smaller this value means that heat is absorbed by the material and thus a small

amount of heat will be conducted further.

IMASENO UNIVERSITY\
\ S.C;. S. LJ8RAf3,, __
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1.6.6 Fundamentals of mass transfer

When a system contains two or more components whose concentration vary from point to

point, there is a natural tendency for mass to be transferred, minimizing the concentration

differences within the system. The transport of one constituent from a region of higher

concentration to that of lower concentration is called mass transfer. A common example

of mass transfer is drying of a wet surface exposed to unsaturated air. Refrigeration and

air conditioning deal with processes that involve mass transfer. Some basic laws of mass

transfer relevant to refrigeration and air conditioning are discussed below.

1.6.6.1 Fick's Law of Diffusion

This law deals with transfer of mass within a medium due to difference in concentration

between various parts of it. This is very similar to Fouriers law of heat conduction as

the mass transport is also by molecular diffusion processes. According to this law, rate

of diffusion of component A (kg / s) is proportional to the concentration gradient and the

area of mass transfer, i.e.

where, CA is concentration of the surface, DAB is called diffusion coefficient for component

A through component B, and it has the units of m2 / s just like those of thermal diffusivity

ex and the kinematic viscosity of fluid v for momentum transfer.

1.6.6.2 Convective mass transfer

Mass transfer due to convection involves transfer of mass between a moving fluid and a

surface or between two relatively immiscible moving fluids. Similar to convective heat

transfer, this mode of mass transfer depends on the transport properties as well as the

dynamic characteristics of the flow field. Similar to ewton's law for convective heat

transfer, the convective mass transfer equation can be written as:

where hm is the convective mass transfer coefficient and 6.CA is the difference between

the boundary surface concentration and the average concentration of fluid stream of the

diffusing species A.
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Similar to convective heat transfer, convective mass transfer coefficient depends on the

type of flow i.e. laminar or turbulent and forced or free. In general, the mass transfer

coefficient is a function of the system geometry. fluid and flow properties and the con-

ccntration difference. Similar to momentum and heat transfers, concentration boundary

layers develop whenever mass transfer takes place between a surface and a fluid.

1.6.7 Natural convection due to combined thermal

and mass diffusion effects

Mass transfer in natural convection is more complicated than in forced convection. The

reason is that non uniformity in the chemical species concentrations, which is usually the

main cause of diffusive mass transfer, also contributes to non uniformity in the fluid mix-

ture density. The non uniformity in the fluid density will then contribute to the buoyancy

driven flow. Thus, unlike forced convection in which the effect of diffusive mass transfer

on the hydrodynamics is often negligible, mass diffusion can have a significant effect on

the overall phenomenology of buoyancy-driven flows. Buoyancy driven flows caused by

non uniformity of humidity in air and in buildings, and caused by non uniformity of

salinity in seawater, are some examples.

When heat and mass transfer are both present, we then deal with buoyancy driven flows

caused by combined thermal and mass diffusion. It is important to note that, unlike

forced convection, the analogy between heat and mass transfer cannot be applied to de-

rive correlations for mass transfer based on the modification of correlations for natural

convection heat transfer. The analogy based methods for obtaining mass transfer corre-

lation by manipulating heat transfer correlations (and vice versa) can be applied under

only very restrictive, limiting conditions.

1.6.8 Boundary layer theory and equations

A region of fluid in the immediate vicinity of a bounding surface where strong gradi-

ents of velocity (and potentially, other variables such as temperature) occur is known as

boundary layer. Although the layer is thin, it is very important to know the details of

flow within it. The main flow velocity within this layer tends to zero while approaching

the wall (no-slip condition) to a maximum value. This thickness is usually expressed by
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Figure 1.6.6: Boundary layer (Source: [1])

the symbol O. The impact of the no-slip boundary condition at the surface of the object

will extend only through this thin layer of fluid, and beyond it the fluid acts essentially

as an inviscid fluid. In other words, outside the boundary layer the flow field does not

feel the viscous effect caused by the presence of the object. It feels only the blockage

caused by the presence of the object, as a result of which the streamlines in the flow

field become curved around the object. Also the gradient of this velocity component in

a direction normal to the surface is large as compared to the gradient in the stream wise

direction. This can also be seen as the layer of fluid in which the tangential component

of the velocity of the fluid relative to the body increases from zero at the surface to the

free stream value at some distance from the surface.

The velocity boundary layer results from the difference between the free stream velocity

and the zero velocity at the wall, while the thermal boundary layer results from a dif-

ference between the free stream and surface temperatures. Note that since the fluid is

considered to be a binary mixture of species A and B, the concentration boundary layer

originates from a difference between the free stream and surface concentrations.

Therefore, the boundary layer concept is a very important tool and allows for the sim-

plification of the analysis of virtually all transport processes in two important ways.

(i) First, it limits the domain in the flow field where the viscous and other effects of

the wall must be included in the conservation equations

(ii) Second, it shows that, within the boundary layer, the conservation equations can

be simplified by eliminating certain terms in those equations.
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1.6.8.1 Boundary layer on a flat plate

Air flowing past a solid surface will sick 0 that surface. This phenomenon caused by

viscosity is a description of the no-slip condition. This condition states that the velocity

of the fluid at the solid surface equals the velocity of that surface. The result of this

condition is that a boundary layer is formed in which the relative velocity varies from

zero at the wall to the value of the relative velocity at some distance from the wall.

Consider the flow of a fluid parallel to a thin, flat plate, as shown in figure (1.6.7).

Away from the wall the fluid has a uniform velocity profile. This is the simplest physical

condition as far as the phenomenology of boundary layers is concerned and produces

effects that with some variations apply to other configurations as well. For the thin

plate depicted in figure (1.6.7), measurements slightly above and below the plate would

agree with the predictions of the inviscid flow theory. Very close to the wall, however,

a non-uniform velocity profile would be noted in which,over a very thin layer of fluid

of thickness 6, the fluid velocity increases from zero (at y = 0) to Uoo (at y = 6). The

velocity of the fluid actually approaches Uoo asymptotically, and 6is often defined as the

normal distance from the wall where u:' = 0.99 or u:' = 0.999.

-+...........•
(J<f) ~

~
--+
--+
~ x

Figure 1.6.7: Laminar flow boundary layer on a flat plate (Source: [37])

1.6.8.2 Boundary layer equations for laminar flow

Motion of a fluid in which there are coexisting velocity, temperature, and concentration

gradients must comply with several fundamental laws of nature. In particular, at each

point in the fluid, conservation of mass, energy, and chemical species, as well as Newtons

second law of motion, must be satisfied. Equations representing these requirements are

derived by applying the laws to a differential control volume situated in the flow. We

begin by restricting attention to applications for which body forces are negligible i.e.
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free flow (x = y = 0), there is no thermal energy generation (q = 0), and the flow

is non reacting. Additional simplifications may be made by invoking approximations

pertinent to conditions in the velocity, thermal, and concentration boundary layers. The

boundary layer thickness are typically very small relative' to the size of the object upon

which they form, and the x - direction velocity, temperature, and concentration must

change from their surface to their free stream values over these very small distances.

Therefore, gradients normal to the objects surface (y- direction), are much larger than

those along the surface (x- direction). As a result, we can neglect terms that represent

.'[ - direction diffusion of momentum, thermal energy, and chemical species, relative to

their y - direction counterparts as below

(1.6.2)

By neglecting the x - direction terms, we are assuming that the corresponding shear

stress, conduction flux, and species diffusion flux are negligible.

