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Foreword

SAMSA conferences have over the last 30 years provided a platform for re-
searchers from Southern Africa and beyond to share recent advances in mathe-
matical sciences including ideas on new approaches to problem solving in various
fields of research. The conferences have also provided opportunities for networking
and learning. Being conscious that we live in a global village, SAMSA has always
extended invitation to experts from all over the world to share ideas and experi-
ences. The 2012 conference, held at Crossroads Hotel in Lilongwe, Malawi, from
26th to 29th November, was no different.

Held under the theme “Strengthening Mathematics and its applications in De-
veloping Countries”, the conference was officially opened by the Minister of Fi-
nance Hon. Dr. Ken Lipenga, MP, whose thought-provoking speech, included in
the proceedings, dwelt on the role mathematics plays in addressing challenges in
science, engineering, business and industry; and how it is applied to solve practi-
cal problems facing humanity. The conference brought together keynote speakers,
researchers and students from as far and wide as Belgium, Botswana, Canada, Eng-
land, Germany, Indonesia, Italy, Ireland, Kenya, Malawi, Namibia, Norway, Nige-
ria, Russia, South Africa, Serbia, Singapore, Sweden, Tanzania, U.S.A., Uganda,
Zambia and Zimbabwe. Among other dignitaries who graced the official open-
ing were Her Excellency Liz Higgins, Ambassador of Ireland and Dr. Emmanuel
Fabiano, Vice Chancellor of the University of Malawi.

SAMSA acknowledges the role played by the following in organising the 2012
conference: The former SAMSA executive led by Dr Chiteng’a John Chikunji;
the Local Organising Committee led by Dr Peter Y Mhone; the host institutions,
namely, University of Malawi’s (UNIMA) Chancellor College and the Malawi Poly-
technic, Mzuzu University (MZUNI), Catholic University of Malawi (CUNIMA),
and the Lilongwe University of Agriculture and Natural Resources (LUANAR).
SAMSA would also like to thank presenters who sent their papers for publication
in these conference proceedings, and the various reviewers who responded to the
LOC’s request for review positively.

Probably the greatest challenge in organizing such a conference is having prior
funding. This became an even greater challenge in 2012 with the economic down-
turn in Malawi. The conference would not have been a success that it was, without
the generous financial support from Irish Aid, Malawi Savings Bank, Grey Matter
Book Distributors, and travel support to keynote speakers and students by Centre
International de Mathématiques Pures et Appliquées (CIMPA, France), Centre of
Mathematics for Applications (CMA, Norway), Innovations in Stochastic Anal-
ysis and Applications (Innostoch, Norway), National Science Foundation (NSF)
through Auburn University (USA), Humboldt University of Berlin (Germany),
London Mathematical Society - African Mathematics Millennium Science Initia-
tive (LMS-AMMSI) and many other organizations and institutions who supported
speakers and delegates. To all these, SAMSA is truly most grateful.

After the conference, from 29th November - 2nd December 2012, SAMSA held
the second Masamu US-Africa Advanced Study Institute and Workshops in Math-



ematical Sciences under the MASAMU program, a collaborative effort between
African, United Kingdom, and US mathematicians supported by the National Sci-
ence Foundation (NSF, USA). Thanks to Professor Overtoun Jenda of Auburn
University for his initiative and efforts to contribute to the development of math-
ematics in the Southern Africa. The primary goal of the Program is to enhance
research in mathematical sciences within SAMSA institutions, targeting graduate
students and early career faculty. For the present Institute, participants came from
Botswana, Kenya, Malawi, South Africa, Tanzania, USA, and Zimbabwe; and pre-
sented progress of research work they started at the first Institute in Livingstone
at the end of SAMSA 2011. It was encouraging to note that there was a lot of
progress, with some groups about to submit papers for publication.

We hope you will enjoy reading these proceedings and trust that you will find
them useful.

Dr. Levis Keliyasi Eneya
SAMSA President
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Opening Speech at SAMSA 2012

Hon. Dr Ken Lipenga, MP

Minister of Finance, Republic of Malawi

I am delighted to be here to give the Opening Statement at this Conference
whose theme is “Strengthening Mathematics and its Applications in Developing
Countries”. I welcome all participants to Malawi, and as your hosts we are de-
lighted that Malawi is hosting this International Conference for the third time. I
congratulate all universities within SAMSA for sustaining this Conference for al-
most three decades. These conferences have served as an avenue for the exchange
of knowledge, information and provoking new ideas in problem solving among
experts.

I wish you well in this conference. I am sure that it will be fascinating and
provide opportunities for networking and learning. I hope all students take ad-
vantage of the opportunities that this Conference presents to continuously push
forward the boundaries of knowledge and to advance research and learning within
the Southern African region. I commend and applaud the Local Organizing Com-
mittee for all the work you have done in advance of this conference. I thank the
Embassy of Ireland for providing a grant to finance this Conference and to the
hosting Universities in Malawi for your own contributions to this Conference.

The objective of the Conference is to provide a platform for experts to exchange
ideas and establish collaboration. I am pleased that the conference has so many
participants from across the SADC Region, Nigeria, Cameroon, Kenya, Norway,
Ireland, the United Kingdom, Germany, Sweden and the United States of America.
This conference will provide an excellent opportunity to present the most recent
advances in pure and applied mathematics, advance debate on problem solving
and apply mathematics to the pressing issues of our continent in health, finance,
the environment, engineering and commerce.

I am also delighted to see so many students here from Malawi and I welcome
students from other SADC universities. I am proud of the recent advances in
Mathematics in Malawi including the establishment of a Masters and PhD Pro-
gramme in Mathematics at Mzuzu University and our advances in pure and applied
mathematics.

I also consider it a great privilege and honour that you have invited a non-
mathematician to deliver the opening statement. I know that there are many
debates between you as to whether mathematics is a science and whether math-
ematics has sovereignty over the natural sciences. It appears that Albert Einstein
was sceptical noting that “In so far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain, they do not refer to reality”.

It has been pointed out that all creatures seem to be born with brains that have
predisposition for mathematics, and the numerical competence is crucial to survival
in the wild. A chimpanzee is less likely to go hungry if he can look up a tree and
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quantify the amount of ripe fruits he will have for his lunch. To me, mathematics is
a language, a language with universal relevance to economic development. Galileo
noted that “The universe cannot be read until we have learned the language and
become familiar with the characters in which it is written. Without these, we are
wandering in a dark labyrinth.”

Mathematicians are famous for seeking out “problems” the more complex, the
more exciting. And what could be more complex than reality, especially when it
involves new developments in modern key technologies? Industries and businesses,
in turn, are increasingly employing mathematics to structure and transfer com-
plex problems into technical, quantitative models. Mathematical approaches allow
problems to be better understood, to recognize what is essential, to make predic-
tions in difficult situations and to make better decisions. Its research activities
make it possible for important biological and medical processes to be mathemat-
ically modelled, tested in virtual laboratories, adapted and optimized. And of
course we use a lot of mathematical modelling in my own ministry, whether it is
designing the budget and making projections, or in the structuring of salary and
payroll systems. Systems such as IFMS (Integrated Financial Management Sys-
tem), which depend so much on mathematical modelling, are designed not only
to make work easier for our technicians, but also to combat fraud and corruption,
thereby contributing to the never-ending quest for the perfect society. So, if you
have ever wondered whether mathematics has a role in the growth of democracy,
there is your answer.

As a non mathematician, I have for a very long time been fascinated by the
way applied mathematics concerns itself with addressing challenges in science, en-
gineering, business and industry, and applies mathematics to practical problems
facing humanity. I note from the agenda that you will discuss papers on math-
ematical biology including “Raising the Bar; Projected Impact, Cost and Cost-
Effectiveness of Alternative CD4 Cell Count Threshold for ART Initiation on the
HIV and TB Epidemic in South Africa” Other papers in the section on Codes
and Cryptology include “Mobile Banking Scheme, Independent of both Banks and
Mobile Network” and “Mathematics: A tool for Promoting Consumer Financial
Literacy”. There is also a paper for politicians like myself; “Low cost and secure
hybrid e-voting system using mobile phones.

Ladies and gentlemen, why do so many people find mathematics so outright
bewildering? Today, we require understanding of the linear number line to function
in modern society. The linear number line is the basis of measuring, and facilitates
calculations. Yet in our dependence on linearity, have we perhaps gone too far
in stifling our own, arguably more naive, logarithmic institutions? Could this
perhaps be the reason why so many people find mathematics difficult? Could this
be the reason why we so easily lose our ability to manipulate exact numbers and
default to our logarithmic institutions, judging amounts and perceive distances
with approximations and ratios?

There is paradox here, in that the seemingly difficult subject that is mathemat-
ics has in fact been largely responsible for making life easier for modern humanity,
through the applications that I have referred to that you are going to be dis-
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cussing. It is for this reason that I believe it will be mathematicians who will find
the formula for demystifying mathematics, making it easier for everyone to follow.
I am confident that through your work we will find that we are in fact, all of us,
mathematicians under the skin, descendants of Pythagoras and Euclid.

Ladies and Gentlemen, I wish you well as you explore, advance and use math-
ematics to promote innovation and development. I thank you for your kind atten-
tion.
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Abstract. Malaria is a major public health concern, especially among
pregnant women and children under the age of five. It is a leading cause
of morbidity and mortality in Malawi, accounting for fourty percent
of out-patient consultations in many health facilities in the country.
Mathematical models have an important role to play in making pub-
lic health decisions about the control of infectious diseases such that
they are better informed and more objective. In order to understand
the prevalence, transmission and control of the Malaria epidemic, an
SEIR model has been used in this study. The model was analysed to
determine criteria for control of the malaria epidemic, and was used
to compute the basic reproduction and effective reproduction numbers
necessary for control of the disease. In this paper an expression for
the basic reproduction number R0 is derived through the next genera-
tion method. Numerical results indicate the effect of the two controls:
protection and treatment in lowering exposed and infected members
of each of the populations. The results also highlight the effects of
infection rate and removal rate.

Keywords: SEIR model, next generation method, mathematical modelling, Malaria
epidemic

1. Introduction

Malaria is one of the greatest health and development challenges worldwide. The
disease is endemic in ninety-one countries, accounting for fourty percent of the
world’s population. But the greatest load of mortality and morbidity due to
malaria is borne by the world’s poorest economies, most of them in sub Saha-
ran Africa [5]. Nine of every ten cases of malaria and malaria deaths occur in
Africa. Malaria is a major public health concern in Malawi, especially among
pregnant women and children under the age of five. It is a leading cause of mor-
bidity and mortality in Malawi, accounting for 40% of Out Patient Department
(OPD) consultations in many health facilities in the country [10]. The Malawi
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government has embarked on reducing maternal and neonatal mortality and mor-
bidity in Malawi through combating Malaria, HIV and Aids, among other diseases
which is goal 6 in the Malawi Government Millennium Development Goals Report
of 2008 [11].

Mosquitoes transmit malaria; hence malaria distribution largely depends on the
following climatic factors that affect the survival and multiplication of the anophe-
les mosquitoes: temperature, humidity, and rainfall [4]. The extent and geographic
distribution of these factors influences the prevalence (occurrence) of malaria in
Malawi. Malaria occurs in all parts of Malawi but with variable transmission pat-
terns. While malaria prevalence data for Malawi is scanty, there are estimates of
incidence (frequency) rates. For instance, in 1994 the estimated malaria incidence
for Malawi was 49, 410 per 100, 000 population [5]. Even though in a disease with
a short natural course like malaria, incidence and prevalence are almost the same,
the reported estimates of malaria incidence in an endemic country like Malawi
would certainly underestimate prevalence rates of the disease. This is because
in people living in endemic areas most malaria infections are asymptomatic and
resolve without treatment due to malaria-specific acquired immunity. Thus, one
of the most serious problems with estimating malaria prevalence from incidence
data is the omission of these asymptomatic malaria cases thereby underestimating
incidence rates. In addition, since incidence data are predominantly obtained from
malaria case records at clinics, health centres and hospitals, malaria cases that are
treated at home are missed out resulting in an underestimation of true malaria
incidence.

The incidence of malaria has been growing recently due to increasing parasite
drug-resistance and mosquito insecticide-resistance. Therefore, it is important to
understand the important parameters in the transmission of the disease and de-
velop effective solution strategies for its prevention and control. A mathematical
model is developed to better understand the transmission and spread of malaria.
The model divides the human population into four classes: susceptible, exposed,
infectious, and recovered (immune). Humans enter the susceptible population
through birth or immigration. Susceptible humans get infected at a certain proba-
bility when they are bitten by infectious mosquitoes. They then progress through
the exposed, infectious, and recovered classes, before re-entering the susceptible
class.

According to Dzinjalamala [5], malaria is associated with productivity losses
and reduction in profits in the private sector particularly tourism and construction
industry, stemming from a sick workforce and hospital bills. In addition, the
threat of malaria negatively affects visitors to Malawi. Malaria is a frequent cause
of absenteeism in school, not only for students but also teachers, resulting in
poor scholastic performance on the part of the student and a negative impact
on the ability of the teachers to work hard, either because they are themselves
sick or because their children are sick. In some children, cerebral malaria may
lead to cognitive impairment or neurological sequelae that negatively impact on
their educational attainment. Thus, this paper aims to understand the dynamics
of malaria transmission and spread, predict the steady states, and calculate the
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threshold parameter R0 of the disease.

