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ABSTRACT

Derivatives are used in hedging European options against risks. The partial derivatives of
the solution with respect to either a variable or a parameter in the Black-Scholee model are
called risk parameters or simply the Greeks. Nonlinear versions of the standard Black-
Scholes Partial Differential Equation have been introduced in financial mathematics in
order to deal with illiquid markets. Market liquidity is relevant in the risk management of
derivatives since in an illiquid market the implementation of a dynamic hedging strategy
affects the price process of the underlying. Different hedging strategies and suitable
pricing adjustments are needed. We studied the Greek parameters of a nonlinear Black-
Scholes Partial Differential Equation whose nonlinearity is as a result of transaction costs
for modelling illiquid markets. The objective of this study was to compute the Greek
parameters of a European call option in illiquid markets whose illiquidity is arising from
transaction costs. This is in relation to Cetin et al. model in which transaction costs
have been incorporated (with zero interest rate). These Greeks were compared with those
derived from the formula of Bakstein and Howison (2003) equation (with positive interest

1
rate). All these Greeks were of the form a+ - j(S, t). The methodology involved deriving

p
the Greek parameters from the formula of the equation by differentiating the formula with
respect to either a variable or a parameter. These Greeks may help a trader to hedge
risks in a non-ideal market situation. Greeks show how to protect one's position against
adverse movements in critical market variables such as the stock price, time and interest
rate.
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CHAPTER 1

"-.
Introduction

This thesis is organized as follows: Chapter 1 is an introductory chapter. Basic concepts

are also discussed in this chapter. Chapter 2 provides a brief history on stock price

modelling for both linear and nonlinear Black-Scholes equation. The next chapter deals

with the theory of the linear Black-Scholes valuation model. Finally, Chapter 4 focuses

on the results and discussion of the Greek parameters of the nonlinear Black-Scholes

equation. Thereafter some concluding remarks and ideas for future research are given.

1.1 Background Information

The famous Black and Scholes equation provides markets with a way of pricing options.

The derivation of this equation is based on the assumption that markets are complete,

frictionless and perfectly liquid. In a frictionless market, there are no transaction costs

and restrictions on trade. In perfectly liquid markets investors can trade large volumes of

stock without affecting their prices.

Risk management is concerned with controlling three financial risks that is market risk,

credit risk and liquidity risk. In risk management, financial models based on the as-

sumptions above may fail when the market faces poor liquidity. Investors are exposed

to transaction costs in the form of commissions, fees and bid-ask-spread. Investors incur

costs due to illiquidity if they choose to trade options during a period of poor liquidity.

Purchase and sell of the underlying when there are costs incurred in trading the asset

leads to market illiquidity. In illiquid markets the attempt to trade at a given point in

time moves prices against the trader. A number of models for studying the pricing and

the hedging of securities in illiquid markets or in the presence of transaction costs have

1
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been developed. In many of these models, derivative prices are characterized by fully

nonlinear versions of the standard parabolic Black-Scholes equation.

'-.
Due to the introduction of liquidity risk in the market, the Greek parameters derived

from the Black-Scholes formulae in the classical theory become unrealistic. The Greeks

resulting from the Black-Scholes formula for valuing options in illiquid markets therefore,

are appropriate in explaining this liquidity risk. These Greek parameters were obtained

by differentiating the formula with respect to either a variable or a parameter. These

derivatives are important in the hedging of an option position hence playing key roles

in risk management. One of these models is the transaction cost model put forward by

Cetin et al. [9]. This model takes into account the illiquidities arising from transaction

costs. The purpose of this research was to compute and analyze the Greek parameters

from the Black-Scholes formula of a non-linear equation and apply the stock data from

SE to these Greeks to see if they are applicable in a real life situation. We considered

the European call options only since the formula fromwhich we used to derive the Greek

parameters was for the European call option.

The aim of this thesis was to compute the Greek parameters of a European call option in

illiquid markets whose illiquidity is arising from transaction costs. This is in relation to

Cetin et al. model in which transaction costs have been incorporated. These Greeks were

compared with those derived from the formula of Bakstein and Howison (2003) equation.

Recent studies have focussed on the Greek parameters in illiquid markets. In this study

we mention the contributions of Esekon [12, 13, 14, 15].

1.2 Statement of the Problem

The linear Black-Scholes equation has been derived under the assumptions of complete,

frictionless and perfectly liquid markets. Relaxing these assumptions brings in the issue

of liquidity risk. This means that the Greek parameters derived from the Black-Scholes
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formula of a European call option under the classical theory cannot explain this illiquidity

in the market. The Greek parameters arising from the nonlinear equation when r > 0

have been computed in Esekon [12] while those with r = 0 for a particular solution of
"-.

a nonlinear equation have not been computed. There is need to compute the Greek

parameters in cases when r = 0 if we are to compare these Greeks to those when r > O.

1.3 Objectives of the Study

i) To compute the Greek parameters such as delta, gamma, theta, speed and vega of a

European call option in illiquid markets whose illiquidity is arising from transaction

costs.

ii) To compare Greeks in cases when r = 0 and r > o.