Furthermore, because the boundary layer is so thin, the x - direction pressure gradient

within the boundary layer can be approximated as the free stream pressure gradient as

oP or;-~--ax ~ ax . (1.6.3)

The form of P00 (x) depends on the surface geometry and may be obtained from a separate

consideration of flow conditions in the free stream. Hence, the pressure gradient may be

treated as a known quantity. With the foregoing simplifications and approximations, the

overall continuity equation is unchanged

(1.6.4)

where u - is component of velocity in x - direction and v - is component of velocity in

y- direction. Now if a fluid flows past a solid, a fluid layer is formed adjacent to the

boundary of the solid. This layer is called a boundary layer and strong viscous effects

exist within this layer. Assuming steady 2-D incompressible flow, then the x component

20



of the momentum equation is given by

au au lap &u
u- +v- = --- - g+1/-.ax ay p ax ay2 ' (1.6.5)

where 1/ = !:!. is the kinematic viscosity, aaP is the free stream pressure gradient in thep x

quiescent region outside the boundary layer. And in this region u. = 0, therefore equation

(1.6.5) reduces to

The y-momentum equation results in ~~ = 0, therefore p = P(x), it then implies that

Note that the pressure gradient inside the boundary layer must balance the pressure

gradient outside the boundary layer i.e.,

(ap) = _pg (outside the boundary layer)
ax in boundary layer

so that equation (1.6.5) becomes

a'LL au 1 a2u
u- + v- = --( -Poog) - 9 + 1/-,ax ay p ay2

which implies that

au au
u-+v-ax ay (

Poo - p) a2u
9 + I/a 2

p Y

= 9 (b.p) + 1/ a2
u

p ay2 (1.6.6)

where b.p = Poo - p. The term 9 ( .6.: ) .is the buoyancy force. If the density variations

are due to temperature variations only, then the term may be related to a fluid property

called volumetric thermal expansion coefficient.
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1.6.8.3 Volumetric Thermal Expansion Coefficient

The coefficient of volume expansion is a measure of the change in volume of a substance

with temperature at constant pressure

This thermodynamic property of the fluid provides a measure of the amount by which

the density changes in response to a change in temperature at constant pressure (incom-

pressible fluid). Thus,

(3 ~ _~ (b:.p) -__ ~ (poo - p),- at constant pressure.
p b:.T p Too - T

Hence

(1.6.7)

This simplification is known as the Boussinesq approximation. Substituting equation

(1.6.7) in equation (1.6.6), we have

Hence the relationship between the buoyancy force which drives the flow andthe temper-

ature is apparent. Since the buoyancy effects are confined in the momentum equation,

the mass and energy conservation equations are unchanged.

The energy equation from control volume idea takes the form

er et a2T
u ax + v ay = a ay2 . (1.6.8)

This equation results from application of conservation of energy toa differential control

volume in the flowing fluid. Terms on the left-hand side account for the net rate at which

thermal energy leaves the control volume due to bulkfluid motion (advection). The term

on the right-hand side accounts for the net inflow of thermal energy due to y - direction

conduction. The species conservation equation from same control volume analogy, is
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given by

(1.6.9)

where CA is concentration of the surface, DAB is called diffusion coefficient for component

A through component B.

Similarly, this equation is obtained by applying conservation of chemical species to a

differential control volume in the flow. Terms on the left-hand side account for net

transport of species A due to bulk fluid motion (advection), while the right-hand side

represents the net inflow due to y - direction diffusion.

Equations (1.6.4), (1.6.5), (1.6.8) and (1.6.9) may be solved to determine the spatial

variations of u, v, T, and CA in the different laminar boundary layers. For incompressible,

constant property flow, equations (1.6.4) and (1.6.5) are uncoupled from equations (1.6.8)

and (1.6.9). That is, equations (1.6.4) and (1.6.5) may be solved for the velocity fields,

u(x,y) and v(x,y), without consideration of equations (1.6.8) and (1.6.9). therefore,

velocity gradient (~~) Iy=o could then be evaluated, and the wall shear stress could be

obtained from equation (1.6.5).

In contrast, through the appearance of u and v in equations (1.6.8) and (1.6.9), the

temperature and species concentration are coupled to the velocity field. Hence u( x, y)

and v(x, y) must be known before equations (1.6.8) and (1.6.9) may be solved for T(x, y)

and CA(x, V). Once T(x, y) and CA(x, y) have been obtained from such solutions, the

convection heat and mass transfer coefficients may then be computed.

1.6.8.4 Laminar boundary layer conservation equations

Consider the flow parallel to a flat plate (Figure 1.6.7). This is the simplest configuration,

but provides information that is much more general. As a further simplification, let us

assume constant properties and incompressible flow, without body force. Also, let us

assume 2-dimensional (x, y) flow. Then the conservation equations for mass, momentum,

energy and species become, respectively,

Continuity equation

(1.6.10)
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Momentum equation

(l.6.11)

Energy equation

(1.6.12)

1.6.9 Laminar Boundary Layer Thickness (Scale Analysis)

Scale analysis (or order of magnitude analysis) is very useful and widely used tool for

solving problems in the area of heat transfer and fluid mechanics, pressure driven wall

jet, separating flows behind backward facing steps, jet diffusion flames, study of linear

and non-linear dynamics among others. Scale analysis is recommended as the premier

method for obtaining the most information per unit of intellectual effort, despite the

fact that it is a precondition for good analysis in dimensionless form. The object of scale

analysis therefore is to use the basic principles of convective heat transfer to produce order

of magnitude estimates for the quantities of interest. Hence, scale analysis anticipates

within a factor of order one when done properly.

1.6.10 Order of magnitude analysis

The essential part of this argument is to recognize that boundary layers are (in general)

thin in comparison to their length of development (except perhaps right at the start of

the body). Hence f is small, where 6 is the thickness of the boundary layer and D is

the length over which it develops. By order of magnitude we mean the size of the terms,

which we will represent by 0(·), i.e. this means is of the order of magnitude of. This sort

of argument is often called a scaling argument. In essence what we are doing is looking at

how the various terms in the equation change when we change the primary flow variables

(such as the mean velocity, the size of the object we are studying, the viscosity of the

fluid). To say that one variable scales with another quantity simply means that we expect

it to increase proportionally when we increase that variable. This approach is very useful

to a scientist or engineer since in this way we can determine which terms of an equation

are likely to be important under certain conditions and then simplify the equation (by

dropping those terms that are likely to be insignificant).
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We consider an order of magnitude analysis of the two-dimensional conservation of mass

equation for steady incompressible Newtonian laminar flow over a flat plate and simplify

it using Prandtl ideas [51].

We shall use scaled variables, let L be the reference length, and Uoo as a reference ve-

locity. Then the symbols x* and y* are used for the scaled counterparts of the physical

coordinates in the sketch (Figure 2.9.2), and the symbols u* and v* are used for the

dimensionless counterparts of the physical velocity components in the x and y directions,

respectively.

From the scaling, we know that u* is 0(1) . This means that the magnitude of u* lies

between 0 and a number that is of the order of unity. In this particular case, because

the maximum value of the physical velocity is that of the uniform stream approaching

the plate, namely Uoo, the maximum value of u is, in fact, precisely 1. But this is not

necessarily the meaning implied by the order symbol that we are using. Note that the

order of magnitude of a quantity is the same regardless of its sign.

Since the velocity u* varies in the range mentioned above, while the scaled variable x*

also varies from 0 to 1 (we say x rv 0(1)), then a conclusion that the derivative aa:* is

0(1) as well is correct. The scaled incompressible version of the continuity equation is

8u* 8v*-+-=0
8x 8y

Then it is evident that aa~ and aa~ must sum to zero, this forces the derivative ~~ to be

of 0(1) too.

We know that the variable y rv 0(5) where 5 represents the boundary layer thickness

divided by the length L. In other words, 5 is the scaled boundary layer thickness. Be-

cause the derivative aav; rv 0(1), we must conclude that the change in the scaled velocity

component v across the boundary layer must be of 0(8). Due to viscosity, we have the no

slip condition at the plate i.e. u = 0 at y = O. At infinity (outside the boundary layer).

away from the plate we have that u = Uoo (constant speed) as y -t 00. Note that 5 is

a very small quantity when the Reynolds number ReL » 1 implying that 5 «x. Thus,

the scaled velocity in the y direction in the boundary is a very small quantity.

IMASENO UNIVERSITY~"
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1.6.11 Thermal boundary layers in laminar flow

The transfer of heat between a solid body and a liquid or gaseous flow is a problem

whose consideration involves the science of fluid motion. In order to determine the

temperature distribution it is necessary to combine the equations of motion with those

of heat conduction. It is intuitively evident that the temperature distribution around a

hot body in a fluid stream will often have the same character as the velocity distribution

in boundary layer flow. For instance,' if we imagine a solid body which is placed in a

fluid stream and which is heated so that its temperature is maintained above that of the

surroundings then it is clear that the temperature of the stream will increase only over a

thin layer in the immediate neighbourhood of the body and over a narrow wake behind

it.

The major part of the transition from the temperature of the hot body to that of the

colder surroundings takes place in a thin layer in the neighbourhood of the body which,

in analogy with flow phenomena, maybe termed the thermal boundary layer. It.is

evident, that flow phenomena and thermal phenomena interact to a high degree. Hence

it may be expected that in conjunction with the velocity boundary layer there will be

formed a thermal boundary layer across which the temperature gradient is very large.

It is therefore possible to take advantage of this fact and to introduce into the energy

equation, which governs the temperature distribution, simplifications of a similar nature

to those. introduced earlier into the equations of fluid motion.