2. Mathematical Modelling

2.1 Ross - MacDonald Model

The earliest attempt to provide a quantitative understanding of the dynamics of
malaria transmission is the so called Ross-Macdonald model, which still is the
basis for much malarial epidemiology [3]. This model, which captures the basic
features of the interaction between the infected proportions of the human host and
the mosquito vector population, is defined by the following system of Differential
Equations:

dx

dt
= αy(1− x)− rx

dy

dt
= βx(1− y)− µy (2.1)

where,

• x = proportion of the human infected population

• y = proportion of the female mosquito population with malarial parasites

• α = rate of infection of humans by mosquitoes

• β = rate at which mosquitoes gets malarial parasites from humans

In this model, the total population of both humans and mosquitoes is assumed
to be constant. Also the quasimonotonicity condition is satisfied. Usually the
parameter α is explicated as follows:

α =
aβM

N
, (2.2)

where β is defined as above, a is the proportion of infected bites on man that
produce an infection, N is the size of the human population; and M is the size of
the female mosquito population. The threshold parameter usually referred as the
basic reproduction ratio is given by

R =
M

N

β2α

µr
. (2.3)

When R > 1 a unique nontrivial endemic state appears with components:

x∗ =
R− 1

R + β
µ

y∗ =
R− 1

R

β
µ

1 + β
µ

(2.4)

where x∗ and y∗ are the steady states.
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2.2 SIR Model

The so-called SIR model is one of the simplest and most fundamental of all epi-
demiological models. It is based upon calculating the proportion of the population
in each of the three classes (susceptible, infected and recovered) and determining
the rates of transition between these classes. The model, which was described by
Kermack and McKendrick in 1927, consists of three compartments: susceptible S,
infected I, and Removed R hence it is referred to as SIR model, and is given by

dS

dt
= ∧ −

βSI

N
− µS

dI

dt
=

βSI

N
− µI − γI (2.5)

dR

dt
= −µR + γI

where ∧ is the recruitment rate, β the contact rate, µ the death or mortality rate
and γ is the removal or recovery rate.

2.3 SEIR Model

With respect to the classical SIR model with vital dynamics, the SEIR models
include a further class E of latent individuals. Many diseases like malaria have
what is termed as latent or exposed phase E during which an individual is said
to be infected but not infectious, i.e. they are not yet capable of transmitting the
disease [3]. We will use the SEIR framework to describe a disease with temporary
immunity on recovery from infection. SEIR model indicates that the passage of
individuals is from the susceptible class S, to the exposed class E, then to infec-
tive class I, and finally to the recovery class, R. S(t) represents the number of
individuals not yet infected by the malaria parasite at time t, or those susceptible
to the disease [8]. In this model I(t) denote the number of individuals who have
been infected with malaria and are capable of spreading the disease to those in the
susceptible category. This is done through infecting the susceptible mosquitoes.
The dynamic transmission of the malaria parasite between and amongst individ-
uals in both species is driven by the mosquito biting habit of the humans. R
is the compartment for individuals who have recovered from the disease. These
humans cannot transmit the infection to mosquitoes as we assume that they have
no plasmodium parasites in their bodies.

For some disease, it takes certain time for an infective agent to multiply inside
the host up to the critical level so that the disease, actually manifest itself in the
body of the host [13]. This is called an incubation period. We have the same
assumptions as in the SIR model, which are homogeneous mixing (mass action
principle), constant population size and the rates of change from one compartment
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to the other, giving the system:

dS

dt
= ∧ −

βSI

N
− µS

dE

dt
=

βSI

N
− µE − δE

dI

dt
= −µI + δE − γI (2.6)

dR

dt
= −µR + γI

where δ is rate of infection, and the rest pr parameters are as in model (2.5).

The probability to survive the latency period and to enter the infectious period
equals to δ

δ+µ
.

Therefore the basic reproductive number in this case will be

R0 =
δ

δ + µ

β

γ + µ
. (2.7)

The steady states are found when dI
dt

= 0.

3. Model analysis

The next-generation method, developed by Diekmann et al. [19] and Heesterbeek
[20], and popularised by van den Driessche and Watmough [26], is a generalisa-
tion of the Jacobian method. It is significantly easier to use than Jacobian-based
methods, since it only requires the infection states (such as the exposed class,
the infected class and the asymptomatically infected class) and ignores all other
states (such as susceptible and recovered individuals). This keeps the size of the
matrices relatively manageable. In order to determine the matrices F and V ,
where F accounts for the new infections and V accounts for the transfer between
infected compartments, biological insight must be used in order to decide which
terms count as new infections and which terms are transfer terms.

Using the Next Generation Method, consider G to be the next generation
matrix. It is comprised of two parts, F and V −1, where

F =

[
∂Fi(x0)

∂xj

]

(3.1)

and

V =

[
∂Vi(x0)

∂xj

]

. (3.2)

The Fi are the new infections, while the Vi are transfers of infections from one
compartment to another. In equations (3.1) and (3.2), x0 is the disease-free equi-
librium state.
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R0 is the dominant eigenvalue of the matrix G = FV −1. Thus the determina-
tion of G = FV −1 leads to the determination of R0 for the system in (2.6). The
Disease Free Equilibrium (DFE) is P0 = (S0, E0, I0, R0) such that S0 = ∧

µ
= N ,

E0 = 0, I0 = 0, R0 = 0. The vector of disease state is

~X = (E, I)T where,

dE

dt
=
βSI

N
− µE − δE

dI

dt
= −µI + δE − γI

Linearization of ~X about the DFE yields

d ~X

dt
= J ~X

where J := F − V is given by

J =

(
−δ − µ β

δ −µ − γ

)

From the above equation, we see that

F =

(
0 β
0 0

)

,

and

V =

(
δ + µ 0
−δ µ+ γ

)

.

By definition, the next generation matrix is given by G = FV −1. From F and V
given above, we compute

V −1 =

(
1

δ+µ
0

δ
(δ+µ)(γ+µ)

1
µ+γ

)

and

G := FV −1 =

( βδ
(δ+µ)(γ+µ)

β
µ+γ

0 0

)

The last matrix FV −1 has two eigenvalues, namely, 0 and βδ
(δ+µ)(γ+µ)

. From the
foregoing, since R0 is the dorminant eigen value of G, then we have

R0 =
βδ

(δ + µ)(γ + µ)
. (3.3)
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4. Results and Discussions

Using a set of parameters, we carried out simulations of the model in Matlab.
Some of the parameters were obtained from the National Statistical Office (N.S.O)
in Zomba, Malawi and other values that have been used before in literature on
Malaria transmission. The values from literature are used within a certain range
of parameter values according to an area because there are differences in terms of
factors that leads to Malaria prevalence. Estimates for some parameters are scarce
or their actual values are unknown precisely thus we resorted to parameter values
that are in line with literature on Malaria transmission for their values. Some pa-
rameters vary from country to country and some are influenced by demographics,
for instance, natural death rate, transmission of the disease and recruitment rate.
In this model, the dynamics of the vector have been assumed as the contact rate
and is incorporated in the mass action term βSI

N
. Thus the model only deals with

the dynamics of the human beings.

We simulate the basic malaria model in the absence of any intervention and then a
malaria model with data from Zomba D.H.O on population of Zomba, and people
who were suffering from malaria in the previous year. Then we find out the dif-
ferences. In order to find out the dynamics of the disease in the population when
there is no intervention, a simulation of basic model has been conducted. In the
absence of intervention strategies, the susceptible population decreases as shown
in the Figure 4.1.
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Figure 4.1: Graph of Susceptible Population

Since there are no interventions to eradicate the disease, the susceptible popu-
lation will continue being exposed to the disease, and as a result of being recruited
to another class, the exposed population will slightly increase from the start as
shown in Figure 4.2 and then decrease.
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Figure 4.2: Graph of Exposed Population

This means that the plasmodium is continuously multiplying since there are no
means of reducing or eradicating it. After some few days the exposed population
decreases since they are now becoming infective. Thus the infected population
increases due to the increase in the exposure to the disease and the value of R0 is
1.4303 meaning that a lot more people are getting the disease, see Figure 4.3.
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Figure 4.3: Graph of Infected Population

This supports the result that the disease is endemic when R0 > 1. The recov-
ered population decreases as a result of availability of malaria in the community
in which no any intervention is being practised. This is illustrated in the Figure
4.4.
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Figure 4.4: Graph of Removed Population
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We also looked at the prevalence in the population. Prevalence is defined as
the ratio of the number of cases of a disease in a population with the number
of individuals in a population at a given time. It is used as an estimate of how
common a disease is within a population over a certain period of time. Figure 4.5
shows the prevalence of malaria in the population without interventions.
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Figure 4.5: Graph of Malaria Prevalence

The prevalence graph, Figure 4.5 with R0 = 1.4303, increases exponentially for
a while and then reaches the equilibrium. This happens because of the reduced
number of susceptible individuals with time as most of the individuals in the
society become affected with the disease. In this we note that the removal rate γ
is of paramount significance. When γ is increased from say 10% to 50% the graph
of prevalence changes and there is a significant change in terms of the disease
dynamics. Figure 4.6 illustrates how γ affects the prevalence and the dynamics of
Malaria in general.
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Figure 4.6: Graph of Malaria Prevalence

As the value of γ continues to increase, the prevalence of the disease further
decreases and this is also noted by the changing value of R0. Figure 4.7 illustrates
this.
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Figure 4.7: Graph of Malaria Prevalence

5. Malaria Dynamics for Zomba

When the interventions are introduced, improved trends of the populations in
terms of the proportion of the sick people are observed. This can be seen in Figure
5.1 that the susceptible population decreases though interventions are there to
reduce the impact of the disease.
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Figure 5.1: Graph of Susceptible Population for Zomba

The dynamics of the infected individuals is such that few people get infected
by the disease as compared to the one without interventions.
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In the Figure 5.2, the trend is such that people are recruited to the infected com-
partment as manifested by the increase in the graph and these are from the suscep-
tible class. After some time they are removed from the population, which entails
that people are removed from this class after a certain period of time due to the
treatment they get after visiting the hospital.

The prevalence is such that the disease is so prevalent in the population as mani-
fested by the trend in Figure 5.3 and also by the value of R0 which is so big that
one sick person can infect more than four people.
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Figure 5.3: Graph of Malaria Prevalence in Zomba

6. Conclusion

This study has presented and analysed a basic SEIR model for the transmission
of Malaria. It considered a varying total human population since it incorporated
recruitment of new individuals into the susceptible class mainly through birth.
The model incorporated features that are effective to control the transmission of
Malaria disease in the district. The prominent parameter in the model, the basic
reproduction number, R0, as a control intervention measure was computed. In
this, when R0 < 1 the disease-free equilibrium is stable and when R0 > 1 the
endemic equilibrium is stable.

From the graphs of susceptible individuals in Figure 5.1, we noted that many
people were being exposed to the disease in the first days and that the rate of
exposure was so high. This entails that there is need for control strategies of the
contact rate. Since in our case the vector acts as the contact, there is need for
control of the mosquito. This means a lot of people that are susceptible to the
disease are supposed to be protected from contacting the disease. Thus, the use
of Insecticide Treated Nets (ITNs), Indoor Residual Spraying (IRS), and filling up
of stagnant water places.

Another parameter that is of much significance is the removal rate γ. When
this parameter is increased by some percentage, it affects a lot the value of R0. As
such, increasing the population of the people that are treated from the infection
will mean that the infected class will be reduced and that the transmission of the
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disease will also decrease since there will also be a decrease in terms of the contacts,
and the secondary infections. Furthermore, prevention measures are important to
maintain the reduction or eradication of the disease transmission and lowering the
infection. Therefore, the results indicate the effect of control such as protection and
treatment in lowering exposed and infected members of each of the populations.

7. Recommendations

Malaria eradication remains a challenge to National Malaria Control Programme in
Malawi, hence there is need to strengthen the control strategies at hand as well as
looking for some new ones. As the Malaria disease continues to burden individuals
and communities in Malawi, policy makers have to be informed about the research
results. From the results of this work, we make the following recommendations.

7.1 Protecting individuals from Malaria

With regard to malaria prevention, insecticide-treated nets (ITNs) have a track
record of reducing malaria related morbidity and mortality, hence should increas-
ingly be utilized. According to [25], regular use of ITNs can reduce overall under-
five mortality rates by about 20 per cent in malaria-endemic areas. Malaria-
infected mosquitoes bite at night, and these nets provide to the sleeping individ-
ual a physical barrier against the bite of an infected mosquito. In addition, a net
treated with insecticide provides much greater protection by repelling or killing
mosquitoes that rest on the net. Indoor residual spraying (IRS) is the practice
of spraying insecticides on the interior walls of homes in malaria affected areas
[6]. After feeding, many mosquito species rest on a nearby surface while digesting
the blood meal, so if the walls of dwellings have been coated with insecticides,
the resting mosquitoes will be killed before they can bite another victim, transfer-
ring the malaria parasite. Most of the reductions in transmission comes from the
protection of humans, it is important therefore also to improve the killing effects
of insecticide mosquito treated bed-nets (ITNs) and indoor residual spray (IRS).
Thus, complete coverage and improved killing effects may be necessary to reach
control goals.

7.2 Vector Control

Interventions such as insecticide-treated nets (ITNs) and indoor residual spraying
(IRS) are proving effective to combat and prevent the disease in the district and
also filling up of stagnant water and other mosquito breeding site. These would
reduce the availability of hosts, and kill mosquitoes that are attempting to feed on
humans’ blood, larva that is growing, and reducing malaria transmission. There
are different malaria vector control measures, including [27]:

• Reduction of human mosquito contacting which Insecticide-treated nets, re-
pellents, protective clothing and screening of houses are used.
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• Destruction of adult mosquitoes and mosquito larvae where ITNs, IRS, space
spraying, and ultra low-volume sprays are used.

• Source reduction small-scale drainage.

• Social participation where there is motivation for personal and family pro-
tection, health education and community participation.

7.3 Treatment of individuals

Some of the critical components in the reduction transmission of malaria are: pop-
ulation wide or focused screening and treatment (FSAT) of all infected individuals,
active detection of malaria cases (symptomatic) or of infections (asymptomatic).
Treatment of all infected persons can substantially reduce the transmission of
malaria at community level, since there will be less individuals that are infected
thus reducing the number of contacts.