1.4 Research Methodology

In this study we focused on European call options only. We derived the Greek parameters

for a European call option from the Black-Scholes formula of a nonlinear Black-Scholes

equation by differentiating it with respect to either a variable or a parameter in the formula

derived in [13] (see Theorem 3.0.2, Equation (3.9)). We used a subset of stock price data

from the Nairobi Securities Exchange to test the applicability of these parameters in a

real life situation. A comparison of these Greeks was made with their counterparts in the

nonlinear Black-Scholes formula for r > 0 in [12].

1.5 Significanceof the Study

The Greeks obtained may help market makers to understand the liquidity risk in a non-

ideal market situation. Greeks show how. to protect one's position against adverse move-

ments in critical market variables such as the stock price, volatility, time and interest

rate. Also,financial institutions which trade options can manage their risk by use of these

Greeks.
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1.6 Basic Concepts

Brownian Motion

The arithmetic Brownian motion is given by

d.S; = ud: + adWt, (1.1 )

where d.S; is the change in stock price S; at time t, u is the drift (the expected rate of

return), (J is the volatility of the stock price and Wt is the Wiener process. Brownian~~:~~-'I-a~D~-~~.'-~~--~~
--Asset!

• V200 -- I\sset3 N 0. I
-- Asset... \ .., I

Asset5
/150

50

~OL---~~----~~----~OO----~OO-----l~OO----~l~

lImef

Figure 1.61: Brownian motion

motion, which was originally used as a model for stock price movements in 1900 by L.

Bachelier [1] is a stochastic process {Wt : 0 ~ t ~ oo} characterized by the following

properties:

(i) Wo = 0,

(ii) Brownian motion Wt f"V N(O, t). The increment Wt- Ws f"V N(O, t-s) for (0 ~ s < t),

(iii) Wt has stationary and independent increments i.e. for any positive integer ti and any

o ~ to < tl < ... < t; the random variables Wti - Wti_1 is monotonic, i = 1, ... ,n

~--------------------------------------- -
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are mutually independent and WSH - Ws have the same distribution as Wt for any

s, t > 0,

,
(iv) Brownian motion is a Markov process i.e. the distribution of-its future values,

conditional on the past and the present values, depends only on the present value

and not on the past,

(v) Brownian motion is a martingale: E[WHIIWt, Wt-I,' .. ,WI] = Wt. This means

that the expected value of a future outcome of Brownian motion conditional on the

past and present information is exactly equal to the present value,

(vi) Brownian motion is continuous everywhere and differentiable nowhere.

The standard Brownian motion process has a drift rate of zero and a variance of one.

We write this as

(1.2)

where Wt = EVt and E is the standard Brownian motion i.e. E"" N(O, 1). During the time

step dt we get the SDE (1.1) from equation (1.2). The major weakness of this model was

that the asset price could take negative value which is not realistic (see Figure 1.61).

Geometric Brownian Motion

In the case of Brownian motion process, a constant drift rate was assumed which is not the

case of stock prices. For stock prices the return on investment is assumed to be constant

where the rate of return at a given time is the ratio of the drift rate to the value of the

stock at that time.

Hence the constant expected drift rate assumption in the case of Brownian motion process

is inappropriate and needs to be replaced by an assumption of constant expected rate of

return. Therefore a better model for stock price behaviour over time is given by

(1.3)



CHAPTER 1. INTRODUCTION 6

Geometri«: Brownian Motion
125..---~--~--~-~-----,

~~-~--~--~-~--~o 0.05 0.1 0.15 0.2 0.25
Tirne (Y MIS)

Figure 1.62: Geometric Brownian motion

Equation (1.3) is called a generalized Wiener process. The process assumes that the stock

. d.S; f 11 hasti S' S' h k hpnce returns St 0 ow a stoc astic process. mce t IS t e stoc price at time t, t en

dSt .s: IS the rate of return on the asset. To get S, we integrate equation (1.3) with respect

to t to get
S t

In S~ = id: + (J Jo dWt

which gives the solution as

St = Soe(f.lHO' J~dWtl > 0, So > 0. (1.4)

This is the stock price model used by Black and Scholes [4] in their work on the pricing

of call and put options. The above equation shows that the stock price S; is positive

since So > 0. Equation (1.3) is called geometric Brownian motion process or log-normal

process. The model has an advantage over the standard Brownian motion introduced by

Bachelier since it can never assume negative asset prices (see Figure 1.62).

Diffusion Processes and Stochastic Integrals

Brownian motion process Wt is continuous everywhere but integrable nowhere. Standard

rules used in calculus therefore are not applicable in stochastic environment. Therefore to

be able to solve the stochastic differential equation in (1.3) we introduce the Ita process.
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Ito Processes

Ita process generalizes Brownian motion process (1.3) by letting parameters J-L and (J,
depend on the underlying asset S, and time t. Given a variable St, thecLto process follows

the dynamics:

(1.5)

The first term is the deterministic term which reflects the trend of the value of the

underlying asset. The second term is the stochastic term.