Consider a flat plate with a constant surface temperature. Assume a steady state, 2-

dimensional flow field with constant properties and no viscous dissipation. The thermal

energy equation and its boundary conditions for the boundary layer is

er er o2T
u- +v- = a--ox oy oy2

T = Tw at y = 0

T = Too as y---+oo

We can recast these equations by using the dimensionless temperature:

26



Then substituting in energy equation of the form

with boundary conditions

e = 1 at y = 0

e = 0 as y ~ 00

Note that temperature profiles for flow over an isothermal flat plate are similar to velocity

profiles, hence, we expect a similarity solution for temperature to exist.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Related Literature

In literature, extensive research work has been performed to examine the effect of natured

convection on flow past a surface.

Pal ani and Srikanth [45] presented an analysis to study the MHD flow of an electrically

conducting, incompressible, viscous fluid past a semi-infinite vertical plate with mass

transfer, under the action of transversely applied magnetic field. The dimensionless gov-

erning equations which were unsteady, two dimensional coupled and non-linear PDEs

were solved using unconditionally stable and fast converging Implicit finite difference

scheme.

The effects of rotation on the hydrornagnetic free convection flow past an accelerated

vertical plate with variable temperature and uniform mass diffusion was investigated by

Muthucumaraswamy et al. [38]. The dimensionless governing equations were solved an-

alytically using Laplace Transform Technique.

The unsteady free convection and mass transfer boundary layer flow past an accelerated

infinite vertical porous plate with suction taking into account the viscous dissipation was

considered by Malga and Kishan [34], when the plate accelerates in its own plane, and

the governing equations were solved nu.nerically using Galerkin finite element method.

Muthucumaraswamy and Visalakshi [40], presented thermal radiation effects on unsteady

free convection flow of a viscous incompressible flow past an exponentially accelerated

vertical plate with variable temperature and uniform mass diffusion and the resulting

governing equations were solved using Laplace Transform Method.

Unsteady hydromagnetic free convection flow of a dissipative and radiating fluid past

a vertical plate with constant heat flux was studied by Ogulu and Makinde [41]. The
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boundary layer equations were derived s.nd the resulting approximate nonlinear Ordinary

Differential Equations (ODEs) were solved analytically using Asymptotic technique.

'vlahmud and Sattar [30], researched on unsteady MHD free convection and mass transfer

flowWIthHall current, viscous dissipation and joule heating however, in this study ther-

mal diffusion effects were neglected yet in convective fluid flow, when the flow is caused

by temperature and concentration differences, thermal diffusion effect is key.

Viscousdissipation and mass transfer effects on unsteady MHD free convective flow along

a moving vertical porous plate in the presence of internal heat generation and variable

suction was investigated by Sharma et al. [53]. These studies concentrated on unsteady

flowsWIth vertical orientations and other physical extensions.

A numerical study of natural convection heat and mass transfer along a vertical wavy

surface was performed by Jer-Huan et at. [26]' where the wavy surface was maintained at

uniform wall temperature and constant wall concentration. A simple coordinate transfor-

mation was employed to reduce the complex wavy surface to a flat plate and then solved

using a marching finite difference scheme.

Muthucumaraswamy et al. f39], reported the exact solution to the problem of flow past an

exponentially accelerated infinite vertical plate with variable temperature. The temper-

ature of the plate was raised linearly with time t.. The dimensionless governing equations

were solved using Laplace Transform 'Iechnioue.

Uwanta ei al. t62j, examined the effect of Viscoelastic fluid flow past an infinite plate

with heat dissipation. Solutions to the dimensionless governing equations was done using

perturbation technique.

Makinde [31] analyzed numerically the magnetohydrodynamics (MHD) boundary layer

flowwith heat and mass transfer over a moving vertical plate in the presence of magnetic

field and a convective heat exchange at the surface with the surrounding. In his study,

the governing boundary layer equations were transformed to a two point boundary value

problem using similarity technique arid the plate was considered at vertical orientation.

Mass transfer effects on steady t\'10 dimensional radiative MHD boundary layer flow over

a non isothermal stretching horizontal sheet embedded in a porous medium was a study

conducted by Viciyasagar et al. [201. In their case, the governing system of PDEs were

first converted to ODEs using similarity transformations and then finally solved by shoot-

ing method.
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Abo-Eldahab and EI-Aziz [14], performed an analysis on effect of Hall and ion-slip cur-

rents with internal heat generation or absorption on MHD free convection flow past a

semi-infinite vertical flat plate. In their case, the governing differential equations were

transformed by introduction of non- similarity variables and solved numerically by two

point backward finite difference.

Palani and Abbas [44], investigated the combined effects of magnetohydrodynamics and

radiation on free convection flow past an impulsively started isothermal vertical plate

with Rosseland diffusion approximation. The fluid considered was a gray, radiation, ab-

sorbing, emitting but a non-scattering medium, with approximate transformations, the

boundary layer governing the flow are reduced to non-dimensional equations valid in the

free convection regime and were solved by the finite element method.

Kumar [29], examined on the combined effects of hall current, viscous dissipation, Joule

heating and thermal diffusion on the hydromagnetic free convection and mass transfer

flow of an electrically conducting, viscous incompressible fluid past an infinite vertical

porous plate. The similarity solutions 0' the governing equations were solved analytically

using perturbation technique with vertical orientation.

In the above mentioned studies, the plate has been considered in a vertical position with

extended physical characteristics, rather than being inclined, however, in many natural

convection flows, the thermal input occurs at a surface that is itself curved or inclined

with respect to the direction of the gravity field.

Convection flows driven by temperature and concentration differences have been studied

extensively in the past [7, 9, 59]. These previous studies of natural convection heat and

mass transfer past a surface have focussed mainly on flat plate or regular ducts.

Ali et al. [4], concentrated on an exact analysis of combined effects of radiation and

chemical reaction on the magnetohydrodynamics (MHD) free convection flow over an in-

clined plate embedded in a porous medium. The impulsively started plate with variable

temperature and mass diffusion. The dimensionless momentum equation coupled with

the energy and mass diffusion equations were analytically solved by Laplace Transform

Method.

Finite difference analysis of natural convection flow over a heated plate with different

inclination and stability analysis was considered by Begum et al. . [6] and solved using

Implicit finite difference method of Crank - Nicolson type.

30



Gnaneswara and Bhaskar [18], presented a numerical analysis on a steady two-dimensional

MHD free convection and mass transfer flow past an inclined semi-infinite vertical surface

in the presence of heat generation and C1 porous medium. The governing partial differen-

tied equations were reduced to d system of ordinary differential equations by introducing

similarity transformations which were solved by applying the Runge-Kutta method of

fourth order with shooting technique

Gebhart and Pera [16] studied the steady state natural convection on a vertical plate

with variable surface temperature and variable mass diffusion. Using similarity tech-

niques, they solved the boundary layer equations.

Sivasankaran et al [58] analyzed Lie group analysis of natural convection heat transfer

fluid flow past an inclined semi infinite surface in the presence of solute concentration.

The governing partial differential equations were reduced to a system of ordinary differ-

ential equations by the translation and scaling symmetries.

Alam et al [2], studied the Hall effects on the steady MHD free convective flow and mass

transfer over an inclined stretching sheet in the presence of a uniform magnetic field. The

boundary layer equations were transformedby a similarity transformation into a system

of coupled non linear ordinary differential equations and which were solved numerically

by Runge- Kut ta fourth-fifth order method using symbolic software.

Chen ~10lperformed an analysis to study the natural convection flow over a permeable

inclined surface with variable 'NR.l1 temperature and concentration, caking into consider-

ation the effects of ohmic heating and viscous dissipation. Power-law temperature and

concentration variations are assumed at the inclined surface. The resulting governing

equations weretransformed using suitable transformationsand then solved numerically

by an implicit finite-difference method.

Canesan and Palani [15], dealt with the unsteady natural convection past an inclined

plate with variable heat and mass flux,under the influence of magnetic field.

The study of Sparrow et al. [601 is related tel the convection flow about an.inclined surface

in which the combined force and free boundary layer problem has been discussed using

the similarity method.

The effects of heat generation and therrnophoresis on steady. laminar, hydromagnetic.

two-dimensional flow' with heat and mass transfer along a semi-infinite, permeable in-

clinedfiat surface was considered by Sattar et at. [501. A similarity transformation was
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used to reduce the governing non-linear partial differential equations into ordinary ones

which were. then solved numerically by applying Nachtsheim-Swigert shooting iteration

technique with sixth-order Runge-Kutta integration scheme.