7.4 Awareness Campaigns

There are supposed to be awareness campaigns for people to use nets and other
control strategies. Studies show that although people have nets, some do not use
them. This is connected to religious beliefs, and problems that some people develop
after using the nets. According to [6], education in recognizing the symptoms of
malaria has reduced the number of cases in some areas of the developing world
by as much as 20%. Recognizing the disease in the early stages can also stop the
disease from becoming a killer. Education can also inform people to cover over
areas of stagnant, still water e.g. water tanks, which are ideal breeding grounds
for the parasite and mosquito, thus cutting down the risk of the transmission
between people. Therefore, more awareness campaigns should be conducted in the
district to sensitize people on the importance of the ITNs, IRS and getting medical
attention in good time.

8. Future Work

As Malaria continues to claim more lives, and affect a lot of people in Malawi, it is
imperative to have comprehensive research done in order to explore possible new
control strategies of the infection as well as assessing the impact of the existing
control strategies. Based on this study, it is proposed that future work should
focus on:

1 the dynamics of the vector and interventions in the model;

2 comprehensive study on the compartments of the disease since compartmen-
talised data is not available; and

3 optimisation of malaria control strategies and interventions.
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1. Introduction

Throughout this work we will assume that all rings are finite, commutative (unless
otherwise stated) and associative with identities, denoted by 1 6= 0, that ring
homomorphisms preserve 1, a ring and its subrings have the same 1 and modules
are unital. Moreover, we adopt the notation used in [2] and [3], that is, R will
denote a finite ring, unless otherwise stated, J will denote the Jacobson radical of
R, and we will denote the Galois ring GR(pkr, pk) of characteristic pk and order
pkr by Ro, for some prime integer p, and positive integers k, r. We denote the
group of units of R by GR; if g is an element of GR, then o(g) denotes its order,
and < g > denotes the cyclic group generated by g. Further, for a subset A of R
or GR, |A| will denote the number of elements in A. The ring of integers modulo
the number n will be denoted by Zn and the characteristic of R will be denoted
by charR. We shall use Cn

r or
(
n
r

)
, for the binomial coefficient n!

(n−r)!r!
.

A finite ring R with identity 1 6= 0 is completely primary if the set J of all its
zero-divisors including the zero element forms an additive group, and hence, its
unique maximal ideal.
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Completely primary finite rings have been studied in some detail by Raghaven-
dran in [13], and for easy reference, we state without proofs in section 2, most of
the results needed for our purpose.

In [8], Fuchs asked for a characterization of abelian groups which could be
groups of units in a ring. This question was noted to be too general for a complete
answer [14], and a natural course is to restrict the classes of groups or rings to be
considered.

Let R be a ring and let GR be its multiplicative group of unit elements. All
local rings R with GR cyclic were determined by Gilmer [10] and this case was
also considered by Ayoub [1] (also proofs are given in [12] and [13]). Pearson and
Schneider have found all R where GR is generated by two elements. Clark [6]
has investigated GR where the ideals form a chain and has shown that if p ≥ 3,
n ≥ 2 and r ≥ 2, then the units of the Galois ring GR(pnr, pn) are a direct sum
of a cyclic group of order pr − 1 and r cyclic groups of order pn − 1 (this was
also done independently by Raghavendran [13]). In fact, Raghavendran described
the structure of the multiplicative group of every Galois ring. Stewart in [14]
considered a related problem to that asked by Fuchs [8] by proving that for a
given finite group G (not necessarily abelian), there are, up to isomorphism, only
finitely many directly indecomposable finite rings having group of units isomorphic
to G.

Ganske and McDonald [9] provided a solution for GR when the local ring R
has Jacobson radical J such that J 2 = (0) by showing that

GR = (⊕
nt∑

i=1

ǫ(p)⊕ ǫ(|K| − 1),

where n = dimK(J /J 2), |K| = pt, and ǫ(π) denotes the cyclic group of order π.
In [7], Dolzan found all non-isomorphic rings with a group of units isomorphic

to a group G with n elements, where n is a power of a prime or any product of
prime powers not divisible by 4; and also found all groups with n elements which
can be groups of units of a finite ring, a contribution to Stewart’s problem [14].
X.-D. Hou et al. [11] gave an algorithmic method for computing the structure of
the group of units of a finite commutative chain ring and further strengthening
the known result by listing a set of linearly independent generators for the group
of units.

In [2], [3], [4] and [5] (see also Sections 2 and 3 in [13]), the author studied unit
groups of commutative completely primary finite rings R with maximal ideals J
such that J 3 = (0) and J 2 6= (0), for various parameters p, n, r, s, , t and λ.

The purpose of the current paper is to extend the above study to a general
commutative completely primary finite ring R of order pnr with unique maximal
ideal J such that Jm = (0), Jm−1 6= (0), characteristic of R = pk, for any prime
number p, and any fixed positive integers m, n, r, k, where 1 ≤ k ≤ m ≤ n.
The highest possible order of an element in any such group will be determined.
Explicit representations are given for the p-subgroup 1 + J of the group of units
of the ring R and directions for further research are indicated.
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2. Preliminaries

Let R be a completely primary finite ring (not necessarily commutative), J the
set of all zero divisors in R, including the zero element, p a prime, k, n and r be
positive integers. The following results will be assumed (see [13]): |R| = pnr, J
is the Jacobson radical of R, J n = (0), |J | = p(n−1)r, R/J ∼= GF (pr), the finite
field of pr elements and charR = pk, where 1 ≤ k ≤ n; the group of units GR is a
semi-direct product GR = (1+J )×θ < b >, of its normal subgroup 1+J of order
p(n−1)r by a cyclic subgroup < b > of order pr − 1; the multiplicative group GR is
solvable; if G is a subgroup of GR of order pr − 1, then G is conjugate to < b > in
GR; if GR contains a normal subgroup of order pr−1, then the set Ko =< b > ∪{0}
is contained in the center of the ring R; and (1 + J i)/(1 + J i+1) ∼= J i/J i+1 (the
left hand side as a multiplicative group and the right hand side as an additive
group). If charR = pk and n = k, it is known that, up to isomorphism, there
is precisely one completely primary ring of order pkr having characteristic pk and
residue field GF (pr). It is called the Galois ring GR(pkr, pk) and a concrete model
is the quotient Zpk [X ]/(f), where f is a monic polynomial of degree r, irreducible
modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases
are GR(pn, pn) = Zpn and GR(pr, p) = Fpr . In fact, R = Zpn [b], where b is an
element of R of multiplicative order pr−1; J = pR and Aut(R) ∼= Aut(R/pR) (see
Proposition 2 in [13]). Furthermore, if charR = pk, then it can be deduced from
[13] that R has a coefficient subring Ro of the form GR(pkr, pk) which is clearly
a maximal Galois subring of R. Moreover, if R

′

o is another coefficient subring of
R then there exists an invertible element x in R such that R

′

o = xRox
−1 (see

Theorem 8 in [13]). Furthermore, there exist elements m1, ..., mh ∈ J and

σ1, ..., σh ∈ Aut(Ro) such that R = Ro⊕
h∑

i=1

Romi (as Ro-modules), miro = rσio mi,

for all ro ∈ Ro and any i = 1, ..., h (use the decomposition of Ro ⊗Z Ro in terms
of Aut(Ro) and apply the fact that R is a module over Ro ⊗Z Ro). Moreover,
σ1, ..., σh are uniquely determined by R and Ro. We call σi the automorphism
associated with mi and σ1, ..., σh the associated automorphisms of R with respect
to Ro.

Now, let Ro = Zpk [b] be a coefficient subring of R of order pkr and characteristic
pk and let Ko =< b > ∪{0}, denote the set of coset representatives of J in R.
Then it is easy to show that every element of Ro can be written uniquely as
∑k−1

i=0 λip
i, where λi ∈ Ko.

Lemma 1. Let R be a completely primary finite ring of characteristic pk and order
pnr, with maximal ideal J of index of nilpotence i. Then 1 ≤ k ≤ i ≤ n.

Proof. We have only to prove that k ≤ i. We know that J 6= 0 so that i ≥ 2.
Since pk = 0, it follows that p ∈ J and i ≥ k. �

It can be seen from the above lemma that taking a fixed index of nilpotence
produces limitations on the characteristic of R. Hence, if we take a completely
primary finite ring with J 2 = (0), then 1 ≤ k ≤ 2, i.e. R is either of characteristic
p or p2.
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3. Constructions

We construct commutative completely primary finite rings R with Jacobson radi-
cals J such that Jm = (0), Jm−1 6= (0), characteristic of R = pk, for any prime
number p, and any fixed positive integers m, n, r, k, where 1 ≤ k ≤ m ≤ n.

3.1 Rings of characteristic p

Let Ro = Fpr , the finite field with pr elements for any prime number p and positive
integer r. Let U1, U2, ..., Um−1 be vector spaces over Ro and suppose that U1 is
generated by u1, . . . , us over the field Ro; U2 is generated by the s(s+1)

2
distinct

products uiuj of the elements ui, over the field Ro; and so on, and Um−1 is generated

by the
(
s+m−2
m−1

)
= s(s+1)···(s+m−2)

(m−1)!
distinct products of m− 1 of the elements ui over

Ro.
Let R be an additive group direct sum of the Ro vector spaces:

R = Ro ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Um−1.

Define multiplication on R as follows: uiuj 6= 0 is a linear combination of elements
in U2 ⊕ U3 ⊕ · · · ⊕ Um−1 over Ro; uiujuk 6= 0 is a linear combination of elements
in U3 ⊕ U4 ⊕ · · · ⊕ Um−1 over Ro; ...; ui · · ·um−1 6= 0 is a linear combination of
elements in Um−1 over Ro; and uia = aui, for every a ∈ Ro.

Then it is easy to show that R is a commutative completely primary finite ring
with Jacobson radical J such that Jm = (0), Jm−1 6= (0), and charR = p.

Clearly, J = U1 ⊕ U2 ⊕ · · · ⊕ Um−1, Jm−1 = Um−1 and

|J | =
m−1∏

i=1

p(
s+i−1

i )r = p
∑m−1

i=1 (s+i−1
i )r,

where
(
s+i−1
i

)
r = n− 1.

3.2 Rings with characteristic pk, k > 1

We assume that p ∈ J −J 2 so that p2 ∈ J 2 and pk−1 ∈ J k−1. We leave the other
cases for future consideration (See Remark 4.5 below).

Let Ro be the Galois ring GR(pkr, pk) of order pkr and with characteristic pk,
for a fixed prime p and fixed positive integers k, r. Let U1, U2, ..., Um−1 be
Ro-modules and suppose that u1, u2, ..., us generate U1 as an Ro-module, the
s(s+1)

2
distinct products uiuj (i, j = 1, ..., s) generate U2 as an Ro-module, and

so on, and Um−1 is generated as an Ro-module by the Cs+m−2
m−1 distinct products of

m− 1 of the elements ui.
Let R be an additive group direct sum of the Ro-modules:

R = Ro ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Um−1.
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Define multiplication on R such that uiuj 6= 0 is a linear combination of elements
in p2Ro⊕pU1⊕U2⊕· · ·⊕Um−1 over Ro/pRo; uiujuk 6= 0 is a linear combination of
elements in p3Ro ⊕ p2U1 ⊕ pU3 ⊕U4 ⊕ · · · ⊕Um−1 over Ro/pRo; ...; ui · · ·um−1 6= 0
is a linear combination of elements in pm−1Ro ⊕ pUm−2 ⊕ Um−1 ( if k < m) or in
Um−1 ( if k ≥ m), over Ro/pRo; and uia = aui, for every a ∈ Ro.

Then it is routine to verify that R is a commutative completely primary finite
ring with Jacobson radical J such that Jm = (0), Jm−1 6= (0) and with charR =
pk. Moreover,

J = pRo ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Um−1, J
2 = p2Ro ⊕ pU1 ⊕ U2 ⊕ · · · ⊕ Um−1,

Jm−1 = pm−1Ro ⊕ pUm−2 ⊕ Um−1, (if k < m) or Jm−1 = Um−1, (if k ≥ m).

We note here that the set

{1, p, p2, ..., pk−1, ui, pui, uiuj, puiuj, ..., u1 · · ·um−1 (m = 1, ..., s)}

forms a “basis” for R over Ro/pRo
∼= GF (pr).

4. Structure of the p-subgroup (1 + J )

Throughout this section, we assume that R is a commutative completely primary
finite ring, |R| = pnr, |J | = p(n−1)r, R/J ∼= GF (pr), Jm = (0), J (m−1) 6= (0), and
charR = pk, where 1 ≤ k ≤ m ≤ n.

It is well know that the group of units of a commutative completely primary
finite ring R is GR

∼=< b > ×(1 + J ), where < b > is cyclic of order pr − 1 and
(1+J ) is a p− group of order p(n−1)r. In this paper, we investigate and determine
the structure of the p-subgroup 1+J and hence, the structure of GR. We do this
by first determining highest possible orders of elements in 1 + J .

4.1 Rings of characteristic p

Lemma 2. Let R be a ring defined in 3.1 with characteristic p and suppose Jm =
(0), Jm−1 6= (0), where m ≤ n. Let x ∈ J − J 2.
(i) If charR = p ≥ m, then the highest possible order of 1 + x in 1 + J is p.
(ii) If charR = p < m, then the highest possible order of 1+ x in 1+J is pl ≥ m,
for some least positive integer l > 1.