Lemma 1.6.1. (Ita '8 Lemma) Suppose the value of a variable St follows an Ita process

and u( t, St) is a deterministic twice continuously differentiable function then Ita's lemma

shows that:

(1.6)

Proof. Taylor series expansion of continuous and differentiable function u(t, St) is given

by

b.u(t, St) = Ut(t, St)b.t + us(t, St)b.St

+ ~Utt(t, St)(b.t)2 + ~uss{t, St)(b.St)2

1+ 2USt(t, St)b.t(b.St) + ... ,

where Utt = ~:~and USt = :~~. Taking the limit b.t -t ° and applying the following

(1. 7)

informal rules

dt.dt = 0, dt.dW = 0, dW.dW = dt, (1.8)

reduces the Taylor series expansion in (1. 7) to

, 1 2
du = Utdt + usdSt + 2ussdSt . (1.9)

From (1.3) and the informal rules in (1.8) we get
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Substituting (1.3) and (1.10) into (1.9) yields

du = (Ut + v(t, St)us + ~(>'(t, St))2USS) dt + >.(t, St)usdWt,
l

(1.11)

which is the Ito's formula. o

The solution to the SDE that is equation (1.5) for the process S, is called a diffusion

process. Integration of (1.5) is given by

s, = s + it J.l(T, ST)dT + it O'(T, ST)dWT, s = S(O). (1.12)

The last term in equation (1.12) is called stochastic [Ito} integral (see [10]).

To solve for St in (1.3) we apply Ito's lemma by letting F(St) = lnSt, v(t, St) = J.lS and

),(t, St) = O'S.

Then from Ito's lemma we have,

111 2
dIn S, = -S d.S; - - S2 dSt .

t 2 t

Using the informal rules in (1.8) we get

1 1 1 2 2 2
dIn S, = St (J.lStdt + 0' StdWt) - 2 S; St (0' dWt )

1 2
= udi + O'dWt - -0' dt

2
1 2= (J.l- 20' )dt + O'dWt.

Equation (1.13) is now integrable using standard rules in calculus unlike (1.3).

(1.13)

Its inte-

gration therefore is

(1.14)

1.7 Black-Scholes Option Pricing Theory

StandardOption Valuation Theory

The Black Scholes equation which is a Partial Differential Equation providing financial

markets with a way of pricing options was obtained by considering an option maturing at
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time T for a non dividend paying stock. The value of an option is a function of various

parameters such as strike price K and the time to expiry T - t (T), where t is the current

time. It also depends on the properties of the asset itself such as its :price St, its drift fl,

and its volatility CJ as well as the risk free rate of interest r . The option's value can thus

be written as u(S, t) since fl" CJ, K, T and r are parameters i.e. fixed.

The way the no-arbitrage principle is used in the derivation of the Black-Scholes equation

depends on a number of assumptions about the market. First, it must be possible to

buy or sell any finite quantity of the underlying security at any time (perfect liquidity).

Second, security trading is continuous in time. Formally, assumptions applied in the

derivation of Black Scholes equation (see [18]) are as follows:

(i) The underlying asset S; follows geometric Brownian motion,

(ii) The rate of interest r and volatility CJ are known constants over the life of the option,

(iii) There are no dividends paid during the period of the contract,

(iv) Arbitrage opportunities do not exist,

(v) There are no transaction costs on the underlying,

(vi) Trade in the underlying asset is continuous.

From the above assumptions Black and Scholes [4] form a riskless portfolio consisting of a

position in the option u(S, t) and a position in the underlying stock St. In the absence of

arbitrage opportunities, the return from the portfolio must be the risk free interest rate

r.
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Linear Black-Scholes Model

Blackand Scholes [4]assumed that the underlying asset S, follows a geometric Brownian
l

motion. Hence from (1.3) we have,

(1.15)

This is the Black-Scholes model.

Linear Black-Scholes Partial Differential Equation

Let u(S, t) denote the value of a European call or put option that depends only on the

asset price S at time t. Let IIt be the value of a portfolio containing one option and -b.

units of the underlying asset such that the value of the portfolio is

IIt = u(S, t) - 6.S. (1.16)

From Ito's lemma we have

( 1 2 2 '
du = Ut + 2"() S uss)dt + usdS. (1.17)

Thus, the portfolio in (1.16) changes by

dIIt = du(S, t) - 6.dS

as 6. remains constant during the time step dt. Therefore from the equation above and

(1.17) the change in the portfolio becomes

1 2 2dIIt = (Ut + 2"() Suss )dt + usdS - 6.dS. (1.18)

Rearranging the above equation gives:

1 2 2 )dIIt = (Ut + 2"() S uss)dt + (us - 6. dS.

The risk in our portfolio are the random terms

Us - 6..

..._----------------
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To eliminate the risk, we let .0. = Us so that the randomness is reduced to zero. This is

called delta hedging. Now the portfolio value changes by

(1.19)

after delta hedging. This change is completely riskless. Thus

(1.20)

where r > 0 is a continuously compounded interest rate. Since zx = Us then equation

(1.16) becomes

Il, = u(S, t) - Sus.

This means that

dIlt = r(u(S, t) - Sus)dt (1.21 )

using equation (1.20). Comparing equations (1.19) and (1.21) and simplifying gives the

linear Black Scholes PDE

1 2 2 '
Ut + 2a Suss + rSus - ru = 0, S > 0, 0 ::; t ::;T. (1.22)

Black-Scholes Option Pricing Formulae

The Black Scholes formula for the prices at time zero of a European call option C(S, t)

and a European put option P(S, t) on a non dividend paying stock are derived by solving

the PDE in (1.22). We use boundary conditions to specify the values of the derivative at

the boundaries where Sand t lie. For a European call option, the boundary conditions

are:

i) C(O, t) = 0 for 0 ::; t ::; T,

ii) C(S) S K -r(T-t) S '11 ,t rv - e as -+ 00.