Gnaneswara [17] employed scaling group of transformation for Heat and mass transfer

effects on steady free convection flow in an inclined plate in the presence of MHD and

viscous dissipation. The governing equations were reduced by similarity technique and

solved using of Runge-Kutta fourth order along shooting method.

Details of effects of variable viscosity and thermal conductivity on MHD free convection

awl mass transfer flow over an inclined vertical surface in a porous rncdiurn with heat

generation was investigated by Santana and Hazarika [49]. The flow governing equations

were transformed to ordinary differential equations, which were numerically solved by

Runge-Kutta method with shooting technique by using similarity transformation.

Manyonge et at. [36], examined the motion of a two dimensional steady flow of a vis-

cous, electrically conducting, incompressible fluid flowing between two infinite parallel

plates one of which is porous and unde- the mfluence of a transverse magnetic field and

constant pressure gradient. The resulting coupled governing equation of motion were

solved analytically and expression for be fluid velocity obtained was expressed in terms

of Hartmann number.

Singh P. K [57], investigated on the effects of viscous dissipation on the MHD boundary

layer flow adjacent to a an inclined plate in porous medium. The partial differential

equations governing the boundary layer flow were converted into a system of ordinary

differential equations by using suitable similarity transformations which were solved nu-

merically.

The effects of viscous dissipation and joule heating on the flow of viscous incompressible

fluid past a semi-infinite plate in the presence of a uniform transverse magnetic field was

done by Hossain [22}, but he did not consider thermal diffusion.

In many natural and technological processes. temperature and mass or concentration dif-

fusion act together to create a buoyancy force which drives the fluid and this is known

as double-diffusive convection. or combined heat and mass concentration transfer convec-

tion. Because of the coupling between the fluid velocity field and the diffusive (thermal

and concentration) fields, double-diffusive convection is more complex them the convec-

tive flow which is associated with a single diffusive scalar, and many different behaviours
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may be expected. Such double-diffusive processes finds applications in a variety of engi-

neering processes such as heat exchanger devices, petroleum reservoirs, chemical catalytic

reactors and processes, geothermal and geophysical engineering, moisture migration in a

fibrous insulation and nuclear waste disposal among others.
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CHAPTER THREE

FORMULATION AND SOLUTION

OF THE, PROBLEM

3.1 Formulation process

3.1.1 Scale Analysis

Let 7J,rv Uoo and y rv 6, since [; « :1;, then by order of magnitude analysis, we have

ov v& -~-oy 6

substituting g~and g~in continuity equation,

U00 v--- + -::~ 0
:c ()

Uood=;:. v rv --

X
(3.l.1)

Similarly from the x- momentum equation given as,

011 ou [J2u
7J,- + v-- = 1/--ox oy oy2 (3.l.2)

we determine the second derivative ~:~" applying the idea of order of magnitude analysis

we obtain
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Alternatively, smce ~~ ;::::;;(- U;), substituting in the x - momentum equation (3.1.2),

gives

(3.1.3)

To estimate the order of magnitude of ~~, we first note that u varies from 0 to 1 across the

boundary layer, while the variable y vanes from 0 to b. This is the reason for the estimate

that ~~ '" 00). To estimate the order of magnitude of the second derivatives, we must

use similar arguments. In a like manner, the derivative ~~ "-' 0(1)' which means that it

varies from 0 to J across the boundary layer, in a distance of the order b. Therefore, the

d deri . 82u O( 1) .secon erivative 8y2 '" 02' i.e.

(3.1.4)

Since the order of magnitude analysis provides useful information about the thickness of

the boundary layer as well. Therefore, the order of magnitude of terms on the left and

right hand sides of the x-momentum equation (3.1.2), becomes

(3.1.5)

Let v '" Uc;8, then equation(3.1.5) yields;

Since the orders of magnitude of terms are the same we have,

Implying that .:=>- b "-' --.. U
oo

Dividing through by x to express the result in dimensionless form gives .

(3.1.6)

s [v 1
-"'-' --=--
x V u-;» v'Rex .
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Furthermore, because boundary layer approximations are valid only when ~ « 1, it is

evident that such approximations make sense only Rex» 1 .

3.1.2 Similarity variable

In view of the fact that the velocity profiles at different locations along the plate are

expected to be similar, let us use If as the independent variable, where this significant

variable is expressed as (!) and we assume that the velocity may be expressed as a

function of this variable, to obtain u: 0= 9 (!) = g(If). It follows that

Y Y /UooIf"-'--::=-=Yt -.
() I vx V l/Xv o:

(3.1.7)

TJis known as the similarity variable and g( If) is the function we seek as a solution.

3.1.3 Variable Transformation

In order to solve a similarity problem, it is convinient to introduce an auxiliary function

'l/;(x, y), called the stream function, which is useful when rewriting the two-dimensional

Navier-Stokes equations. It is defined as

With the velocity field expressed in 'tj.;, the continuity equations is automatically satisfied

which is easily shown by inserting the above equations of u and v into the continuity

equation

Thus
82'1/' 82'ljJ
-.-----=0
8xBy 8:r;8y

Now. considering u = aa1/;, we have d'ljJ == udy and from UU = 9(1f), we can express 'ljJ as
y . =

'l/J J Uoo9(If)dy

J UooJ ;: g(lf)dlf .
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r:':
where T) = Yy ~C;and dy = .1ik. Therefore;VJ::;"

(3.1.8)

where J g(T))dT) = f(T)) and it denotes the dimensionless stream function.

Introducing the co-ordinate transformation, (x, y) M (x, T)), it follows from basic calculus

that transition from the co-ordinates (:1', y) to the coordinates (a, b), we have

[} oa 0 ob a--=-_.+--
ox o.y oa ox ob

and
[} oa 0 ob 0

- =--= -- + --.
oy oy oa oy ob

hence, for our case moving from (x, y) to (x, T)), we then have with respect to x

o 0 or; 0
- == - + ---
ox ox ox or}

and with respect to y, yields

Now, from the stream function (3.1.8), we can then find the velocity components in (x, y)

co-ordinates as follows;

u

(3.1.9)

Similarly, the transverse velocity component is given by

v = _ o'ljJ =_ r o'lj; + (O'I/J. . OT)) l
ox L ox or; ox J (3.1.10)
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Fromequation (3.1.7) and (3.1.8), f} = yjif and 'ljJ = Uoo~f(f}), it then follows that

the differential of 1/J with respect to T] becomes

o1/J = u J I/X f'( )
OT] 00 Uoo f}

(3.1.11)

And differentiating f} with respect to x, yields

:xh/~
yJU; :X (x-~)

f}-- = f}x
2x

(3.1.12)

Finally, differentiating 1/J with respect to x. we obtain

o1/J
Ox

o'ljJ

Ox
(3.1.13)
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Thus substituting equation (3.l.11,3.l.12) and (3.l.13) in transverse velocity equation

(3.l.10), yields

Thus,
(3.l.14)

Also, differentiating the equations, (3.1.9) and (3.l.14) with respect to x and y respec-

tively we get,

and therefore,

Hence,

Similarly,

au -r]Uoo d2 f
ax 2x drp·

(3.1.15)
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Hence

(3.l.16)

Finally, the second derivative of u with respect to y becomes

Since %y = %'7 . ~Z, the second differential becomes

Thus

U'!d3j
--
I/X drJ3'

(3.l.17)

Substituting equations (3.l.9, 3.l.14, 3.1.15, 3.l.16) and (3.l.17) into the simple momen-

tum equation (3.l.2) given by

au au a2u
u- +v- = 1/-ax ay ay2'

we have

which implies that
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and thus
-v: J'J" v: J'J" 1JJ" v: - U:x,J'"--T} + -'I - - - - - .

2:r: 2:r; 2:r: :1;

Simplifying, we get

2t" + 11" = 0

1'" + ~11" = 02
(3.1.18)

with boundary conditions;

1(0) = 0, ]'(0) = o.

Furthermore, because u --+ Urx, as y --+ 00, 1'(00) = 1. Equation (3.1.18) is a third

order non-linear ordinary differential equation. Hence by similarity technique, the system

of two Partial differential equations (PD Es) is converted to one Ordinary differential

equation (ODE).

3.2 Problem Development

Consider the heat and mass transfer of a steady two-dimensional laminar flow of a vis-

cous, incompressible, electrically conducting and dissipating fluid moving past an inclined

infinite plate. The motion is in the presence of a uniform magnetic field of intensity Bo

applied normal to the plate surface. Assume the x axis of a cartesian coordinate system

(x, y) is directed along the plate and the y axis is perpendicular to the plate surface.