Proof. Since the binomial coefficient
(
p
k

)
≡ 0 (mod p) for every p, where k =

1, ..., p− 1, it follows that (1 + x)p = 1 + xp.
If p ≥ m, then xp = 0 and (1 + x)p ≡ 1 (mod p). This proves the first result.
Now, if p < m, then (1 + x)p = 1 + xp 6= 1 (mod p), and xp is a non-zero

element of J . Next, (1 + x)p(1 + x)p = 1 + xp
2
. Here, either xp

2
= 0 if p2 ≥ m,

in which case (1 + x)p
2
≡ 1 (mod p), or xp

2
∈ J is a non-zero element. By the

induction process, there exists a least positive integer l > 1 such that m < pl with
m > pl−1, and (1 + x)p

l

= 1 + xp
l

≡ 1 (mod p). �
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The case when charR = p ≥ m

Proposition 1. Let R be a commutative completely primary finite ring defined in
3.1, of order pnr and with characteristic p. Suppose that Jm = (0), Jm−1 6= (0)
where m ≤ n. If p ≥ m then

1 + J ∼= Zrp × · · · × Zrp
︸ ︷︷ ︸

n−1

,

and hence,
GR

∼= Zpr−1 × Zrp × · · · × Zrp
︸ ︷︷ ︸

n−1

.

Proof. Let ε1, ε2, ..., εr be elements of Ro with ε1 = 1 so that ε1, ε2, ..., εr
form a basis of Ro = GF (pr) over its prime subfield GF (p). First notice that, for
1+ εjwiki ∈ 1+

∑m−1
i=1 ⊕Ui, and for each j = 1, ..., r; (1+ εjwiki)

p = 1 and gp = 1
for all g ∈ 1 +

∑m−1
i=1 ⊕Ui, where p is a prime integer such that p =charR, and

ki = 1, 2, ..., Cs+m−2
m−1 .

For integers lj , mj , ..., nj ≤ p, we assert that the equation

r∏

j=1

s∏

ki=1

{
(1 + εjw1ki)

lj
}
×

r∏

j=1

s(s+1)
2∏

ki=s+1

{(1 + εjw2ki)
mj} ×

· · · ×
r∏

j=1

C
(s+m−2)
(m−1)
∏

ki=C
(s+m−3)
(m−2)

{(1 + εjwm−1ki)
nj} = 1,

will imply that lj = mj = ... = nj = p, for all j = 1, ..., r.
If we set

Fj =
{
(1 + εjw1ki)

l : l = 1, ..., p; ki = 1, ..., s
}
,

Gj = {(1 + εjw2ki)
m : m = 1, ..., p; ki = s+ 1, ..., s(s+ 1)/2} ,

...

Hj =
{
(1 + εjwm−1ki)

n : n = 1, ..., p; ki = Cs+m−3
m−2 , ..., Cs+m−2

m−1

}
,

for all j = 1, ..., r; we see that Fj, Gj, ..., Hj are all cyclic subgroups of 1 +
∑m−1

i=1 ⊕Ui and these are all of order p as indicated in their definition. Intersection
of any pair of these subgroups is trivial. The argument above will show that the
product of the

∑m−1
i=1

(
s+i−1
i

)
r subgroups Fj , Gj , ..., and Hj is direct. So, their

product will exhaust 1 +
∑m−1

i=1 ⊕Ui. �

Corollary 1. If some of the products in the generating sets for U2, ..., Um−1 are
zeros, and assume that |J | = p(n−1)r. Then

1 + J ∼= Zrp × · · · × Zrp
︸ ︷︷ ︸

n−1

.
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The case when charR = p < m

Recall that if charR = p < m, then the highest possible order of a = 1 + x, with
x ∈ J − J 2 is pl ≥ m, for some least positive integer l > 1 [Lemma 4.1]. We give
a general description of the structure of 1 + J . This can be proved in a similar
manner to Proposition 4.2 after noting that o(1 + x) = pl, l > 1 since p < m.

Proposition 2. Let R be a commutative completely primary finite ring defined in
3.1. Suppose that Jm = (0) and Jm−1 6= (0), where m ≤ n. If p < m then,

1 + J ∼= Zrpl × Z
r

pl1
× Zrpl2 × · · · × Zrplt ,

where l > 1, li ≥ 1 are positive integers such that l ≥ l1 ≥ l2 ≥ · · · ≥ lt and
l + l1 + l2 + · · ·+ lt = n− 1.

Proof. Similar to Proposition 4.2 with some modifications. �

Example 1. Suppose p = 3, m = 3 or m = 2 and n − 1 = 4, with r arbitrary.
Then highest possible order of an element in 1 + J is 3, since m ≤ p = 3. Now
|1 + J | = 34r and we have only one partition of 4 in this case in which 1 is the
largest number, namely 1 + 1 + 1 + 1. Therefore,

1 + J ∼= Zr3 × Zr3 × Zr3 × Zr3.

Example 2. Suppose p = 3, m = 6 and n − 1 = 10, with r arbitrary. Then
highest order of an element in 1 + J is 33, since m = 6 > p. Now |1 + J | = 310r

and partitions of 10 in this case in which 3 is the largest number are 3+ 3+ 3+1;
3 + 3 + 2 + 2; 3 + 3 + 2 + 1 + 1; 3 + 3 + 1 + 1 + 1 + 1; and so on and lastly
3 + 1 + 1 + 1 + 1 + 1 + 1 + 1. Therefore,

1 + J ∼=







Zr33 × Zr33 × Zr33 × Zr3;
Zr33 × Zr33 × Zr32 × Zr32 ;
. . . or
Zr33 × Zr3 × Zr3 × Zr3 × Zr3 × Zr3 × Zr3 × Zr3.

4.2 Rings with characteristic pk, k > 1

Remark 1. Let R be a commutative completely primary finite ring of order pnr

with Jacobson radical J . If Jm = (0), Jm−1 6= (0), and charR = pk (1 < k ≤
m ≤ n), and since py = 0 for every y ∈ Jm−1, it is easy to check that either
(i) p ∈ J and p(k−1) ∈ J (k−1) (k − 1 < m ≤ n);
(ii) p ∈ J i, i ≤ m− 1 and pk−1 ∈ J (k−i) ((k − i) < m); or
(iii) p ∈ J i, i ≤ m− 1 and pl < pk, for some positive integer l < k.

For example, if charR = p2 and J 3 = (0), then either p ∈ J or p ∈ J 2. On
the other hand, if charR = p3 and J 3 = (0), then p ∈ J , p2 ∈ J 2. However,
p /∈ J 2 since in this case, p2 ∈ J 4 = (0), implying that p2 ≡ 0 (mod p3), which
contradicts the definition of the characteristic of R.
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In this section, we consider rings satisfying case (i) only, i.e. rings of charac-
teristic pk in which p ∈ J and p(k−1) ∈ J (k−1) (k − 1 < m ≤ n), and we leave the
other cases for further work.

Let x ∈ J − J 2 and consider the highest possible order of 1 + x in 1 + J .
Suppose that charR = pk, where p is any prime number and k is a fixed positive

integer. Then

(1 + x)p
k

= 1 + pkx+
pk(pk − 1)

2
x2 +

pk(pk − 1)(pk − 2)

3!
x3 + · · · + xp

k

= 1 +

p(k−1)
∑

i=1

(
pk

pi

)

xpi + xp
k

since
(
pk

pi

)
≡ 0 (mod pk), for every non-multiple of p.

If p ≥ m then 1 +
∑p(k−1)

i=1

(
pk

pi

)
xpi + xp

k

≡ 1 (mod pk), and thus, o(1 + x) = pk.

(If m = 2, then o(1 + x) = 2, since 2x = 0 in this case.)
If, however, p < m but pk ≥ m, then (1 + x)p

k

≇ 1(mod pk). But (1 +

x)p
k

· · · (1 + x)p
k

= (1 + x)p
(k+1)

≡ 1(mod pk) since
(
p(k+1)

i

)
≡ 0 (mod pk), for all

i = 1, ..., p(k+1) − 1. Therefore, if pk ≥ m, then 1 + xp
(k+1)

≡ 1(mod pk) so that
o(1 + x) = p(k+1). (If m = 2k or 2(k−1)x = 0, then o(1 + x) = 2k, and if m < 2k,
then o(1 + x) = 2(k+1) as for any prime p.)

Now, if pk < m, then xp
k

6= 0, and we proceed by induction on powers of 1+x,
i.e. (1+ x)p

k

· · · (1+ x)p
k

= 1+ xp
(k+l)

(l times) and this will be ≡ 1 (mod pk)) for
some least positive integer l such that p(k+l) ≥ m. (Note that any power ps with
s < k or a non-multiple of pk will not work since the characteristic of R is pk.)

Lemma 3. Let R be a commutative completely primary finite ring defined in
3.2 of order pnr with Jacobson radical J . Suppose Jm = (0), Jm−1 6= (0) and
charR = pk (1 < k ≤ m ≤ n),. Let x ∈ J − J 2.

If p ≥ m, then highest possible order of 1 + x is pk;
if p < m but pk ≥ m, then highest possible order of 1 + x is p(k+1); and
if charR = pk < m, then highest possible order of 1+x is p(k+l), for some least

positive integer l such that p(k+l) ≥ m.

Note that in the above Lemma, 2 cannot be greater than m, so in that case,
when m = 2, then o(1 + x) = 2.
Proof. Follows from the above discussion. �

The case when charR = pk, with p ≥ m and pk ≥ m > p

Following the variations in the discussion before Lemma 4.6, from now on, we
consider the case when the prime number p 6= 2, and leave the case when p = 2 for
future work. However, in the following results, we do not suppose that pui = 0 for
i = 1, ..., s, since we are only giving a general representation of the group 1 + J .
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Proposition 3. Let R be a commutative completely primary finite ring defined in
3.2 with characteristic pk. Suppose that Jm = (0), Jm−1 6= (0) with 1 < k ≤ m ≤
n. If p ≥ m then,

1 + J ∼= Zrpk × Zrpk1 × · · · × Zrpkt ,

where k > 1 and ki ≥ 1 are positive integers such that k ≥ k1 ≥ · · · ≥ kt and
k + k1 + · · ·+ kt = n− 1.

Proof. Let p ∈ J − J 2 so that p2 ∈ J 2 and p(k−) ∈ J (k−1). Assume that
x ∈ J − J 2 and let a = 1 + x be an element of 1 + J with the highest possible
order. Then o(a) = pk if p ≥ m or o(a) = p(k+1) if pk ≥ m > p (see Lemma 4.6),
for any prime number p 6= 2.

Notice that 1 +J = (1 + pRo)× (1 + U1 ⊕U2 ⊕ · · · ⊕ Um−1) if uiuj and any
product from Ui has a zero coefficient in pRo.

In fact, in this case, the structure of 1 + pRo is well known; it is the direct
product of r cyclic groups each of order p(k−1). All that is needed is to determine
the structure of 1 + U1 ⊕ · · · ⊕ Um−1.

However, we opt to determine the structure of 1 + J for the case where

uiuj ∈ p2Ro ⊕ pU1 ⊕ U2 ⊕ · · · ⊕ Um−1.

In this case o(1 + p) = p(k−1) (see above), and it is not the highest possible.

Let ε1, ε2, ..., εr be elements of Ro with ε1 = 1 so that ε1, ε2, ..., εr ∈
Ro/pRo

∼= GF (pr) form a basis of GF (pr) over its prime subfield GF (p).

Suppose that p ≥ m. First notice that, for 1 + εjp ∈ 1 + pRo and for each

j = 1, ..., r; (1+εjp)
p(k−1)

= 1; for 1+εjwiki ∈ 1+Ui (i = 1, . . . , k), and for each

j = 1, ..., r; (1+εjwiki)
p(k−i+1)

= 1; for 1+εjwiki ∈ 1+Ui (i = k+1, . . . , m−1), and

for each j = 1, ..., r; (1+εjwiki)
p = 1; and gp

k

= 1 for all g ∈ 1+pRo⊕
∑m−1

i=1 ⊕Ui,
where p is a prime integer such that pk =charR, and ki = 1, 2, ..., Cs+m−2

m−1 .

For integers lj ≤ p(k−1), mj ≤ pk, nj ≤ p(k−1), ... kj ≤ p we assert that

r∏

j=1

(1 + εjp)
lj

r∏

j=1

s∏

ki=1

{(1 + εjw1ki)
mj} ×

r∏

j=1

s(s+1)
2∏

ki=s+1

{(1 + εjw2ki)
nj} ×

· · · ×
r∏

j=1

C
(s+m−2)
(m−1)∏

ki=C
(s+m−3)
(m−2)

{
(1 + εjwm−1ki)

kj
}
= 1,

will imply that lj = pk−1, mj = pk, nj = p(k−1), ..., kj = p for all j = 1, ..., r.
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If we set

Ej =
{
(1 + εjp)

l : l = 1, ..., p(k−1)
}
,

Fj =
{
(1 + εjw1ki)

m : m = 1, ..., pk; ki = 1, ..., s
}
,

Gj =

{

(1 + εjw2ki)
n : n = 1, ..., p(k−1); ki = s+ 1, ...,

s(s+ 1)

2

}

,

...

Hj =
{
(1 + εjwm−1ki)

k : k = 1, ..., p; ki = Cs+m−3
m−2 , ..., Cs+m−2

m−1

}
,

for all j = 1, ..., r; we see that Ej , Fj , Gj , ..., Hj are all cyclic subgroups of
1+pRo⊕

∑m−1
i=1 ⊕Ui and these are all of the orders as indicated in their definition.

Intersection of any pair of these subgroups is trivial. The argument above will
show that the product of the subgroups Ej , Fj , Gj, ..., and Hj is direct. So, their
product will exhaust 1 + pRo ⊕

∑m−1
i=1 ⊕Ui. �

Proposition 4. Let R be a commutative completely primary finite ring defined in
3.2 with characteristic pk. Suppose that Jm = (0), Jm−1 6= (0) with 1 < k ≤ m ≤
n. If pk ≥ m > p then,

1 + J ∼= Zrp(k+1) × Zrpk1 × · · · × Zrpkt ,

where k > 1 and ki ≥ 1 are positive integers such that (k + 1) ≥ k1 ≥ · · · ≥ kt
and (k + 1) + k1 + · · ·+ kt = n− 1.