The pay-off function is given by

C(S, T) = (ST - K)+ = max{ST - K, O} for 0::; S
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because it can only be exercised if ST > K. The call option's value is given as

C(S t) = S Nd - Ke-r(T-t) Nd, t 1 2,

<,

where

(St) 2In K +(r+<72)(T-t)

d1 = <r~

(1.23)

(1.24)

by

N(.) is the cumulative distribution function of standard normal distribution which is given

12

and

(St) 2_ In K +(r- <72 )(T-t)

d2 - <r~

N(d1) = 1:f(u)du

= r. _1_e _~2 du, -00 < d1 < 00.
-oo~

and N(-x) = 1 - N(x). For a European put option the boundary conditions are

i) P(t, 0) = K e-r(T-t) for 0 ::; t ::;T,

ii) P(S, t) -+ 0 as S -+ 00.

The payoff function is given by

P(S, T) = (K - ST)+ = max{K - ST, O}for 0::; S

because it can only be exercised if K > ST' The put option's price is given by

The Option Greeks

(1.25)

(1.26)

A financial institution that sells an option to a client in the over-the-counter markets is

faced with the problem of managing its risk [18]. The Greeks are used to address this
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problem. Greek letters are sensitivities of the option price to a single unit change in the

value of either a state variable or a parameter. Each Greek measures a different dimen-

sion to the risk in an option position and the aim of a trader is to manage the Greeks so
<,

that all risks are acceptable. These derivatives are important in the hedging of an option

position, playing key roles in risk management. We shall focus on the Greek letters of

European call option only.

From the Black-Scholes pricing model the price of a call option is given by

(1.27)

Delta

The delta of a portfolio of options (or of an option) is the sensitivity of the portfolio

(or option) to the underlying asset's price. It is the rate of change of the option price

with respect to the price of the underlying asset. It is the slope of the price curve of the

option to the market price of the underlying asset. By calculating a delta, a financial

institution that sells option to a client can make a delta neutral position to hedge the

risk or changes of the underlying asset price. The relationship between option price and

stock price is not linear so delta changes over different stock prices. If an investor wants

to retain his portfolio in a delta neutral position, then he should adjust his hedged ratio

periodically. The more frequently adjustments he does, the better delta-hedging he gets.

For a European call option on a-non-dividend-paying stock, delta is obtained as follows:

First we find N' (d1)

8N(d1) = N'(d ) = _1_ ~
8d

1
1..,f2ir e , (1.28)
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then

D I_A - oCt -Nd S oNd1 _ K _TTONd2
e ta - L.l - oSt - 1 + t oSt e oSt

_ Nd S oN d1 od1 _ K -TT oN d2 od2 <,

- 1+ t od1 . oSt e od2' oSt

Nd S
1 .::5 1 K -TT 1 .::5 s, TT 1

= 1 + t ~e 2·S (;; - e ~e 2 Ke.S r;
y21f t(J'yT y21f t(J'yT

1 I 1 I= N d1 + --N d1 - --N d1(J'ft (J'ft

(1.29)

where T = T - t.

Gamma

Since the option is not linearly dependent on its underlying asset, delta-neutral hedge

strategy is useful only when the movement of underlying asset price is small. Once the

underlying asset price becomes wider, gamma-neutral hedge is necessary. An option's

gamma, r, is the rate at which the delta of a portfolio (or the option) changes with

respect to the underlying asset's price. For a European call option on a non-dividend

paying stock gamma is given by,

(1.30)
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Speed

The speed of an option is the rate of change of the gamma with respect to the stock price.
(

For a European call option on a non-dividend paying stock speed is giten by,

(1.31)

Gamma is used by traders to estimate how much they will rehedge by if the stock price

moves. The delta may change by less or more the amount the traders have approximated

the value of the stock price to change. If it is by a large amount that the stock price

moves, or the option nears the strike and expiration, the delta becomes unreliable and

thus the use of speed.

Theta

Theta of portfolio of options is the rate of change of the value of the portfolio with respect

to the passage of time with all else remaining the same. The value of an option is the

combination of time value and stock value. When time passes the value of the option

decreases. Thus the rate of change of the option price with respect to the passage of

time, (i.e. theta) is usually negative. Theta is not directly used to hedge option position.

Since there is no uncertainty to the passage of time, one does not try to hedge its effect.

However, it is useful as an aid in figuring out how the value of an option depreciates as

time passes and in planning for future transactions and transaction costs to keep delta in

balance. For a European call option on a non-dividend paying stock Theta is given by,
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(1.32)

Rho

The rho of a portfolio of options is the rate of change of the value of the portfolio with

respect to the interest rate. The rho for an ordinary stock call option should be positive

because higher interest rate reduces the present value of the strike price which in turn

increases the value of the call option. For a European call option on a non-dividend paying

stock rho is given by,

oIT oC
Rho=p=-=-

Or or
= SON(d1) _ (-T)Ke-rr N(d2) _ Ke-rr8N(d2)

or Or

= SN'(d1) VT + KTe-rr N(d2) - SN'(d1) VT
~ ~

= Kre:" N(d2).