Then the origin of the coordinate system is taken to be the leading edge of the plate.

The acceleration due to gravity 9 is taken to be acting vertically downwards. The plate

surface is inclined to the vertical direction by an angle ,.

We assume that the fluid property variations due to temperature and chemical species

concentration are limited to fluid density. Initially, the plate and the fluid are at same

temperature Too with concentration level Coo at all points. At time t > 0, the plate

temperature is raised to Tw and a periodic temperature variation is assumed to be super-

imposed on this mean constant temperature of the plate and the concentration level at

the plate is raised to Ow . In the analysis, we assume that the magnetic Reynolds number

is much less than unity (it is very small for most fluids used in industrial applications)

so that the induced magnetic field is neglected in comparison to the applied magnetic

field. We shall neglect the Soret and Dufour effects as in [1] since we assume that the
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fluid under consideration has very small concentration of diffusing species in comparison

to other chemical species. Thus, the concentration of species far from the plate wall, i.e.

Coo is infinitesimally small.

Axis of inclined
plane x-axis

v-

Let u and v be the velocity components in the x and y axes directions respectively. Then,

under the usual Boussinesqs and boundary layer approximations, the steady, laminar, two

dimensional boundary layer flow under consideration can be governed by the following

set of equations of continuity, momentum, energy and species concentration respectively

as follows:

y-axis

Figure 3.2.1: Physical configuration and coordinate system
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3.3 Governing Equations of the study

1. Continuity Equation

(3.3.1)

2. Momentum Equation

au au 1 a ( au) * CJeB6 ( )u-
a

+v-
a

= --a J.L-
a

+g(3(T-Too)cos,+g(3 (C-Coo)cos,---u 3.3.2
x y p y y p

3. Energy Equation

(3.3.3)

4. Species Concentration Equation

(3.3.4)

where T is the temperature of the fluid in the boundary layer, Too is the temperature of

the uniform flow far away from the plate, Coo is species concentration in the fluid far away

from the plate, (3* is the volumetric coefficient of expansion due to concentration, 1./ = ~
is the kinematic viscosity, 9 is the gravitational acceleration, -Ck is thermal diffusivity,

P p

Dm is the chemical species diffusivity coefficient, CJe is the electrical conductivity, p is

the density, -/b;, (~~) 2 is viscous dissipation term, and Bi, is magnetic field intensity,

and other variables and related quantities are defined in the index of notation with the

following initial and boundary conditions. On the body surface, there is no slip condition

and no permeation; hence,

u(x,O) = v(x, 0)= 0, T = Tw+ E (Tw - Too)coswt, C =C; at y = 0, t > 0

At the exterior edge of the boundary y -7 00, velocity must match the surface slipping
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velocity (free stream condition at infinity), that is,

U ----7 0, T ----7 Too, C ----7 Coo as y ----7 00, t > 0,

where Tw is the wall plate temperature and Cw is the chemical species concentration at

the plate surface and (Tw - Too) cos wt being the periodic temperature term.

3.4 Similarity Transformation Technique

We now introduce a two dimensional stream function 'ljJ related to the velocities u and

v according to the equations 'U = ~~ and v = - ~~ so that continuity equation (3.3.1) is

automatically satisfied as shown below. Since u = ~~and v = - ~~, then substituting in

continuity equation (3.3.1), we have

~ (8'IjJ) + ~ (_ 8'IjJ) = 82'IjJ _ 82'IjJ = °
8x By 8y ax 8x8y 8y8x .

Let rJ be the independent variable, expressed as (~), we then assume that the velocity

may be expressed as a function of this variable to yield

It follows that
y y jUoo

rJ '" "£ = rr:r:r = YV -,
U ,/ - vxV Uoo

where 6 is given as in (3.l.6). We call 1'/ the similarity variable and g(rJ) is the function

we seek as a solution.

We therefore introduce, the following local similarity variables

T -- Too C - Coo
8(rJ) = T _ T ' and ¢(rJ) = C - C

w ~) w 00
(3.4.1)

where rJ is a similarity variable, 8(rJ) and ¢( rJ) are the dimensionless temperature and

concentration respectively, Uoo is the velocity of the fluid far away from the plate. We then
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compute the partial derivatives in the governing equations. ow from the momentum

equation (3.3.2), we compute the partial derivatives as follows

hence

y JUoo 'fl'flx = -- -- = --.
2x l/X 2x

And

O'fl 0 (~oo) ~oo'fl ---- y - - -
y - oy - oy \' l/X - i-x

Then 02W = 2- (ow) butorp (7) (7) ,

Therefore the second differential of 1/J with respect to 'fl becomes,

It follows that
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Again

~xy = a~2;T= :y (~:) = ~J ( - 2~J
But since ~: = (t7 . ~~), it implies that T}xy reduces to

hence

So that

a1jJ~XYa
~.

~xy

T}xy = - 21 JUoo.x vx

I-~~l(Uoo ~1'(~)),L 2x vx VO:
= _ Uoo1'(~).

2x

Therefore, the partial differential of u with respect to x now becomes

au
ax

It follows that

~UOOf"(') UOOfl(')--- '1'1 -- '1'12x " 2x ",

_~:oo(I' + ~1"),.
L,X

And therefore

u au = _.U! (I'1' + ~1'1")
ax 2x

(3.4.2)

\

Similarly the partial differential of u with respect to y is given by
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But since ~~ = ~~. ~, it follows that

au
ay

thus,

Then,

and hence

(3.4.3)

Again the second differential of 'U with respect to y yields

but since ;y = ~ . ~Z, it follows that



Therefore

8
2
u = U

2
00 J"'(TJ) ,

8y2 //1;

and thus

(3.4.4)

The next set of transformation IS the energy equation. The attempt is once again made

to see if the energy equation can be transformed into one where the governing equation

becomes an ordinary differential equation. Therefore, we introduce a non-dimensional

temperature of the form
T-'T'e = -'-00 .

Tw - Too

And since Too is constant, we have e(TuJ - Too) = T - Too, and therefore

But ae = de . a,., let de = B' then substituting in aT we obtainax dr; ax ' dn , ax '

8T
8x

Then since u = Uoof'(TJ), we have

u ~: Uoof'(TJ) (~:) ,

Uoof' (TJ) [- 2:ct; - T oo)e'] ,

Hence

(3.4.5)
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Similarly,

And since ~~= ~~. ~Z, it follows that

Since v = ~Jv~=(rJi'(rJ) - f(rJ)), we have

f¥ [fJi ler 1 ti;» I UX) , I
v- = - --(rJf - j) -(Tw - Too)e J 'ay 2 x vx

therefore,
(3.4.6)

The first term on the right hand side of energy equation (3.3.3), that is ~:I,then is

transformed as follows
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On substituting ty = (~ . ~Z), we obtain

Hence

(3.4.7)

The last term on the right hand side of equation (3.3.3), represents the viscous dissipation

term, and is transformed as below

(

2
f.L au

pCp ay) =

Thus

(3.4.8)

Finally, for concentration equation (3.~l.4), we similarly introduce the non-dimensional

concentration

aC
ax
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But o<J; = (d<J; aTJ) and let d<J; = "" to getox dTJ ox d'7 <p ,

ae
ax

Since u = UooJ'(T)), we have

It follows that,
(3.4.9)

Similarly

And by chain rule ~~ = (~~.~~),now let ~~= cp', substituting in ~~, we get
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Since v = ~J V~oo (rlf' ("l) - f( "l)), it follows that

v ~~ ~ ~Jv~oo(~j'(~) - f(~)) [J~; (Cw - Coo)¢']

t ~oo (Cw - Coo) ["l1'("l) - f("l)] cp'.