Proof. This can be proved in a similar manner as 4.7 by first noting that for
1+εjwiki ∈ 1+Ui (i = 1, . . . , k−1), and for each j = 1, ..., r; (1+εjwiki)

p(k−i)
= 1.

�

Example 3. Suppose charR = pk = 32, p ≥ m = 3 and n − 1 = 6, with r
arbitrary. Then highest order of an element in 1 + J is 32, since m = 3. Now
|1 + J | = 36r and partitions of 6 in this case in which 2 is the largest number are
2 + 2 + 2; 2 + 2 + 1 + 1; and 2 + 1 + 1 + 1 + 1. Therefore,

1 + J ∼=







Zr32 × Zr32 × Zr32 ;
Zr32 × Zr32 × Zr3 × Zr3;
. . . or
Zr32 × Zr3 × Zr3 × Zr3 × Zr3.

Example 4. Suppose charR = pk = 52, m = 6 > p and n − 1 = 6, with r
arbitrary. Then highest order of an element in 1 + J is 53, since m = 6. Now
|1 + J | = 56r and partitions of 6 in this case with 3 the largest number are 3 + 3;
3 + 2 + 1; and 3 + 1 + 1. Therefore,

1 + J ∼=







Zr53 × Zr53 ;
Zr53 × Zr52 × Zr5; or
Zr53 × Zr5 × Zr5 × Zr5.
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The case when charR = pk and pk < m

Proposition 5. Let R be a commutative completely primary finite ring defined in
3.2 and of characteristic pk. Suppose that Jm = (0), Jm−1 6= (0) with 1 < k ≤ m.
If pk < m then,

1 + J ∼= Zrp(k+l) × Zrpk1 × · · · × Zrpkt ,

where k > 1 and ki ≥ 1 are positive integers such that (k + l) ≥ k1 ≥ · · · ≥ kt
and (k + l) + k1 + · · ·+ kt = n− 1.

Proof. This can be proved in a similar manner to Proposition 4.7 after noticing
that if x ∈ J −J 2 and a = 1+ x is an element of 1 +J with the highest possible
order, then o(a) = p(k+l) since pk < m (see Lemma 4.6), for any prime number
p 6= 2. �

Example 5. Suppose charR = pk = 32, m = 10 > pk and n − 1 = 11, with r
arbitrary. The order of 1+J is 311r. Then highest order of an element in 1+J is
33, since 3x9 = 0 and x9 ∈ J 9. If, however m = 11, then 3x9 6= 0, in which case,
the order of (1 + x) is 39 so that the least positive integer l = 7. The partitions of
11 in the first part with 3 being the largest integer are 3+3+3+2, 3+3+3+1+1,
3 + 3 + 2 + 2 + 1, and so on and lastly 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1; and in
the second part with 9 being the largest integer are 9 + 2 and 9 + 1 + 1. These
correspond with the isomorphism classes of the p-group 1 + J .

The case when charR = pk, with k = m

Proposition 6. Let R be a commutative completely primary finite ring of order
pnr with characteristic pk defined in 3.2, and suppose that Jm = (0), Jm−1 6= (0)
with 1 < k ≤ m ≤ n. If pk = pm and m > 2, then

1 + J ∼= Zrp(k−1) × Zrpk1 × · · · × Zrpkt ,

where k > 1 and ki ≥ 1 are positive integers such that (k − 1) ≥ k1 ≥ · · · ≥ kt
and (k − 1) + k1 + · · ·+ kt = n− 1.

Proof. This can be proved in a similar manner to Proposition 4.7 after noticing
that if x ∈ J −J 2 and a = 1+ x is an element of 1 +J with the highest possible
order, then o(a) = p(k−1) since pk = pm (see Lemma 4.6), for any prime number
p 6= 2 and m > 2, and xp(k−1) = 0 being an element in Jm = (0). �

Remark 2. It can be seen from the above proposition that the structure of the unit
group 1+pRo of any Galois ring Ro = GR(pkr, pk) coincides with that determined
by Raghavendran in [13].

Example 6. Suppose charR = pk = 33, m = k = 3 and n − 1 = 4, with r
arbitrary. The order of 1 + J is 34r. Then possible highest order of an element
in 1 + J is 32, since 32x = 0 and 32 ∈ J 2. The partitions of 4 with 2 the largest
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integer in this case are 2+2 and 2+1+1. These correspond with the isomorphism
classes of the p-group 1 + J , i.e.

1 + J ∼=

{
Zr32 × Zr32 ; or
Zr32 × Zr3 × Zr3.

Remark 3. The case where 1 + J = (1 + pRo) × (1 + U1 ⊕ U2 ⊕ · · · ⊕ Um−1)
with uiuj or any product from Ui having a zero coefficient in pRo can be deduced
from the above propositions.

It remains to determine the structure of 1 + J in the cases when
(i) charR = 2k and 2 ∈ J ;
(ii) charR = pk, k > 1, p ∈ J i, i ≤ m− 1 and pk−1 ∈ J (k−i) (k − i < m); and
(iii) charR = pk, k > 1, p ∈ J i, i ≤ m − 1 and pl ≤ pk, for some positive

integer l < k.
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Abstract. HIV is dramatically changing the demographics of diseases
and the resource needs of the entire health care service of South Africa.
Several malignancies have an increased risk of developing in Persons
Living with HIV (PLWH) and one typical example is HIV related Lym-
phomas (HRLs). The dynamics and trends of HRLs, thus need to be
understood and determined. To track the patterns in the population,
there is need to develop mathematical models that aid in making pro-
jections of HRLs, on the basis of being informed by the current data
being collected. In this paper, a dynamic compartmental model de-
tailing the co-infection dynamics of HRLs and HIV is formulated. The
model is fitted to data obtained from the Tygerberg Lymphoma Study
Group (TLSG) using the least squared method. Projections are made
to depict the likely trends of HRL cases beyond 2010. For specific pa-
rameter values the model is found to fit very well to the data that is
available. Projections show a continued increase in Lymphoma cases
till the year 2020. Infact, the projections show that the number of cases
would have almost doubled by the year 2020. Scatter plots are obtained
that show the relationships between specific parameters and an out-
come variable A(t), representing individuals with AIDS at any time t.
The results show that control of HIV-HRLs co-infection is important.
We have demonstrated that a very simple model of five compartments
can be used as a tool to reproduce the trends of HRLs in the West-
ern Cape province of South Africa. The model helps to improve our
understanding of how HIV is transforming the incidence, pattern, prog-
nosis and outcomes of Lymphoproliferative Disorders in the Tygerberg
catchments area of the Western Province of South Africa. This has
health care implications on the planning and allocation of resources.

Keywords: HIV-related lymphomas, model simulations, sensitivity analysis

1. Introduction

The number of HIV infected individuals in South Africa is higher than in any other
country [1]. In 2011, approximately 5.7 million people in South Africa were living
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with HIV. The estimated prevalence rate is currently 10.6% and the number of new
infections for 2011 was estimated at 380 500 individuals [2]. The impact of this
epidemic can be seen in the dramatic change in South Africa’s mortality rates [3].
Almost half of all the deaths in the country are due to AIDS [4]. The development
of lymphomas in HIV infected individuals has been steadily increasing since the
early phases of the HIV/AIDS epidemic [5].

HIV-associated lymphomas are predominantly aggressive B-cell lymphomas [2].
HIV-associated systemic non-Hodgkin’s lymphomas (HIV-NHLs) include diffuse
large B-cell lymphoma (DLBCL), HIV-associated primary central nervous system
lymphoma (HIV-PCNSL), Burkitt’s lymphoma (BL), primary effusion lymphoma
(PEL) and plasmablastic lymphoma of the oral cavity [3]. A lymphoma is a cancer
of the lymphatic cells of the immune system. The lymphoma originates in a single
lymphocyte that has undergone mutations that present on it a growth and survival
advantage in comparison to its normal cellular counterparts and it presents as an
enlarged lymph node (a tumour). It is a cancer that affects the white blood cells
of the lymph system, which is part of the body’s immune system.

HIV-infected individuals are at a much higher risk of developing lymphomas,
especially non-Hodgkin’s lymphomas (NHLs) [6, 7, 11]. The development of HIV-
related NHLs is related to old age, a low CD4 cell count and the lack of treatment
with anti-retroviral therapy (ART) [8]. The risk of developing lymphomas also
increases as the immune system weakens. The challenge is that HIV-infected
individuals, who are receiving treatment, still have a high risk of developing lym-
phomas.

There are many mathematical models that have been developed and analysed
to model the dynamics of HIV infection, see for instance, [9, 10, 15, 16, 17, 18,
19, 20, 21]. These models differ in terms of the number of variables that represent
the compartments and the parameters used. Data is not always available for the
models to be fitted, therefore only a few of these models have been fitted to data,
see for instance [9, 18, 19, 20, 21]. It is important to note that there has been
significant research on HRLs that does not use mathematical models. Abayomi
et al. [11], estimated the impact of HIV and the South African ART roll-out
program on the number of lymphoma cases. They found a dramatic increase in
the number of lymphomas cases due to an increase in HIV-related lymphomas.
The introduction of ART, did however not appear to have a big impact on the
increase in HIV-related lymphoma cases. Their conclusion was that due to the late
commencement of ART, its insufficient coverage and ineffective viral suppression
of ART, the trend will continue and HIV-related lymphoma cases will continue to
increase. One can then ask; by how much will the increase be? Can projections
be made based on the available data? These questions can only be answered by
the use of mathematical models. The dynamics and trends of HRLs over time can
be understood and determined.

Little research has been done on mathematical models for HIV related lym-
phomas in general. We present a five state compartmental model that is path-
breaking in three regards. Firstly, to the best our knowledge, this is the first
attempt to model this newly developing phenomenon using compartmental mod-
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els. Secondly, mathematical modelling tools are used to improve the understanding
of how HIV infection is transforming the incidence and patterns of HRLs in the
Western Cape province of South Africa. Thirdly, the model tracks the HRLs pat-
terns in the population. The need to develop mathematical models that aid in
making projections of HRLs on the basis of being informed by the current data
that is being collected is thus addressed here. This model lays a foundation in
shaping the policies that relate to the future trends and the interventions that
need to be instituted.

The next section describes the model structure. In section 3, the simulations
and least squares curve fitting method are described. The model parameters are
also estimated and the sensitivity analysis of parameters presented. Section 4, the
simulation results are presented and in section 5 the paper is concluded.

2. The model structure

We assume that we have a closed community. This means that the population
stays constant over the modelling period. This assumption holds for populations
in the communities from which the data was obtained, see [22, 23]. The population
is divided into the following classes: those who are susceptible to infection of HIV
and lymphomas, S(t), those infected with HIV only Ih (t), those with lymphomas
only Il (t), those co-infected with HIV and lymphomas Ihl (t) and those with AIDS
A(t). The total population at any time t is thus given by

(t) = S (t) + Ih (t) + Il(t) + Ihl(t) + A(t).

Susceptible individuals increase due to a constant recruitment rate Λ. It is assumed
that all individuals that enter the population are susceptible. For there to be an
infection, there must be interaction between individuals in infected compartments
and those that are susceptible. We assume that individuals in the infectious com-
partments infect the susceptibles at different rates. For instance, individuals with
AIDS in compartment A who have a higher viral load, are assumed to be more
infections than the individuals in Ih and Ihl. We thus assume that η is greater
than 1. We assume that individuals in Ih and Ihl have the same infectiousness.
Of particular importance is the inclusion of the exponential function to model
decreased infectivity due to behaviour change that is driven by disease mortality.
The parameter q measures how individuals respond to the increase or decrease of
mortality due to HIV/AIDS. For instance, in Zimbabwe, fear of AIDS mortality
may have influenced behaviour thus leading to a decline in HIV prevalence [18, 24].

The force of infection of HIV is

λ = β3e
−qδA

(
Ih + Ihl + ηA

N

)

.

In the model, individuals move between compartments as their infection status
change. Individuals die at a fixed mortality rate µ, the natural death rate. Those
with AIDS will die at an increased rate due to the disease. We thus let the disease
induced mortality to be δ. We fully describe the parameters in the table below.
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Table 2.1: Definitions of the parameters used in the model.

Parameter Description
Λ Recruitment rate
β1 Rate at which susceptible individuals develop lymphoma
β2 Rate at which HIV-infected individuals develop lymphoma
β3 Effective contact rate of HIV
γ1 Rate of recovery from lymphoma in HIV negative individ-

uals
γ2 Rate of recovery from lymphoma in HIV positive individ-

uals
ρ1 Rate at which HIV positive lymphoma individuals develop

AIDS
ρ2 Rate at which HIV positive individuals develop AIDS
δ Disease related death rate

q
Natural death rate
response to the increased or decreased mortality due to
HIV/AIDS

Movement between compartments is represented by the transfer diagram below.
Combining the assumptions and transfer diagram, the equations of the model

are given by

dS

dt
= Λ− (β1 + λ+ µ)S + γ1Il, (2.1)

dIh
dt

= λS − (β2 + ρ2 + µ) Ih + γ2Ihl, (2.2)

dIl
dt

= β1S − (γ1 + λ+ µ) Il, (2.3)

dIhl
dt

= λIl − (γ2 + ρ1 + µ) Ihl + β2Ih, (2.4)

dA

dt
= ρ1Ihl + ρ2Ih − (µ+ δ)A, (2.5)

with initial conditions
S (0) = S0, S (0) = S0, Ih (0) = Ih0, Il (0) = Il0, Ihl (0) = Ilh0, A (0) = A0.