(1.33)

Vega

It is also referred to as kappa or zeta. This is completely different from other Greeks since

it is a derivative with respect to a parameter and not a variable. During the derivation of

the Black-Scholes formula, the volatility a of the asset underlying a derivative is assumed

to be constant. In reality, volatilities change over time. This means that the value of

a derivative is liable to change because of movements in volatility as well as because of

change in the asset price and passage of time. For a European call option on a non-
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dividend paying stock vega is given by,

oC
Vega = v=-

OCT

= SoN(d1) _ Ke-rroN(d2)
OCT OCT

= SoN(d1). od1 _ Ke-rroN(d2). od2
od1 OCT od2 OCT

= SN'(d1)yiT.

(1.34)

Modified Option Valuation Theory

Transaction-Cost Model

We consider a market with one share denoted by St, and a risk free money market account

with spot rate of interest r 2 0 whose value at time t is B, = 1. Stock is illiquid (its price

is affected by trading) while money market account is assumed to be liquid. The model

we are going to focus on is the model due to Cetin et al. [9] where a fundamental stock

price Sp follows the dynamics

An investor who wants to trade a shares at time t has to pay the transaction price St

which is given by

where p is the liquidity parameter with p 2 O. This models a bid-ask-spread (the amount

by which the offer price exceeds the bid price) whose size depends on a (number of shares

traded) .

Consider a Markovian trading strategy (i.e. a strategy of the form <I>t = ¢(t, SP)) for a

smooth function ¢ = Us where ¢ is the hedge ratio. Then we have ¢s = wss- If the stock

and bond positions are <I>t and TJt respectively then the value of this strategy at time t is
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~t is a semi-martingale with quadratic variation of the form

[~lt= it (¢S(T, 5~)(J-8~)2dT

whose change is given by d[~lt = (uss(t, 52)0-82)2 since ¢s = USS.

Applying Ita formula to u(t, 52) gives

du(t, 5~)= us(t, 5~)d5~ + (ut(t, 5~)+ ~o2(5~)2USS(t, 5~)) dt (1.35)

For a continuous semi-martingale ~ with quadratic variation [~lt the wealth dynamics of

a self-financing strategy becomes

(1.36)

Substituting d[~lt into (1.36) yields the following dynamics:

(1.37)

Since vt = u(t, 52), equating the deterministic components of (1.35) and (1.37) and taking

¢s = uss gives the nonlinear PDE

(1.38)

where h(5~) is the payoff of the value claim at maturity time T.

Bakstein and Howison (2003) Model

This is a model of illiquid markets which results in the PDE

122 12 2243Ut + "20 5 uss(1 + 2p5uss) + "2P (1 - a) a 5 uss + r5us - ru = 0 (1.39)

where p is the liquidity parameter of the market and a is a measure of the price slippage

impact of a trade felt by all market participants (see [2]), When a = 1, this corresponds

to no slippage and equation (1.39) reduces to the PDE

1 2 2Ut +"20 5 uss(1 + 2pSuss) + rSus - ru = 0 (1.40)

This is the Cetin et al. model given in (1.38) with r > O.
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Solution of the Nonlinear Black-Scholes Equation

Theorem 1.7.1. If V (x, t) is any positive solution to the porous medium type equation
\.

<,

then

(S) S VSo ( rr.S ,,2t VSo "2t)
U t = - -- YeJe 8 + --e 4, P 4 (1.41)

solves the nonlinear Black-Scholes equation Ut+~0"2S2uss(1+2pSuss) = 0 for So, S, 0", P >

o and t ~ O.

Equation (1.41) is the formula for the European call option with r = 0 with the proof of

this thorem found in [13].

Theorem 1.7.2. If V(x, t) is any positive solution to the porous medium tyupe equation

then

u(S, t) ~ S- V; (VSe(+'£ I' + v:e<'+':I') (142)

solves the nonlinear Black-Scholes equation Ut + ~0"2S2uss(1 + 2pSuss) + rSus - ru = 0

for So, S, 0", P > 0 and r, t ~ O.

Equation (1.42) is the formula for the European call option with r ~ 0 with the proof of

this theorem found in [12].
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CHAPTER 2
'-.

Literature Review

In this chapter we give a brief history on stock price modelling from the time Brownian

motion was discovered until the time the linear Black-Scholes equation was derived and

solved. This will involve the study that has so far been carried out on Greek parameters.

We also mention some of the nonlinear Black-Scholes models which have been studied.

2.1 Brownian Motion

The discovery of Brownian motion is usually credited to the Scottish botanist Robert

Brown. Brown [7] observed the random motion of pollen grains suspended in water.

Brown described the observed movement but did not have a scientific explanation for the

observed phenomenon. Bachelier [1], on the other hand, introduced Brownian motion as

a model for the dynamic behavior of the stock market in his Ph. D thesis titled" The

Theory of Speculation". Bachelier used the Brownian process to model a European type

option of traded asset prices. His work was remarkable because by addressing the problem

of option pricing, Bachelier derived most of the theory of diffusion processes. The major

weakness with Bachelier's work was that the model could take a negative asset price and

using it directly to model stock prices was questionable.