Thus

(3.4.10)

The last term in the species equation (3.3.4) becomes

On substituting %y = d~ . ~Z, we obtain

Therefore

(3.4.11)

Substituting the equations numbered (3.4.1 - 3.4.4) into momentum .equation (3.3.2),

given as

OU OU 1 0 ( Ou) * (Jc 85u- + v- = -- j..L- + g(3(T - Too) cos')' + g(3 (C - Coo) cos')' - --U,oX oy P oy oy P
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we have

( )
* rYcB2+g(3 T - Too cos-y + g(3 (C - Coo) cos,- __ 0 u,

p

= ~ U! 1"'(rJ) + g(3(T - Too) cos-y + g(3*(C - Coo) cos,- rYc
B; (Uoo1'(rJ)),

p vx P

=? - U! (rJ1'1" + I' 1')+~rJ1' 1" (U!) -~ f 1" (U!) = ~ U! fill (rJ)+g(3(T - Too) cos,+
2x 2 x 2 x p vx

g(3*(C - Coo) cos,- rYc
B; (Uoo1'(rJ)),
p

Multiplying through by cP and let I!: = u, we have
oc P

1 , /I 1" 1 I /I 1 /I III ( ) ( ) ( x )-"2 rJf f -"2 f f + "2rJf f -"2 J f = f rJ + 9(3 T - Too cos-y U~ +

(3.4.12)

From the dimensionless temperature

we have that

(3.4.13)

And also from the dimensionless concentration
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we have

(3.4.14)

Substituting dimensionless temperature equation (3.4.13) and dimensionless concentra-

tion equation (3.4.14) in equation (3.4.12), we get

_ ~J'J' - ~JJ" = J"I() g(3xe(T.1J - Too) cos')' g(3*x¢(Cw - Coo) cos')' _ (jcB~xJ'(7]).
2 2 7] + U2 + U2 U·

00 00 Poo
(3.4.15)

ow let

Substituting these parameters in equation (3.4.15), we obtain

Rearranging we have

11/ 1 /I 1(12 1f + 2ff + 2 f) + 9Grcos')'+ cjJGccos')' - Mf = 0 (3.4.16)

Similarly, consider the energy equation (3.3.3), given as,

Substituting equations numbered (3.4.1) and (3.4.5),(3.4.6),(3.4.7) and (3.4.8) in the en-

ergy equation (3.3.3), we have

Dividing through by (Tw - Too), we get
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ow multiplying through by u:" we arrive at

Simplifying, we have

Therefore, multiplying through by p~pv, yields

(3.4.17)

L ket a = -c 'p p

obtain

Pr = ~ and Ee = Cp(~~Too)' then substituting in equation (3.4.17), we

e" + ~e' I (!::.) + Ee(J")2!!.~ = o.
2 (~ p a

Again let ~ = u, replacing in equation (3.4.18), it reduces to

(3.4.18)

e" + ~e' IPr + Ee (!::.) (J")2 = o.
-2 a-

Hence, we get the transformed energy equation as

e" + ~Pr Ie' + PrEe(J")2 = o.
2

(3.4.19)

Finally, consider the concentration equation (3.3.4) given as

Now substituting the equations numbered (3.4.9),(3.4.10) and (3.4.11) into species equa-

tion (3.3.4), we obtain
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Dividing through by Cw - Coo, we have

simplifying, we get
_ U<X' r A.' _ D Uoo A."

2x .' '{' - '11 VX 'P

And multiplying through by d:: we arrive at

Again multiplying through by ;m gives

1,lv) "- .- f~) ! - = cjJ •
2 \Dm

Then let ;m = Sc, and rearranging, WE get the transformed species concentration equa-

tion

¢" + ~Sef ¢' = 0
2

(3.4.20)

Thu . by similarity transformation, we find three non-linear ordinary differential equa-

tions:

1 11'" + 211"+ 2(1')2+ oc- cos-y + cpCecos! - M I' o (3.4.21)

o (3.4.22)

cp"+ ~Se1cp'
2

o (3.4.23)

where the derivatives are taken with respect to TJ and

G _ g(3x(Tw - T~)
r - 2 .Uoo
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u
Pr= -,

ex
E = v: ~1' = O"cB5x u

e C ( )' IV, , Se = -D '
p Tw - Too pl).00 Tn

in which Or is the local thermal Grashof number, Gc is the solutal or local concentration

Grashof number, Se is the Schimdt number and Pr is the Prandtl number, E; is the Eckert

number and ex is the thermal diffusivity, M magnetic field parameter. The corresponding

initial and boundary conditions are generated as follows, for the no slip condition at the

wall, at y = 0 =? TJ = 0, therefore, f(TJ = 0) = 0 and from u = U061'(TJ) =? 1'(TJ) = u:"

and at the wall u = 0 =? I' = O. Similarly, T = Tw and C = ClII> hence, e = ¢; = l.

At the free stream condition. y = (X) =? TJ = (X) , T = Too and C = Coo.

Thus, I' ---+ 0, e ---+ 0, ¢; ---+ O. Gi ring,

f = 0, f' = 0, e = 1, ¢; = 1 at TJ = 0 (3.4.24)

I' ---+ 0, e ---+ 0, ¢; ---+ 0 as TJ ---+ (X) (3.4.25)
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CHAPTER FOUR

SIMULATION, RESULTS AND

DISC'USSIONS

The similarity transformation converts the non-linear partial differential equations

(3.3.1)-(3.3.4) into the set of nonlinear ordinary differential equations given by the set

(3.4.21) - (3.4.23) with boundary conditions (3.4.24 - 3.4.25). This set of ODEs have been

solved numerically using shooting method, a technique that converts the boundary value

ordinary differential equations into a set of first order initial value ordinary differential

equations. An over view to the numerical technique employed is that first, higher order

nonlinear differential equations (3.4.21) - (3.4.23) are converted into simultaneous linear

differential equations of first order and further transformed into initial value problem

by applying the shooting technique. Tne resulting system is solved by the fourth-order

Runge-Kutta method implemented in Mathematica to generate results.

In order to study the behaviour of velocity, temperature and concentration fields, a com-

prehensive numerical computation was carried out for various values of the parameters

describing the flow characteristics. We assigned physically realistic numerical values to

the embedded parameters in the system, to gain an insight into the flow structure with re-

spect to velocity, temperature and species concentration profiles and the results reported

in terms of graphs as presented below.

The Prandtl number was taken to be Pr = 0.71, which corresponds to air at 20°c and 1

atmospheric pressure, electrolyte solution such as salt Pr = 1.0 and water Pr = 7.0. The

values of Schmidt number (Sc) were chosen to be Se = 0.22,0.60,0.78,0.96, representing

diffusing chemical species of most common interest in air like Hydrogen at 25°c and 1

atmospheric pressure, Water vapour, Ammonia and Carbon dioxide respectively.

j ••

I?
'..
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4.1 Effects of parameter variation on Velocity

Profiles

As a result of the numerical calculations, the dimensionless velocity, temperature and

concentration distributions for the flow under consideration are obtained and their be-

haviour have been discussed for variations in the governing parameters like the magnetic

field parameter M, Prandtl number Pr, Grashof number Gr, Solutal Grashof number

Ge, Schmidt number Se, Eckert number Ec, Angle of inclination "{on velocity 1'(rJ) ,

temperature ()(rJ) and concentration ¢(rJ). In the present study, the numerical values of

different thermo physical parameters were specified as follows: Or = Om = 0.05, "{=
30°, Al = 0.75, Pr = 0.71, Be = 0.01, Se = 0.6, w = t = 1.0, E = 1.0 and adopted for com-

putations. All graphs therefore correspond to these values unless specifically indicated

on the appropriate graph.

4.1.1 Effect of variation of Prandtl number on velocity

Figure 4.1.1: Velocity profiles for different values of Pr

Figure 4.1.1 shows the effect of variation of Prandtl number (Pr). The Prandtlnumber

defines the ratio of momentum diffusivity to thermal diffusivity. The numerical results

show that the effect of increasing values of Prandtl number results in decreasing velocity.

The velocity for Pr = 0.71 is higher than that of Pr = 7.0. Physically, it is possible

because fluids with high Prandtl number have high viscosity and hence move slowly.

Also, for such low Prandtl number, the velocity boundary layer is inside the thermal
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boundary layer and its thickness (6) reduces as Prandtl number decreases so the fluid

mot.ion is confined in more and more thinner layer near the surface.

4.1.2 Effect of variation of angle of Inclination on velocity

10

fJ

Figure 4.1.2: Velocity profiles for different values of,

Figure 4.1.2 shows the effect of varying the inclination angle to the vertical direction

on the velocity profiles. From this figure we observe that the velocity is decreased by

increasing the angle of inclination ry. The fluid has higher velocity when the surface is

vertical (, = 0) than when inclined because of the fact that the buoyancy effect decreases

due to gravity component.s (gcos,), as the plate is inclined. Consequently the driving

force to the fluid decreases as a result velocity profiles decrease.

4.1.3 Effect of variation of Magnetic Parameter on velocity

For various values of the magnetic parameter M: the velocity profiles are plotted in

Figure 4.1.3. An increase in magnetic field parameter, M, is observed to strongly reduce

the velocity in the regime. Maximum velocity corresponds to M = 0 i.e. electrically

non conducting heat and mass transfer. Physically, it is true due to the fact that the

application of a transverse magnetic field to an electrically conducting fluid gives rise

to a body force known as a Lorentz hydromagnetic drag which acts in the tangential

direction. This force, -(M)f' , impedes the flow and reduces velocities i.e. decreases the

hydrodynamic boundary layer thickness.