3. Simulations

3.1 The lease squares method

The most common, useful and powerful way to compare data to a theoretical model
is to search for a theoretical curve that matches the data as closely as possible.
The task here was to find the “best fit” line that goes through the data points.
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Figure 2.1: Schematic diagram of the model’s five compartments and the associated
flows.

To evaluate how the “best fit” line agreed with the data, it was important to
consider uncertainties i.e. the level of discrepancies between a point and the line.
This was done by measuring the vertical distance between the points and the line.
We define the function X to be this sum of squares of discrepancies, as we tried
different lines, and calculated X for each line. The “best line” was the one with
the smallest value of X, i.e. the one with the “least squares.” The value of X was
obtained through an algorithm that was set in such a way that it always gave the
best fit. The algorithm was also set to give the parameter values that produced
the “best fit” line.

3.2 Parameter estimation

We now consider the estimation of parameters values. The dynamic model’s func-
tionality is subject to a correct estimation of parameter values corresponding to
the arrows in Fig 1. Data on progression rates is inevitably limited since no related
research has been done for the Western Cape province. We shall therefore make
some assumptions to simplify the estimation process. In some cases we quote data
from other sources. Because of the difficulties of estimating parameters, the de-
scriptions of our findings are made in a much broader sense. For our numerical
simulations, we shall assume that

µN = Λ− δA



42 A. De la Harpe & F. Nyabadza

ensuring that our population is always constant. This is because over the mod-
elling time, the population change is small. We begin by estimating the model
parameters. The average life expectancy in South Africa is 50 years, thus we con-
sider µ = 0.02 per year. The death rate due to AIDS is assumed to be 0.3, see
also [23].

The size of the population considered in this model is estimated to be 50 000.
is the recruitment rate, and it is equal to (µ+ δ)N .

Λ = (µ+ δ)N = (0.02 + 0.3) 50000 = 16000.

Table 3.1: The number of lymphoma cases per year for HIV positive (HIV+) and
HIV negative (HIV-) individuals, data obtained from [16].

Year 2002 2003 2004 2005 2006 2007 2008 2009
HIV+ 2 15 17 16 35 43 43 48
HIV- 33 106 95 62 147 133 150 131
Total 35 111 112 78 182 176 193 179

The data can best be represented figuratively as in Figure 2.

Figure 3.1: Trends of lymphoma incidence by HIV status, 2002–2009.
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We fit our model to the total lymphoma cases. The data helps us to set the
initial conditions as we endeavor to have the initial values to the model equal to 35
individuals. This value is used to set the initial conditions. The initial conditions
are set to

(S (0) , Ih (0) , Il (0) , Ihl (0) , A(0)) = (47275, 7500, 15, 10, 2000).

The parameter values are set within the following bounds depicted in Table
3.2.

Table 3.2: Upper and lower bounds of the parameters.

Parameter Bounds
β1 (0, 1)
β2 (0.0001, 1)
β3 (0, 0.5)
γ1 (0.25, 0.62)
γ2 (0.008, 0.03)
ρ1 (0.04, 0.2)
ρ2 (0, 0.9)
δ (0.01, 0.5)
q (1, 3)

3.3 Sensitivity Analysis

To establish what factors affect model outputs, it is important to do a sensitivity
analysis as a way to assess the adequacy of a model. In the absence of detailed
qualitative mathematical analysis we used Latin Hypercube Sampling and Partial
Rank Correlation Coefficients (PRCCs) with 1000 simulations per run. Since the
relationship between the model parameters and output variables is not known a
priori, using PRCCs is ideal to determine how the parameters affect the model
outputs. PRCCs illustrate the degree of the effect that each parameter has on the
outcome. Thus PRCCs can be informative on what parameters to target if we want
to achieve specific goals (e.g. control or regulatory mechanisms). For example, the
most significant set of parameters can be used to determine how to efficiently
reduce the infection rate. In other words, our predictions will be strengthened if
we can reduce uncertainty and get better estimates on specific parameters of the
model.

Latin Hypercube Sampling is a statistical sampling method that allows for an
efficient analysis of parameter variations across simultaneous uncertainty ranges in
each parameter [12]. To investigate the relationship between our parameters and
the variables, we chose the output results for A(t) (individuals with AIDS). We
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produce scatter plots depicted if Figure 3.2. The figure shows the scatter plots of
the 1000 output values at year 20 plotted versus the input parameter.

(a)
−200 −150 −100 −50 0 50 100

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [−0.1788 , 1.2474e−008].
Time point = 20.

δ

A

 

 
δ

(b)
−200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [0.40623 , 5.0858e−041].
Time point = 20.

η

A

 

 
η

(c)
−600 −400 −200 0 200 400 600

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [−0.99169 , 0].
Time = 20.

µ

A

 

 
µ

(d)
−200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [−0.29277 , 3.2449e−021].
Time point = 20.

ρ
2

A

 

 
ρ

2

(e)
−200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [−0.54407 , 3.9929e−078].
Time point =20.

ρ
1

A

 

 
ρ

1

(f)
−250 −200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [0.71201 , 1.9888e−155].
Time point = 20.

β
3

A

 

 
β

3

(g)
−200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [0.089816 , 0.004477].
Time point = 20.

β
2

A

 

 
β

2

(h)
−200 −150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [0.11401 , 0.00030314].
Time point = 20.

β
1

A

 

 
β

1

(i)
−150 −100 −50 0 50 100 150

−600

−400

−200

0

200

400

600

[PRCC , p−value] = [0.73933 , 1.2882e−173].
Time point = 20.

Λ

A

 

 
Λ

Figure 3.2: PRCC scatter plots of parameters δ, η, µ, ρ2, ρ1, β3,β2,β1 and Λ (calculated
at year 20, all the parameters are varied at the same time). The abscissa represents the
residuals of the linear regression between the rank-transformed values of the parameter
under investigation versus the rank-transformed values of all the other parameters. The
ordinate represents the residuals of the linear regression between the rank-transformed
values of the output versus the rank-transformed values of all the parameter under
investigation The title of each plot represents the PRCC value with the corresponding
p-value.

Figure 3.2, illustrates the PRCCs using A(t) as an output variable. The param-
eters with the greatest effect on the outcome are the natural mortality, recruitment
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rate and the HIV infection rate. Interestingly recover rates from HRLs are not
significant to the outcome variable A(t). This is reasonable since progression of
HIV is not linked to the Lymphomas in the model. It is also interesting to note
that ρ1 is more significant than ρ2. Progression of individuals dually infected with
HIV and Lymphomas negatively affects A(t) more than that of those with HIV
infection only. This means control of HIV-HRLs co-infection is important.
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Figure 3.3: PRCC results with sample size 1000. The PRCCs that are clearly
significant are η, µ, ρ2, ρ1, β3 and Λ.

4. Results

The model is simulated using Matlab. We specifically use the least squares curve
fitting algorithm (LSCFA) to fit the model to the data. The unknown parameters
are defined in acceptable ranges, mostly estimated due to the unavailability of
data. A set of parameter values are obtained, within the range as set out in Table
3., to produce the best fit. The best fit to the model is shown in Figure 4.1.

We hypothetically project the development of HRLs over 18 years. Such a
projection is less likely to be accurate in reality, but such information is vital
for public health planning and institution of interventions. Figure 4.2 shows the
projected change in the occurrence of lymphoma cases in both HIV positive and
HIV negative patients.
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Figure 4.1: shows the model fit to the data. The following parameters were esti-
mated: β1 = 0.0011; β2 = 0.004; β3 = 0.1; γ1 = 0.718; γ2 = 0.4245; ρ1 = 0.8163;
ρ2 = 0.0159; δ = 0.03; η = 1.5; µ = 0.02; q = 50 and Λ = 16000.

5. Conclusion

HIV is dramatically changing the demographics of disease and the resource needs
of the entire health care service of South Africa. Several malignancies have an
increased risk of developing in Persons Living with HIV (PLWH), such as the
HRLs. PLWH have between 60 and 200 times greater risk when compared to the
uninfected population of presenting with one of these serious Lympho-proliferative
disorders [13, 14].

In this research work, a model was developed to model the dynamics of HIV-
related lymphomas. The research is a component of the Tygerberg Lymphoma
Study Group, that looks at using expanded laboratory profiling in conjunction
with clinical, imaging and demographic methodologies to improve the understand-
ing of how HIV is transforming the incidence, pattern, prognosis and outcomes of
Lymphoproliferative Disorders in the Tygerberg catchments area of the Western
Province of South Africa. The model looks at the co-infection of HIV and Lym-
phomas. Co-infections present immense challenges in disease control. This has
been the case with co-infections of HIV and tuberculosis, HIV and malaria, HIV
and Hepatitis B virus to mention a few.

We have demonstrated that a very simple model of five compartments can be
used a tool to reproduce the trends of HRLs in the Western Cape province of
South Africa. Like any modelling exercise, this work presented here is not without
shortcomings. The data set we used is small and imperfect, and this can result
in poor predictions with the fitting of the models that are deterministic. The epi-
demiology of HIV-associated lymphomas has changed since antiretroviral therapy
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Figure 4.2: shows the total number of lymphoma cases over a period of 18 years
till 2020. The parameter values are as given in Figure 4.1.

became available in clinical practice. The treatment of HIV infection, which has
evolved rapidly in recent years, has benefited the treatment of lymphomas in HIV
infected individuals. It is thus important to include treatment of HIV in such the
model and this forms our current research focus. This will help in determining the
impact of ART on the prevalence of lymphomas.

Acknowledgements

The authors would like to thank the Department of Mathematical Sciences at the
University of Stellenbosch for its support in the production of this manuscript.



48 A. De la Harpe & F. Nyabadza

Bibliography

[1] UNAIDS, UNAIDS report on the global AIDS epidemic, 2010.

[2] L.D. Kaplan, HIV-associated lymphoma, Best Practice & Research Clinical
Haematology, 25 (2012), 101-117.

[3] M. Karunanayake and A. Carol, HIV-associated lymphoma, Proceedings (Bay-
lor University Medical Center), 22 (2009), 74-76.

[4] P.J. Lebohla, Mid-year Population Estimates, Statistics South Africa, 2011.

[5] T.M. Rehel, T.B. Hallett, O. Shisana, V.P. Wyk, K. Zuma, H. Carrara, S.
Jooste, A decline in new HIV infections in South Africa: Estimating HIV
incidence from three National HIV Surveys in 2002, 2005 and 2008, PLoS
ONE 5(6) (2010), e11094. doi:10.1371/journal.pone.0011094

[6] M. Mohamed, HIV-associated malignancies have become increasingly impor-
tant with the spread of HIV infection, CME, 26 (2007), 70-74.

[7] U. Tirelli, M. Spina, G. Gaidano, E. Vaccher, S. Franceschi, A. Carbone,
Epidemiological, biological and clinical features of HIV-related lymphomas in
the era of highly active antiretroviral therapy, AIDS, 14 (2000), 1675-1688.

[8] C. Hoffmann, E. Wolf, G. Fatkenheuer, T. Buhk, A. Stoehr, A. Plettenberg,
H. Stellbrink, H. Jaeger, U. Siebert, H. Horst, Response to highly active
antiretroviral therapy strongly predicts outcome in patients with AIDS-related
lymphoma, AIDS, 17 (2003), 1524-1529.

[9] F. Nyabadza, Z. Mukandavire, S.D. Hove-Musekwa, Modelling the HIV/AIDS
epidemic trends in South Africa: Insights from a simple mathematical model.
Nonlinear analysis: Real World Applications, 12 (2011), 2091-2104.

[10] Z. Mukandavire, K. Bowa, W. Garira, Modelling circumcision and condom
use as HIV/AIDS preventative control strategies, Mathematical and Computer
Modeling, 46 (2007), 1353-1372.

[11] E.A. Abayomi, A. Somers, R. Grewal, G. Sissolak, F. Bassa, D. Maartens,
P. Jacobs, C. Stefan, L.W. Ayers, Impact of the HIV epidemic and Anti-
retroviral treatment policy on lymphoma incidence and subtypes seen in the
Western Cape of South Africa, 2002-2009: Preliminary findings of the Tyger-
berg Lymphoma Study Group, Transfusion and Apheresis Science, 2011, 44
(2011), 161-166.

[12] S.M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex
models of disease transmission: an HIV model, as an example, International
Statistics Review, 2 (1994), 229-243.



HIV-Related Lymphomas in the Western Cape 49

[13] C. Palmieri et al., AIDS related non Hodgkin’s Lymphoma in the first decade
of highly active antiretroviral therapy, QJMed, 99 (2006), 811-826.

[14] G. Sissolak, A. Abayomi, P. Jacobs, AIDS defining lymphomas in the era of
highly active antiretroviral therapy (HAART): An African perspective, Jour-
nal of Transfusion and Apheresis Science, 37 (2007), 63-70.

[15] J.Y.T. Mugisha, F. Baryarama, L.S. Luboobi, Modelling HIV/AIDS with
complacency in a population with declining prevalence, Computational Math-
ematical Methods in Medicine, 7 (2006), 27-35.

[16] F. Nyabadza, On the complexity of modelling HIV/AIDS in Southern Africa.
Mathematical Modelling and Analysis, 13 (2008), 539-552.

[17] A. Tripathi, R. Naresh, D. Sharma, Modelling the effect of screening of un-
aware infectives on the spread of HIV infection, Applied Mathematical Com-
putation, 184 (2007), 1053-1068.

[18] T.M. Hallet, S. Gregson, O. Mugurungi, E. Gonese, G.P. Garnett, Assessing
evidence for behavior change affecting the course of HIV epidemics: A new
mathematical modelling approach and application to data from Zimbabwe,
Epidemics, 1 (2009), 108-117.

[19] T.M. Rehle, O. Shisana, Epidemiological and demographic HIV/AIDS pro-
jections: South Africa. Africa Journal of AIDS Research, 2 (2003), 1-8.