Five years later, Albert Einstein [11] worked independently and discovered the same

stochastic process and applied it in thermodynamics. He introduced the diffusion coeffi-

cient which is called diffusivity in physics commonly known as volatility in price dynamics.

Norbert Wiener proved the existence of Brownian motion and gave the first mathematical

construction of Brownian motion. That is why Brownian motion is sometimes called the

Wiener process. Samuelson [27] introduced a non negative variation of Brownian motion

20
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called Geometric Brownian motion. He modified Bachelier's model assuming that the

return rates instead of stock prices as was done by Bachelier follow a geometric Brownian

motion. As a result of the geometric Brownian motion the stock prices-follow a lognormal

distribution eliminating the problem of negative stock price as observed in Bachelier's

model.

2.2 Diffusion Processes and Stochastic Integrals

Brownian motion is continuous everywhere but nowhere integrable almost surely (see

Theorem VII of Paley et al [25]). Ordinary rules of calculus fail in a stochastic environment

due to the stochastic component. In 1944, Kiyoshi Ita [19] went on to develop stochastic

calculus, the machinery needed in order to use Brownian motion to model stock prices

successfully and which later became an essential tool of financial mathematics.

2.3 Standard Option Pricing Theory

In 1973, research picked up when Black and Scholes [4] came up with the famous Black-

Scholes equation. The equation was obtained from the Black-Scholes model (i.e. geometric

Brownian motion). The equation was solved to obtain the Black-Scholes formulae for pric-

ing European call and put options for a non-dividend paying stock. Since the derivation

of this model, much of the work undertaken in mathematical finance has been aimed at

relaxing a number of modeling assumptions. One of the assumptions was that the market

in the underlying asset is perfectly liquid such that trading has no impact on the price of

the underlying.

2.4 Modified Option Pricing Theory

Relaxing any of the assumptions made by Black and Scholes [4] used in the classical theory

leads to modified nonlinear equations. One of the assumption was that volatility was

constant but Otula in [24] incorporated the stochastic nature of volatility and derived a
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logistic Black-Scholes-Merton Partial Differential Equation and came up with the equation

-ru= 0

(2.1)

au au a2u a2u a2u
where Ut = at' Us = as' uss = aS2' us" = asa(J" U,," = a(J'2' u(S, t) is the price of

a call option, (J' is the volatility, S is the stock price, r is the risk free interest rate, S* is

the Walrasian equilibrium market price, A is the market price of volatility risk, v" is the

variance of asset volatility, fL" is the mean asset volatility and fL" - AV" the risk neutral

drift rate of volatility. v" has not been explicitly expressed, therefore its difficult to get

an analytic solution to the equation above.

Rangita in [26] developed and solved both deterministic and stochastic differential equa-

tions for stock price, unlike PDEs which can be solved and the solutions are partially

differentiated to give the Greek parameters. Brian in t6] used numerical approach to es-

timate market volatility using logistic Brownian motion which gives approximate values

unlike analytic methods which gives exact values.

Relaxing the liquidity assumption leads to nonlinear behavior. Work that has led to such

class of nonlinear PDEs in finance to date include the model of Leland [20] which was

the groundwork for modeling the effects of transaction costs. Leland adopted the hedging

strategy of rehedging at every time step ot where 8t is a finite, fixed and small time step.

He assumed that the transaction cost K;1~IS/2,where K; denotes the round trip transaction

cost per unit dollar of the transaction and ~ the number of assets bought (~ > 0) or sold

(~ < 0) at price S, is proportional to the monetary value of the assets bought or sold.

Leland showed that
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where Le denotes the Leland number which is given by

Le= ~ (a~)
with 8t being the transaction frequency. Hoggard-Whalley-Willmott (1992) (see [28])

model is a simple transaction cost model for non-vanilla options and option portfolios

based on Leland's hedging strategy and model. Leland's equation is given by

1 2 2 2 /2
Ut +"2a Suss - K-aS V :;;:5tlussl + rSus - ru = 0, (2.2)

where K-O'S2V7f~tlussl is the expected transaction cost over a time step 8t. This was one

of the first nonlinear PDEs in the theory of derivatives. The main model in this class was

put forward by Cetin et al. [9] where transaction cost was shown to be proportional to

the quadratic variation of the stock trading strategy.

2.5 Risk Parameters

The risk parameters (commonly known as the Greeks) are used by financial institutions

which sell options to hedge risks. The risk parameter delta was used by Black and Scholes

[4] for hedging European call options. Since then, other risk parameters such as gamma,

speed, vega, rho and theta have been computed from the Black-Scholes formulae. These

Greek parameters were computed under the assumption that the market was perfectly

liquid. Relaxing this assumption brings in the issue of liquidity risk. To explain this risk,

we need to compute the Greek parameters from the formula of a European call option of a

nonlinear Black-Scholes equation whose nonlinearity is as a result of transaction costs. The

Greek parameters arising from the nonlinear equation when r > 0 have been computed by

Esekon in [12, 15] while those with r = 0 for a particular solution of a nonlinear equation

have not been computed. Therefore, we computed the Greek parameters with r = 0 and

compared them with those when r > O.
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Results and Discussion

In this chapter we compute the risk parameters resulting from the solutions of the nonlin-

ear Black-Scholes equations for r = 0 and r > O. We then compare these risk parameters

by plotting the risk parameters against the prices of the stock. The stock price data from

the Nairobi Securities Exchange is used to plot the curves of the risk parameters derived

from the solution of the nonlinear Black-Scholes equation to test whether the risk param-

eters are applicable in a real life situation. A subset of data for KPLC and KenGen for

the periods of 3rd January 2005 - 3rd January 2006 and 2nd June 2006 - 5th June 2007

respectively were used.