Figure 4.1.3: Velocity profiles for different values of M

4.1.4 Effect of variation of thermal Grashof (Gr) number on

velocity

The influence of the thermal Grashof number on the velocity is presented in Fig. 4.1.4.

The thermal Grashof number Gr is a measure of the relative magnitudes of the buoyancy
I

force and the opposing viscous force acting on the fluid. From this graphical analysis, it

is observed that there is a rise in the velocity due to the enhancement of thermo buoyancy

force. Here, the positive values of Gr correspond to cooling of the plate. Also, as Gr

increases, the fluid velocity increases, reaching its peak value within the boundary layer

and then decreases monotonically to the free stream zero value far away from the plate

surface satisfying the far field boundary condition.

-- Gir=2.0

-- Gir=3.5

-- Gir-=5.C
GI"=5.0

Figure 4.1.4: Velocity profiles for different values of Grashof (Gr)
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4.1.5 Effect of variation of solutal Grashof number(Gc) on

velocity

Figure 4.1.5 presents typical velocity profiles in the boundary layer for various values

of the solutal Grashof number Ge, while all other parameters are kept at some fixed

values. The solutal Grashof number Gc defines the ratio of the species buoyancy force

to the viscous hydrodynamic force. The fluid velocity increases and the peak value is

more distinctive due to increase in the species buoyancy force. The velocity distribution

attains a distinctive maximum value in the vicinity of the plate and then decreases to

approach the free stream value.

--Gc::3.5

--Gc=1.0

--Gc::5.0

--Gc::7.0

Figure 4.1.5: Velocity profiles for different values of solutal Grashof (Gc)

4.1.6 Effect of variation of Eckert (Ec) number on velocity

Figure 4.1.6: Velocity profiles for different values of Eckert (Ec)
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The effect of the viscous dissipation parameter (Eckert number), is shown in figure 4.1.6.

The Eckert number expresses the relationship between the kinetic energy of the flow and

the enthalpy. It embodies the conversion of kinetic energy into internal energy by work

done against the viscous fluid stresses. The positive Eckert number implies cooling of the

plate i.e., loss of heat from the plate to the fluid. Hence, greater viscous dissipative heat

causes a rise in the velocity, which is evidenced in the above figure.

4.1. 7 Effect of variation of Schmidt (Sc) number on velocity

2,0

2.5
80::.0,22

80=0,00

~ So=0,78

o 8 10

Figure 4.1.7: Velocity profiles for different values of Schmidt (Sc) Number

The influence of the Schmidt number Sc on the velocity is plotted in Figure 4.1.7. The

Schmidt number embodies the ratio of the momentum to the mass diffusivity. The

Schmidt number therefore quantifies the relative effectiveness of momentum and mass

transport by diffusion in the hydrodynamic (velocity) and concentration (species) bound-

ary layers. As the Schmidt number increases the concentration decreases. This causes the

concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The

reductions in the velocity and concentration profiles are accompanied by simultaneous

reductions in the velocity and concentration boundary layers. It is worth to mention that

for hydrogen (Se = 0.22) the velocity profiles is much higher than that of other Se.

From these figures, it is obvious that the buoyancy forces parameters enhances the fluid

velocity thereby increasing the momentum boundary layer thickness.
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4.2 Effects of parameter variation on Temperature

Profiles

The numerical results for the temperature profiles are shown in Figures (4.2.1 - 4.2.7).

It is seen from these figures that the fluid temperature attains its maximum value at the

plate surface and decreases exponentially to the free stream zero value away from the

plate satisfying the boundary conditions.

4.2.1 Effect of variation of Prandtl number on Temperature

I P,=1l.025. 0.71, 3.0, 7.0 IU)

s;a_~
'l)

0.4

e.z

Figure 4.2.1: Temperature profiles for different values of Pr

In figure 4.2.1, we depict the effect of Prandtl number (PT) on the temperature field. It
;

is observed that an increase in the Prandtl number leads to decrease in the temperature

field. This is attributed to the fact that as the Prandtl number decreases, the thermal

boundary layer thickness (6) increases causing reduction in the temperature gradient. The

reason is that smaller values of (PT) are equivalent to increasing the thermal conductivity,

and therefore heat is able to diffuse away from the heated plate more rapidly than for

higher values of PT. Thus, temperature field falls more rapidly for water in comparison to

air and the temperature curve is exactly linear for mercury (PT = 0.025), which is more

sensible towards change in temperature. From this observation it is worthy to conclude

that mercury is most effective for maintaining temperature differences and can be used

efficiently in the laboratory. Air can replace mercury, the effectiveness of maintaining

temperature changes are much less than mercury. However, air can be better and cheap

replacement for industrial purpose. This is because, either increase of kinematic viscosity
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or decrease of thermal conductivity leads to increase in the value of Prandtl number (Pr).

Hence temperature decreases with increasing Prandtl number (Pr).

4.2.2 Effect of variation of angle of Inclination on Temperature

1 0 0 0 0 01
6,2D .30 ,45,eo

Figure 4.2.2: Temperature profiles for different values,

It is observed that both the thermal and concentration boundary layer thickness increase

as the angle of inclination increases, see Figure 4.2.2.

4.2.3 Effect of variation of Magnetic Parameter on Temperature

1.5

1M:. 0.25,0.5,0.75, '1.0 I

13.5

Figure 4.2,3: Temperature profiles for different values of M

From Figure 4.2.3 we see that the temperature increase with the increase of the magnetic

field parameter. The presence of a magnetic field in an electrically conducting fluid

introduces a force called the Lorentz force, which acts against the flow and slows down
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its motion in the boundary layer region. This, in turn, reduces the rate of heat convection

in the flow. That is, magnetic field tends to heat the fluid thus, reducing the heat transfer

from the wall. This appears as increasing the flow temperature and thermal boundary

layer thickness also boosted with increasing M values.

4.2.4 Effect of variation of thermal Grashof (Gr) number on

Temperature

The positive values of thermal Grashof number Gr > 0 is utilised in our computations.

This corresponds to the cooling problem with respect to application. The cooling problem

is often encountered in engineering applications; for example in the cooling of electronic

components and nuclear reactors. It is interesting however to note that the velocity

boundary layer thickness increases (see Figure 4.1.4) while the thermal boundary layer

thickness decreases (Figure 4.2.4) with an increase in the value of thermal Grashof number

(Gr).

0.8
I ~ = 1.0. 2.0, 3.5, 5.0

0.4

0.2

Figure 4.2.4: Temperature profiles for different values of Gr

4.2.5 Effect of variation of solutal Grashof number(Gc) on

Temperature

Moreover, an increase in the intensity of buoyancy forces (Gc), causes a decrease in the

fluid temperature leading to a decaying thermal boundary layer thickness. The reverse

effect is noticed for Gc > 3.5.
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Figure 4.2.5: Temperature profiles for different values of Gc

4.2.6 Effect of variation of Eckert (Ec) number on Temperature
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Figure 4.2.6: Temperature profiles for different values of Eckert (Ec)

The effect of Eckert number (Ee) on the temperature is shown in Figure 4.2.6. Eckert

number is the ratio of the kinetic energy of the flow to the boundary layer enthalpy dif-

ference. The effect of viscous dissipation on flow field is to increase the energy, yielding

a greater fluid temperature and as a consequence greater buoyancy force. The increase

in the buoyancy force due to an increase in the dissipation parameter enhances the tem-

perature. Therefore, an increase in Eckert number causes an increase in temperature

distribution, this is so due to stored heat energy of the fluid that results from frictional

heating of fluid particles.
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4.2.7 Effect of variation of Schmidt (Sc) number on

Temperature

112

04

I So: 0.22. 0.00. 0.78. 0.001

Figure 4.2.7: Temperature profiles for different values of Schmidt (Sc)

Figure 4.2.7 gives the dimensionless temperature profiles for Schmidt number, we observed

from these figures that the temperature profile increases with the increase.of the Schmidt

number. We also observe that the variation in the thermal boundary layer is very small

corresponding to a moderate change in Schmidt number. This shows that the minor

increasing effect on the temperature profile is greatly affected by the presence of foreign

species.
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4.3 Effects of parameter variation on Concentration

Profiles

Figures (4.3.1 - 4.3.7) depict chemical species concentration profiles against spanwise

coordinate 'T} for varying values physical parameters in the boundary layer. The species

concentration is highest at the plate surface and decreases to zero far away from the plate

satisfying the boundary condition.