[20] L.F. Johnson, R.E. Dorrington, Modelling the demographic impact of
HIV/AIDS in South Africa and the likely impact of interventions, Demo-
graphic Research, 14 (2006), 541-574.
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Abstract. The problem of describing the normal form of a system of
differential equations at equilibrium with nilpotent linear part is solv-
able once the ring of invariants associated with the system is known.
Our concern in this paper is to describe ring of invariants of differ-
ential systems with nilpotent linear part made up of n 3 × 3 Jordan
blocks which is best described by giving the Stanley decomposition of
the ring. An algorithm based on the notion of transvectants from clas-
sical invariant theory is used to determine the Stanley decomposition
for the ring of invariants for the coupled systems when the Stanley de-
compositions of the Jordan blocks of the linear part are known at each
stage.

Keywords: invariants, box product, transvectant, Stanley decomposition, normal
form.

1. Introduction

In the study of the qualitative properties of a nonlinear differential equation,
ẋ = Ax + higher order terms near an equilibrium point, one of the most pow-
erful techniques available is to simplify A using nonlinear changes of coordinates
which leave the origin fixed. The simplified vector field is called the normal form
of A. The theory of normal forms is concerned with finding the simplest form for
the system by removing as many terms as possible with the remaining ones having
dynamical significance.

There are well-known procedures for putting a system of differential equations

ẋ = Ax+ v(x) (1.1)

(where v is a formal power series with quadratic terms) into normal form with
respect to its linear part, A. The normal form theory divides into two parts, the
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case when A = S is diagonalizable and the case when A = N is nilpotent, that is
nilpotent systems. The general case can be solved by combining the results of the
two special cases. The goal of this paper is to describe the ring of invariants of a
differential system (1.1) when its linear part A is a nilpotent matrix N , where

N =






N3

. . .

N3




 and N3 =





0 1 0
0 0 1
0 0 0



 .

Our main result is a procedure that solves the description problem where N ,
the nilpotent matrix is in Jordan form, with coupled n Jordan blocks, provided
that the description problem is already solved for each Jordan block of N taken
separately. Our method is based on adding one block at a time.

The problem of finding Stanley decomposition for the equivariants of N22,...,2

was first solved by Cushman et al. [2] using a method called “covariants of special
equivariants”. Their method begins by creating a scalar problem that is larger
than the vector problem. Their procedures derived from classical invariant theory.
Thus it was necessary to repeat calculations of classical theory at the levels of
equivariants. Malonza [5] solved the same problem by “Groebner” basis methods
found in Adams et al. [1] rather than borrowing from classical results.

Murdock and Sanders [8] developed an algorithm based on the notion of transvec-
tants to determine the normal form of a vector field with a nilpotent linear part,
when the normal form is known for each Jordan block of the linear taken sepa-
rately. The algorithm is based on the notion of transvectant, from classical invari-
ant theory. Malonza [5] using the algorithm in [7] for transvectants computed the
Stanley decomposition for Takens-Bogdanov systems and his results agreed with
his previous work in [5].

Namachchivaya et al [8] studied a generalized Hopf bifurcation with non-
semisimple 1:1 Resonance. The normal form for such a system contains only
terms that belong to both the semisimple part of linear part and the normal form
of the nilpotent, which is a couple Takens-Bogdanov system with linear part

A =







iω 1
iω

iω 1
iω






.

This example illustrates the physical significance of the study of normal forms for
systems with nilpotent linear part.

Our results are mainly based on the work found in [7], that is, the applica-
tion of tranvectant’s method (also known as box product) for computing Stanley
decompositions for the ring of invariants of nilpotent systems.
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2. Invariant and Stanley decompositions

Let Pj(R
n,Rm) denote the vector space of homogeneous polynomials of degree j on

Rn with coefficients in Rm, where R denotes the set of real numbers. Let P(Rn,Rm)
be the vector space of all such polynomials of any degree and let P∗(R

n,Rm) be
the vector space of formal power series. If m = 1, P∗(R

n,R) becomes the ring of
formal power series on Rn. For such smooth vectors fields, it is sufficient to work
with polynomials. For any nilpotent matrix N , we define the Lie operator

LN : Pj(R
n,Rn) → Pj(R

n,Rn)

by

(LNv)x = v′(x)Nx−Nv(x) (2.1)

and the differential operator

DNx : Pj(R
n,R) → Pj(R

n,R)

by

(DNxf)(x) = f ′(x)Nx = (Nx.▽)f(x). (2.2)

Then DN is a derivation of the ring P(Rn,R), meaning that

D(fg) = (DNf)g + fDNg). (2.3)

In addition,

LN (fv) = (DNf)v + fLNv. (2.4)

A function f is called an invariant of Ax if ∂
∂t
f(eAtx) |t=0= 0 or equivalently

f ∈ kerDA. Since

DN(f + g) = DNf +DNg

DNfg = fDNg + gDNf

it follows that if f and g are invariants, so are f + g amd fg; that is ker DN is
both a vector space over R and also a subring of P(Rn,R), known as the ring of
invariants.

Similarly a vector field v is called an equivariant of Ax if ∂
∂t
(e−Atv(eAtx)) |t=0= 0

that is v ∈ kerLA.
There are two normal form styles in common use for nilpotent systems, the

inner product normal form and the sl(2) normal form. The inner product normal
form is defined by P(Rn,Rn) = imLN ⊕ kerLN∗ where N∗ is the conjugate trans-
pose of N . To define the sl(2) normal form, one first sets X = N and constructs
matrices Y and Z such that

[X, Y ] = Z, [Z,X] = 2X, [Z, Y ] = −2Y. (2.5)

An example of such an sl(2) triad {X, Y, Z} is
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X =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






, Y =







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






, Z =







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







Having obtained the triad {X, Y, Z} we create two additional triads {X,Y,Z}
and {X,Y,Z} as follows

X = DY , Y = DX , Z = DZ (2.6)

X = LY , Y = LX , Z = LZ (2.7)

The first of these is a triad of differential operators and the second is a triad
of Lie operators. Both the operators {X,Y,Z} and {X,Y,Z} inherit the triad
properties (2.5). Observe that the operators {X,Y,Z} map each P(Rn,Rn) into
itself. It then follows from the representation theory sl(2) that

P(Rn,Rn) = imY ⊕ kerX = imX⊕ kerY. (2.8)

Clearly the ker X ia s subring of P(Rn,R), the ring of invariants and it follows
from (2.4) that ker X is a module over this subring. This is the sl(2) normal form
module.

The most effective way of describing the invariant ring associated with a nilpo-
tent matrix N is by a device from communicative algebra called a Stanley decom-
position, introduced for this purpose in [8]. We write R[[x1, ..., xn]] for the ring of
(scalar) power series in variables x1, ..., xn. A subalgebra ℜ of R[[x1, ..., xn]] is a
subset that is both a subring and a vector subspace. The subalgebra is graded if

ℜ =
∞⊕

d=0

ℜd,

where ℜd is the vector subspace of ℜ consisting of elements of degree d. To
define Stanley decomposition of a graded subalgebra, we begin with the definition
of a Stanley term. A Stanley term is an expression of the form R[[f1, ..., fk]]ϕ,
where the elements f1, ..., fk and ϕ are homogeneous polynomials and f1, ..., fk
not including ϕ are required to be algebraically independent. The Stanley term
R[[f1, ..., fk]]ϕ denotes the set of all expressions of the form F (f1, ..., fk)ϕ where F
is a formal power series in k variables. When ϕ = 1, ϕ is omitted, and the Stanley
term is a subalgebra, otherwise it is only a subspace. A Stanley decomposition is a
finite direct sum of Stanley terms. A polynomial f is called doubly homogeneous of
type (d,w) if every monomial in f has a degree d and weight w. A vector subspace
V of ker X is doubly graded if

V =
∞⊕

d=0

∞⊕

w=0

Vdw,
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where Vdw, is the vector subspace of V consisting of doubly homogeneous poly-
nomials of degree d and weight w. A doubly graded Stanley decomposition of a
doubly graded subalgebra R of ker X is an expression of R as a direct sum of
vector subspaces of the form R[[f1, ..., fk]]ϕ, where f1, ..., fk, ϕ are doubly homoge-
neous polynomials. All Stanley decomposition considered from here on will be of
this kind and the words “doubly graded” will be omitted.

A standard monomial associated with a Stanley decomposition is an expression
of the form fm1

1 , ..., fmk

k ϕ, where R[[f1, ..., fn]]ϕ is a term in the Stanley decom-
position. Notice that monomial here means a monomial in the basic invariants
x1, ..., xn, which are polynomials in the original variables x1, ..., xn. Given a Stan-
ley decomposition of ker X, its standard monomials of a given degree (or of a given
type) form a basis for the (finite-dimensional) vector space of invariants of that
degree (or type). Next, we give Stanley decompositions for the rings of invariants
associated with N2 and N22 using the notion in [5]. The ring of invariants of N2 in
R[x1, y1] is ker X2. This ring clearly contains α = x1 which is of a type (1,1), and
in fact every element of ker X2 can be written uniquely as a formal power series
f(x1) in x1 alone. We express this by the Stanley decomposition

ker X2 = R[[α]].

The ring of N22 in R[[x1, x2, y1, y2]] is described by the Stanley decomposition

ker X22 = R[[α1, α2, β12]]

with
α1 = x1, α2 = x2, β12 = x1y2 − x2y1.

Here α1, α2 are of the type (1,1) and β12 is of type (2,0).
To prove that we have obtained all the invariants (transvectants), we need to

generate the table function of the Stanley decomposition. We replace each term
of the decomposition by a rational function P/Q in d and w (d for degree and
w for weight) construct as follows: for each basic invariants appearing inside the
square brackets, the denominator will contain a factor 1−dpwq, where p and q are
the degree and weight of the invariants; the numerator will be dpwq, where p and
q are the degree and weight of the standard monomials of that term. When the
rational function P/Q from each term of the Stanley decomposition are summed
up we obtain the table function T given by T =

∑

i Pi/Qi. Thus, for examples
above, the table function is T2 =

1
1−dw

and T22 =
1

(1−dw)2(1−d2)
.

The following lemma found in [7] gves a method to check that enough basic
invariants have been found.

Lemma 1. Let {X, Y, Z} be a triad of n×n matrices, let {X,Y,Z} be the induced
triad and suppose that I1, ..., In is a finite set of polynomials in ker X. Let R

be a subring of R[I1, ..., In]; suppose that the Stanley terms have been found, and
that the Stanley decomposition and its associated table function T (d, w) have been
determined. Then R = ker X ⊂ P(Rn,Rn) if and only if

∂

∂w
wT |w=1=

1

(1− d)n
.
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3. Box Products of Stanley Decompositions

Let Vk, k = 1, 2 be sl(2) representation spaces with triads {Xk, Yk, Zk}. Then
V1⊗V2 is a representation space with triad {X, Y, Z}, where X = X1⊗ I + I⊗X2

(and similarly for Y and Z). We define the box product of kerX1 and kerX2 by

(kerX1 ⊠ kerX2) = kerX (3.1)

To begin to put the box product into computationally useful form, we use the
notion of external transvectants introduced for this purpose in [7]. Consider a
system with nilpotent linear part

N =

[
N̂ 0

0 Ñ

]

where N̂ and Ñ are nilpotent matrices of sizes n̂ × n̂ and ñ × ñ respectively
(n̂ + ñ = n) , in (upper) Jordan form, and each may consist of one or more

Jordan blocks. Let {X,Y,Z}, {X̂, Ŷ, Ẑ} and {X̃, Ỹ, Z̃} be the associated triads of
operators acting on R[[x1, ..., xn]],R[[x1, ...xn̂]] and R[[xn̂+1]] respectively. Suppose

that f = f(x1, ..., xn̂) ∈ ker X̂ and g = g(xn̂+1, ..., xn) ∈ kerX̃ are weight invariants
of weights wf and wg, and i is an integer in the range 0 ≤ i ≤ min(wf , wg).
Then we define external transvectant of f and g of order i to be the polynomial
(f, g)i ∈ R[[x1, ..., xn]] given by

(f, g)i =

i∑

j=0

(−1)jW i,j
f,g(Ŷ

jf)(Ỹj−1g) (3.2)

where

W i,j
f,g =

(
i

j

)
(wf − j)!

(wf − i)!
.
(wg − i+ j)!

(wg − i)!

We say that a transvectant (f, g)i is well defined if i is in the proper range for
f and g. Notice that the zeroth transvectant is always well-defined and reduces
to the product:(f, g)0 = fg. Given Stanley decompositions for ker X̂ and ker X̃,
the following results found in [7] section 6, provide the first step toward obtaining
a Stanley decomposition for ker X.

Theorem 1. Each well-defined transvectant (f, g)i of f ∈ kerX̂ and g ∈ kerX̃
belongs to ker X. If f and g are doubly homogeneous polynomials of types (df, wf)
and (dg, wg) respectively, (f, g)i is a doubly homogeneous polynomial of type (df +

dg, wf + wg − 2i). Suppose that Stanley decompositions for ker X̂ and ker X̃

are given, then a basis for the (finite-dimensional) subspace (ker X)d of homoge-
neous polynomials in ker X with degree d is given by the set of all well-defined
transvectants (f, g)i where f is a standard monomial of the Stanley decomposition

for ker X̂ and g is a standard monomial of the Stanley decomposition for ker X̃

and df + dg = d.
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The bases given by Theorem 2 are sufficient to determine ker X one degree
at a time, but to find all of ker X in this way would require finding infinitely
many transvectants. A Stanley decomposition for ker X must be based on a finite
number of basic invariants. To construct such a decomposition, we must find an
alternative basis for each (ker X)d that uses only a finite number of transvectants
overall. Such alternatives bases can be found by the following replacement theorem
found in [7].