3.1 Greek Parameters of a Nonlinear Black-Scholes Equation

To obtain the Greek parameter delta we differentiate the solution of the European call

option with respect to the spatial variable S. For r = 0 we differentiate equation (l.41)

with respect to S to obtain
1 !Sa ,,2,

Us = 1- 2p V Se 8

for p, S, (J > 0 and So ~ 0, t ~ O. For r > 0 we use equation (l.42) to obtain

(3.1)

( ,,2)
1 SO T\A:" tUs = 1-- !Sae

2pVs (3.2)

for p, S, (J > 0 and So ~ 0, r ~ 0, t ~ O.

To obtain the Greek parameter gamma for r o we differentiate equation (3.1) with

respect to S to get
1 rt: ,,2,

uss = --3 Y SoeB
4pS2

(3.3)

24
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for p, So, S, (J > 0 and t 2: O. For r > 0 we use equation (3.2) to obtain

( ,,2)1 :±.I. t
USS = --3 VSae 2

4pS'i
(3.4)

for p, So, S, (J > 0 and r 2: 0, t 2: O.

Differentiating equation (3.3) and (3.4) with respect to the spatial variable S gives the

Greek parameter speed. For r = 0 it is given by

3 rtr ,,2t
USSS = ---5 Y s.e:«

8pS'i

for p, So, S, (J > 0 and t 2: O. Similarly, for r > 0 speed is given by

3 (r+£)t
USSS = - --5 VSae 2

8pS'i

(3.5)

(3.6)

for p, So, S, (J > 0 and r 2: 0, t 2: O.

When we differentiate the solution (1.42) with respect to r we get the Greek parameter

rho as

(3.7)

for p, So, S, (J > 0 and r 2: 0, t 2: O.

Differentiating the solution of the European call option u(S, t) with respect to the param-

eter (J gives the Greek parameter vega. To obtain vega for r = 0 we differentiate equation

(1.41) with respect to (J to obtain

(Jt$a { InS ,,2( $a "2t}
U = --- Vue 8 + --e 4~ 4p 2 (3.8)

for p, So, S, (J > 0 and t 2: O. To obtain .ueqa for r > 0 we differentiate equation (1.42)

with respect to (J to get

(3.9)
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for p, So, S, (J > 0 and r ~ 0, t ~ O.

Lastly, to obtain the Greek parameter theta we differentiate the solution u(S, t) with
-c.

respect to time t. For r = 0 we differentiate equation (1.41) with respect to t to get

(J2.,fSo { (;::;S ,,2 t .,fSo ,,2 t }

Ut = - y ue 8 + --e 4
8p 2 (3.10)

for p, So, S, (J > 0 and t ~ O. Differentiating equation (1.42) with respect to t gives theta

for r > O. This is given by

(r + <T;).,fSo { (;::;S (~)t .,fSo (r+,,2)t}
Ut = - Y ue + --e 4

2p 2
(3.11)

for p, So, S, (J > 0 and r ~ 0, t ~ O.

3.2 Application of the Greeks

. 1 f¥o (72t •By lettmg w = - -s es equations (3.1) and (3.2) can be written in terms of w as
2p ,

Us = 1 - wand Us = 1 - we~ respectively. Theoretically, comparing equations (3,1) and

(3.2), the Greek parameter delta when r = 0 is greater than when r > 0 because eT > 1

and since w > 0,

Our results from the theoretical values and Figure 3,21 shows that the delta values when

parameter r is not included (Cetin et al. model) are higher compared to delta values

when r > 0 (Bakstein and Howison (2003) model), Also the delta values increase with

an increase in the stock price (see Figure 3,21). Delta values were positive which means

that the options value will increase when the underlying stock increases and will decrease

when the stock price decreases (also known as a positive relationship).

Equations (3.3) and (3.4) can be written' in terms of w as uss = 2~ and uss = 2~eT

respectively. Gamma is an estimate of how much the delta of an option changes when the

price of the stock moves. As a tool, gamma can tell you how stable the risk parameter
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Figure 3.21: Variation of delta Us with stock price S; for a European call option

when r = 0 and r > 0 for KPLC and Kengen with So = 94.5 (KPLC), So =

35.25 (KenGen), o = 0.1, t = 1, r = 0.2 and p = 0.75.

delta is. The values of the Greek parameter gamma when r > 0 is greater compared to its

values when r = 0 because e!f > 1. Figure 3.22 shows that the Greek parameter gamma

reduces with an increase in the stock price. Gamma values were positive which means

.delta will increase when the underlying stock price increases and will decrease when the

stock price decreases. This is called a positive relationship. Positive Gamma makes delta

more and more positive as the stock rises.