4.3.1 Effect of variation of Prandtl number on Concentration
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Figure 4.3.1: Concentration profiles for different values of Pr

The increase in the Prandtl number has an adverse effect on the velocity and temperature

profiles of the fluid flow but it has opposite effect on the concentration profile of the fluid

along the inclined plate as is clear by Figure 4.3.1. In other words, as we increase the

Prandtl number, concentration profile has increasing trend. i.e. as Pr increases the

thickness of the concentration boundary layer increases.

•

, ,
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4.3.2 Effect of variation of angle of Inclination on Concentration

1 :)

n

Figure 4.3.2: Concentration profiles for different values /

An increase in thickness of the concentration boundary layer is observed up on increasing

the angle of inclination /, see Figure 4.3.2. i.e. the concentration of air boundary layer

is increased with an increase of /.

4.3.3 Effect of variation of Magnetic Parameter on Concentra-

tion

-- 1.1= 1.5
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Figure 4.3.3: Concentration profiles for different values of M

However we observed an increase in the concentration boundary layer when the magnetic

parameter was increased as graphically displayed in Figure 4.3.3. A Lorenz force produced

by the magnetic field retards free convective transfer of fluid mass leaving some molecules

stack to the surface of the plate, resulting in the thickening of the concentration layer.
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4.3.4 Effect of variation of thermal Grashof (Gr) number on

Concentration
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Figure 4.3.4: Concentration profiles for different values of Gr

4.3.5 Effect of variation of solutal Grashof number(Gc) on

Concentration

I·
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Figure 4.3.5: Concentration profiles for different values of Gc

Attention is focussed on positive values of the buoyancy parameters that is, Grashof

number Gr > 0 (which corresponds to the cooling problem) and Solutal Orashof number

Gc> 0 (which indicates that the chemical species concentration in the free stream region

is less than the concentration at the boundary surface). An increase in the values of ther-

mal and solutal Grashof number tc« Gc) due to buoyancy forces also causes a decrease
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in the chemical species concentration leading to a decaying concentration boundary layer

thickness. These observations are displayed in Figures 4.3.4 and 4.3.5.

4.3.6 Effect of variation of Eckert (Ec) number on

Concentration
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Figure 4.3.6: Concentration profiles for different values of Eckert (Ec)

It is realized that as Eckert number increases, it directly affects the concentration in-

versely i.e. concentration decreases as a result of increased buoyancy force from enhanced

dissipation parameter hence concentration boundary layer reduces, see Figure 4.3.6.

4.3.7 Effect of variation of Schmidt (Sc) number on

Concentration
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Figure 4.3.7: Concentration profiles for different values of Sc

72 II'



Figure 4.3.7 concerns with the effect of Se on the concentration. The Schmidt number

therefore quantifies the relative effectiveness of mass transport by diffusion in the con-

centration (species) boundary layers. It is noted that the concentration at all points in

the flow field decreases with the increase of the Schmidt number. It also shows the minor

increasing effect on the concentration profile is vastly affected by the presence of foreign

species and higher Se leads to a faster decrease in concentration of the flow field and it

reduces the mass concentration boundary layer thickness. Since the increase of Se means

decrease in the chemical species of molecular diffusivity. That results in decrease of the

thickness of the concentration boundary layer. Hence, the concentration of species is

higher for small values of Se and lower for large values of Se. This causes the concentra-

tion buoyancy effects to decrease yielding a reduction in the fluid velocity.

In order to bench mark the accuracy of our computed numerical results, the present result

has been compared with [8, 5, 32, 2, 58J for different values of parameters and it is ob-

served that the agreements with the solution of velocity, temperature and concentration
. I

profiles are excellent.
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CHAPTER FIVE

SUMMARY AND

RECOMMENDATIONS

5.1 Summary

The convection flows driven by combinations of diffusion effects are very important in

many applications. The foregoing formulations may be analyzed to indicate the nature

of interaction of the various contributions to buoyancy. In order to gain physical insight

into the problem, the value of t was chosen as 1.0. In many practical applications, the

characteristics involved, such as the heat transfer rate at the surface are vital since they

influence the quality of a final product. The present work, helps us in understanding

numerically as well as physically free convection flow in an inclined infinite flat plate in

the presence of MHD where viscous dissipation has been employed. The effect of in-

clination and variation of other controlling physical parameters have been studied and

their effects presented. The governing equations for a steady buoyancy driven MHD Heat

and Mass Transfer via an inclined flat plate under Boussinesq model were formulated.

By suitable similarity scaling transformations, the system of non linear coupled partial

differential equations (PDEs) governing the motion of fluid were reduced to a system

of coupled non linear ordinary differential equations (ODEs) by reducing the number

of independent variables and with appropriate transformed boundary conditions. Fur-

thermore, the similarity equations were solved numerically using shooting method with

the fourth order Runge-Kutta numerical method together with the Secant technique of

root finding. Numerical evaluations were performed and graphical results were obtained

to illustrate the details of the flow and heat and mass transfer characteristics and their

dependence on some physical parameters. Based on the results the effects of increasing ill
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values of the physical parameters which had significant effect on velocity, temperature

and concentration profiles were as follows;

(i) In natural convection flow velocity is sufficiently small, the Prandtl number has no

significant effect on concentration However, it is observed that increase in Prandtl

number (Pr) leads to a decrease in velocity and temperature, this is because an

increase in the Prandtl number results in a decrease of the thermal boundary layer

thickness and in general lower average temperature within the boundary layer.

The reason is that smaller values of (Pr) are equivalent to increasing the thermal

conductivity, and therefore heat is able to diffuse away from the heated plate more

rapidly than for higher values of (Pr). Hence in the case of smaller Prandtl numbers

as the boundary layer is thicker and the rate of heat transfer is reduced. This result

is in conformity with the known and observed facts that in liquid metals (Pr < 1)

the heat diffuses faster as compared to the lubricant oils (Pr > 1).

(ii) We observed that the fluid (air) velocity decreases for an increase in angle of in-

clination T The fluid has higher velocity when the surfaceis vertical, = 0 than

when inclined because the convective flow under consideration takes place due to

the interaction of gravity and density differences and in the. inclined position the

effective gravity force is less than what it is when the plate is vertical On the other

hand, both the temperature and concentration profiles increase with an increase

of ,. The stability and coherence of the boundary layer depends on the angle of

inclination of the surface. When, < 600, the boundary layer remains stable. The

inclination angle , = 300 gives the enhanced heat and mass distribution of the

convective fluid.

(iii) It is to be noted that an increase in the magnetic field has significant effect on the

velocity, temperature and concentration profiles. It leads to a rise in temperature

and concentration at a slow rate in comparison to the reduction of velocity profiles.

In the presence of the magnetic field, the velocity boundary layer is thinner than the

temperature and the concentration boundary layer. So magnetic field can effectively

be used to control the flow characteristics and heat transfer.

(iv) From the numerical results. it was found that when thermal and solutal Grashof

numbers were increased, the thermal and concentration buoyancy effects were en-
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hanced and thus, the fluid velocity increased. Also, when the Schmidt number was

increased. the concentration level was decreased resulting in decreased fluid velocity.

(v) It was noted that an increase in Eckert number enhanced the velocity and temper-

ature profiles but a decrease in concentration.

(vi) An increase in Schmidt number results in lowering the concentration and velocity

while; temperature of the fluid increases. Therefore, Schmidt number has greater

effect on concentration profiles than the velocity and temperature profiles. So, we

can dominate the rate of mass transfer with the help of the Schmidt number.

5.2 Recommendations

(i) It is therefore recommended that in applying the technique of inclination to enhance

cooling of materials in industrial processes, the range of the cooling angle should

be considered and the optimal flow is achieved at acute inclination.

(ii) The Schmidt number which enhances mass diffusivity should be considered in pro-

cesses involving fluid transportation.

(iii) The viscous dissipation parameter had an integral effect in increasing the temper-

ature in the boundary layer and therefore should be considered in the design of

heating systems.

(iv) The idea of geometries in fluid flow also provide a test ground for checking the valid-

ity of theoretical analyses. Therefore, an effort is needed to explore and understand

the convective heat and mass transfer processes between a fluid and submerged

objects of various shapes.

(v) An attempt should be made to solve this problem using other numerical techniques

as finite difference, finite element, implicit methods among others and compare

results.

(vi) Finally, a further research can be undertaken to take care of mixed convection flows

with improved methods or unique boundary conditions, then compare results.
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