3w
Equations (3.5) and (3.6) can be written in terms of w as usss = -- and usss

4S2

3w rt .
- 4S2 e"2 respectively. This means that the Greek parameter speed when r = 0 is greater

than when r > o. From Figure 3.23, the Greek parameter speed increases with an increase

in stock price. Also, speed values are higher in the Cetin et al. model compared to the

Bakstein and Howison (2003) model as seen in Figure 3.23.

Writing equation (3.7) in terms of w gives u; = -t (Swe!f + v:e(r+ "4

2)t). In the How-

ison and Bakstein (2003) model, the risk parameter rho decreases with an increase in the
...
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Figure 3.22: Variation of gamma uss with stock pnce S; for a European call option

when r = 0 and r > 0 for KPLC and Kengen with So = 94.5 (KPLC), So =

35.25 (KenGen), (J = 0.1, t = 1, r = 0.2 and p = 0.75.

stock price (see Figure 3.24). Interest rates are normally stable, therefore the chance that

option's price will change drastically due to a rise or a drop in interest will be quite low.

Rho values were negative which means the option's price decreases when interest rate

increases and increases when the interest rate decreases.

at ( So <72t)Equations (3.8) and (3.9) in terms of ware given by u; = -- Sw + -eT and
4 2p

u.; = - (Jt (swe'f + So e(r+<74

2)t) respectively. This means that the Greek parameter vega
4 2p

is greater when r = 0 than when r > 0 since e'f > 1 (see also Figure 3.25). From figure

3.25, the vega values decrease with an increase in the stock price. Higher volatility implies

greater expected fluctuations in the stock price which means a greater possibility for an

option to move into your favor by the expiration date. Decreased volatility means further

stock price fluctuations is expected to be lower. Higher volatility leads to higher option

prices. Therefore, vega can move even without any changes in the underlying stock prices.
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Figure 3.23: Variation of speed uses with stock pnce S, for a European call option

when r = 0 and r > 0 for KPLC and Kengen with So = 94.5 (KPLC), So =

35.25 (KenGen), (5 = 0.1, t = 1, r = 0.2 and p = 0.75.

Equations (3.10) and (3.11) can be written in terms of w as Ut = _ (52 (SW + SOea
:
t
)

4 4p
(4r + (52) ( rt: So ( a2)) . .and Ut = - Swe2' + -e r+T t respectively. ThIS means that when r = 0

4 4p
the Greek parameter theta is greater compared to its value when r > 0 (see Figure 3.26).

From Figure 3.26 Theta values decrease with an increase in the stock price. Theta has

much more impact on an option that is nearing expiration than an option that is far away

from expiration. Theta values were negative which means that an option's value will fall

a time passes.
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Figure 3.24: Variation of rho u; with stock price St for a European call option when

r > 0 for KPLC and Kengen with So = 94.5 (KPLC), So = 35.25 (KenGen), a =

0.1, t = 1, r = 0.2 and p = 0.75.
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Figure 3.25: Variation of vega U(T with stock price S; for a European call option when r = 0

and r > 0 for KPLC and Kengen with So = 94.5 (KPLC), So = 35.25 (KenGen), a =

0.1, t = 1, r = 0.2 and p = 0.75.
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Figure 3.26: Variation of theta u; with stock pnce S, for a European call option

when r = a and r > a for KPLC and Kengen with So = 94.5 (KPLC) So =

35.25 (KenGen), (J = 0.1, t = 1, r = 0.2 and p...:... 0.75.



Summary, Conclusion and Recommendation,

This thesis deals with the Greek parameters of a European call option which have been

derived from a nonlinear Black-Scholes formula. These risk parameters are for a call option

in illiquid markets whose illiquidity is arising from transaction costs. We have computed

the Greek parameters derived from a nonlinear Black-Scholes formula in (1.41)(Cetin et

al. model). We have compared these Greeks with those derived from a nonlinear Black-

Scholes formula in (1.42) (Bakstein and Howison (2003) model).

We have found out that the values of the Greek parameters delta, speed, rho, vega and

theta are higher when r = 0 compared to their values when r > O. In contrast, the

values of the Greek parameter gamma is higher when r > 0 compared to its values when

r = O. We have also found out that the Greek parameters delta and speed increase with

an increase in the stock price while the rest (gamma, rho, vega and theta) decrease as

the stock price increases. It is only the delta and gamma that were positive in value.

From the above results, liquidity risk is higher when r = 0 (i.e. interest rate) and is lower

when the interest rate is positive. Liquidity risk is usually higher in emerging markets or

low volume markets. There are many factors that affect an option's price and the Greeks

help us understand this process better. They show how to protect one's position against

adverse movements in critical market variables such as the stock price, volatility, time and

interest rate. It's possible for some Greeks to be working for ones position while others

could be simultaneously working against it. Understanding how changing conditions can

affect options trades, may help a trader to better position himself accordingly. All the
1

Greek parameters are of the form a + - 1(3, t) where a E R
p

The current work could be extended by comparing the Greek parameters of a European

call option with those of European put option in the case of modified option valuation.
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