Theorem 2. Any transvectant (f, g)i in the basis given by Theorem 1 can be
replaced by a product (f1, g1)

i1 ...(fj , gj)
ij of transvectants, provided that f1...fj =

f, g1...gj = g and i1 + ... + ij = i.

The following corollary of the Replacement Theorem 3 will play a crucial role
in our calculations.

Corollary 1. If wh = wk = r so that (h, k)(r) has weight zero, then whenever
(fh, gk)(i+r) is well defined, it may be replaced by (f, g)(i)(h, k)(r).

Proof. Clearly (fh, gk)(i+r) and (f, g)(i)(h, k)(r) have the same stripped form and
total transvectant order. It is only necessary to observe that (f, g)(i) is well-defined.
But wfh = wf + wh = wf + r ≥ i+ r, so wf ≥ i and similarly wg ≥ i.

The next lemma is now trivial, but essential to our method.

Lemma 2. Box distributes over direct sums of admissible subspaces: If V̂ ⊂
kerX̂, Ṽ1 ⊂ kerX̃, and Ṽ2 ⊂ kerX̃ are admissible subspaces, with Ṽ1 ∩ Ṽ2, then
Ṽ1 ⊕ Ṽ2 is admissible and V̂ ⊠ (Ṽ1 ⊕ Ṽ2) = (V̂ ⊠ Ṽ1)⊕ (V̂ ⊠ Ṽ2, and similarly for
(Ṽ1 ⊕ Ṽ2)⊠ V̂ .

We complete this section by the following theorem which is Theorem (9) in [7],
and outlines the procedure for computing ker X.

Theorem 3. [7, Theorem 9] A Stanley decomposition of ker X = ker X̂⊠ ker X̂

is computable in a finite number of steps given decomposition of ker X̂ and ker X̂.

The proof of the theorem is given in [7], but we will briefly outline the ideas used
in the proof important in our calculations. By Lemma 2, we can compute ker X

if we can compute any box product of the form R[[f1, ..., fk]]ϕ ⊠ R[[g1, ..., gl]]]ψ,

where each factor is a Stanley term from the given decompositions of ker X̂ and
ker X̃.

Let p be the number of elements of weight > 0 in f1, ..., fk and q the num-
ber of such elements in g1, ..., gl. We proceed by double induction on p and q.
Suppose p = q = 0, Then the box product is spanned by transvectants of the
form (fm1

1 , ..., fmk

k ϕ, gn1
1 , ..., g

nl

l ψ), which is well-defined if and only if 0 ≤ i ≤ r,
where r = min(wϕ, wψ). The f and g factors add no weight, and cannot support
any higher transvectants. By Theorem 3 each transvectant may be replaced by
fm1
1 ...fmk

k , gn1
1 ...g

nl

l (ϕ, ψ)i which remains well-defined. Therefore

R[[f1, ..., fk]]ϕ⊠ R[[g1, ..., gl]]ψ ∼=

r⊕

i=0

R[[f1, ..., fk, g1, ..., gl]](ϕ, ψ)
i.
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Now we make induction hypothesis that all cases with p = 0 are computable up
through the case q − 1, and we discuss case q. Choose one of the q elements of
g1, ..., gl having positive weight; we assume the chosen element is g1. Then we may
expand

R[[g1, ..., gl]]ψ =
( t−1⊕

v=0

R[g2, ..., gl]]g1ψ
)

⊕ R[[g1, ..., gl]]g
t
1ψ,

where t is the smallest integer such that wgt1ϕ > wψ. This decomposition corre-
sponds to classifying monomials according to the power of g1 that occurs, with
all powers greater than or equal to t assigned to the last term. Now take the
box product of R[[fm1

1 , ..., fmk

k ]]ϕ times this expression, and distribute the product
according to Lemma 5. All of the terms except the last are computable by the
induction hypothesis. We claim the last term is computable by the formula

R[[f1, ..., fk]]ϕ⊠ R[[g1, ..., gl]]g
t
1ψ

∼=

wϕ⊕

i=0

R[[f1, ..., fk, g1, ..., gl]](ϕ, g
t
1ψ)

(i).

This is because wϕ is an absolute limit to the order of transvectants in this box
product that will be well-defined, and any such transvectant
(fm1

1 ...fmk

k ϕ, gn1
1 ...g

nl

l ...g
t
lψ)

i can be replaced by fm1
1 ...fmk

k ϕ, gn1
1 ...g

nl

l (gt1ϕ, ψ)
(i).

Now we make the induction hypothesis that cases (p − 1, q), (p, q − 1), and
(p − 1, q − 1) can be handled, and we treat the case (p, q). Choose one of the p
functions in f1, ..., fk having positive weight; we assume the chosen element is f1.
Similarly, choose a function of positive weight from g1, ..., gl and suppose it is g1.
Let s and t be the smallest integers such that s.wf1 = t.wg1

Expand

R[[f1, ..., fk]]ϕ = (
s−1⊕

u=0

R[f2, ..., fk]]f
µ
1 ϕ)⊕ R[[f1, ..., fk]]f

s
1ϕ

and

R[[g1, ..., gl]]ψ = (
t−1⊕

v=0

R[g2, ..., gl]]g
v
1ψ)⊕ R[[g1, ..., gl]]g

ν
1ψ

Taking the box product of these last two expansions and distribute the product.
There are four kinds of terms. Terms that are missing both f1 and g1 in square
brackets are of type (p− 1, q − 1). Terms that are missing f1 in square brackets,
but not g1 are of type (p− 1, q) and there are likewise terms of type (p, q− 1). All
of these can be handled by the induction hypothesis. Finally, there is the term

R[[f1, ..., fk]]f
s
1ϕ⊠ R[[g1, ..., gl]]g

t
1ψ.

There is no upper limit to the transvectant order that can occur here, since in
general there remain terms of positive weight in the square brackets. However,
setting r = s.wf1 = t.wg1 it can be shown that this box product is equivalent to

R[[f1, ..., fk]]f
s
1ϕ⊠ R[[g1, ..., gl]]g

t
1ψ

∼=
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( r−1⊕

i=0

R[[f1, ..., fk, g1, ..., gl]](f
s
1ϕ, g

t
1ψ
)(i)

⊕
(

R[[f1, ..., fk]]ϕ⊠R[[g1, ...gl]]ψ)(f
s
1 , g

t
1

)(r)

The final term is quite different from any other considered so far, since it
involves a box product of subspaces as the coefficient (f s1 , g

t
1). At this point we

have reduced the calculation of R[[f1, ..., fk]]ϕ⊠R[[g1, ..., gl]]ψ in the case (p, q) to
a number of terms computable by the induction hypothesis plus one special term
that lead in circles since it involves the very same box product that we are trying
to calculate. Thus our result has the form

R = δ ⊕Rθ

where θ = (f s1 , g
t
1)

(r) has weight zero. But this implies R = δ ⊕ (δ ⊕ Rθ)δ =
δ ⊕ δθ ⊕Rθ2 which reduces to R = δ[[θ]].

This simply means that we erase the term (R[[f1, ..., fk]]ϕ⊠R[[g1, ..., gl]]ψ)(f
s
1 , g

t
1)

(r)

from our computation, and instead insert θ = (f s1 , g
t
1)

(r) into the square brackets in
all the coefficient rings that have already been computed. This does not affect the
induction, because the new elements added have weight zero, and the induction is
on the numbers p and q of elements of positive weight.

4. The ring of invariants for coupled N33···3 Systems

The ring of invariants of N3 in R[x, y, z] is ker N3. Let N =





0 1 0
0 0 1
0 0 0



 .

The sl(2) triad will be as follows;

X =





0 1 0
0 0 1
0 0 0



 , Y =





0 0 0
2 0 0
0 2 0



 , Z =





2 0 0
0 0 0
0 0 −2



 .

Having obtained the triad {X, Y, Z}, we create additional triad {X,Y,Z} as

X = DY = 2x
∂

∂y
+ 2y

∂

∂z

Y = DX = y
∂

∂x
+ z

∂

∂y

Z = DZ = 2x
∂

∂x
− 2z

∂

∂z

The differential operators {X,Y,Z} map each vector space of homogeneous
scalar polynomials into itself, with X and Y being nilpotent and Z semisimple.
The eigenvectors of Z (called weight vectors) are the monomials xm and the as-
sociated eigenvalues(called weights) are < m, µ > where µ = (µ1, ..., µn) are the
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eigenvalues of Z that is Z(xn) =< m, µ > xm.

The basic invariants can be shown to be α = x, β = y2 − 2xz. Here α is of
degree 1 weight 2 and β is of degree 2 weight 0. Every element of ker X3 can
be written uniquely as a formal series f [α, β] in x, y, z. We describe this by the
Stanley decomposition ker X3 = R[[α, β]].

4.1 Linear part N33

From above the Stanley decomposition of ker X3 = R[[α1, β1]], we have by Theo-
rem 6 that ker X33 = ker X3 ⊠ ker X̄3, where ker X̄3 = R[[α2, β2]] corresponds to
the second block in N33. Expanding, we have

ker X3 = R[[β1]]⊕ R[[α1, β1]]α1

ker X̄3 = R[[β2]]⊕ R[[α2, β2]]α2.

Note that β1 and β2 are terms of weight zero and we do not expand along terms
of weight zero, so they are suppressed and will have them appear in every square
brackets of the box product we compute. Therefore

ker X33 = [R⊕ R[[α1]]α1]⊠ [R⊕ R[[α2]]α2]

Distributing the box product considering well defined transvectants (f, g)i accord-
ing to Lemma 5 gives three kinds of terms:

1. Two terms that are immediately computed in final form: R⊕ R[[α1]]α1

2. One box product: R⊠ R[[α2]]α2 = R[[α2]]α2

3. One box product R[[α1]]α1⊠R[[α2]]α2. This will recycle to R[[α1]]⊠R[[α2]].
Indeed:

R[[α1]]α1⊠R[[α2]]α2 = R[[α1, α2]]α1α2⊕R[[α1, α2]](α1, α2)
(1)⊕R[[α1, α2]](α1, α2)

(2).

Let (α1, α2)
(1) = γ1,2 and (α1, α2)

(2) = ξ1,2. According to recycling rule the last
term will be deleted and ξ1,2 which has weight zero will be inserted to all square
brackets along side the suppressed invariants. Collecting and recombining all the
terms, whenever possible we have:

ker X33 = R[[α1, α2, β1, β2, ξ1,2]]⊕ R[[α1, α2, β1, β2, ξ1,2]]γ1,2.

The same Stanley decomposition can also be obtained from the lattice diagram
below where the Stanley terms are viewed as a sum of the path from β1 to α2 and
path from β1 to α2 with a corner at γ1,2.

α2
OO

γ1,2

}}||
|
|
|
|
|
|

α1

OO

ξ1,2

OO

oo β2oo β1oo
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with the monotone paths:
(β1 → β2 → ξ1,2 → α1 → α2)
(β1 → β2 → ξ1,2 → α1 → α2)γ1,2.

4.2 Linear part N333.

When n = 3 the Stanley decomposition for the ring of invariants is given by

kerX333 = kerX33 ⊠ kerX3

= [R[[α1, α2, β1, β2, ξ1,2]]⊕ R[[α1, α2, β1, β2, ξ1,2]]γ1,2]⊠ R[[α3, β3]].

There are two cases to consider. Distributing the box products and recombining
terms where possible we have:

kerX333 = R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]⊕

R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,2 ⊕

R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,3 ⊕

R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,2γ1,3 ⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ2,3 ⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]ξ2,3 ⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ1,2γ2,3 ⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ1,2ξ2,3 ⊕

R[[α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]](γ1,2, α3)
(1) ⊕

R[[α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]](γ1,2, α3)
(2).

To verify that this is the true Stanley decomposition consider the table function
which in this case is given by

T9 =
dw2

(1− dw2)3(1− d2)5
+

d3w4

(1− dw2)3(1− d2)5
+

d2w2

(1− dw2)3(1− d2)5

+
d4w4

(1− dw2)3(1− d2)5
+

1

(1− dw2)2(1− d2)6
+

d2w2

(1− dw2)2(1− d2)6

+
d4w4

(1− dw2)2(1− d2)6
+

d3w2

(1− dw2)(1− d2)6
+

d

(1− dw2)(1− d2)6

By multiplying the table function by w, differentiating with respect to w and
putting w = 1, it can be easily be shown that

∂

∂w
wT9 |w=1=

1

(1− d)9

Hence the table function is perfect thus all the tranvectants have been found.

The following observations are made from the Stanley decomposition above:
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(a) first term of Stanley decomposition has no product outside the square bracket.

(b) the transvectants γ1,2, γ1,3 and γ2,3 never appears inside the square brackets.

(c) the transvectants ξ1,2, ξ1,3 and ξ2,3 appears inside as well as outside the square
brackets.

It is evident that the same Stanley decomposition of N333 can be obtained from
sum of the paths in the following lattice diagram:

α3
OO

γ2,3

}}||
|
|
|
|
|
|

α2

OO

ξ2,3

OO

oo
OO

γ1,3

OO

}}||
|
|
|
|
|
|

γ1,2

}}zz
z
z
z
z
z

α1

OO

ξ1,3

OO

oo ξ1,2

OO

oo β3oo β2oo β1oo

where

• Every path takes the form:

OO

∗oo

~~~~
~
~
~
~
~
~
~
OO

∗oo

||yy
y
y
y
y
y
y

OO

oo

.

We refer to ∗ as a corner.

• Each square brackets of the Stanley decomposition contains all invariants
in a path except γk,l and the product of transvectants outside the square
bracket is the product of the invariants at the corners. -

• Stanley decomposition of the ring of invariants ker X333 is then given by the
sum of the terms T1 and T2, where

T1=
⊕

j R[[invariants on the jth path]](product of corners on the jth path)
exiting at αk and ending at α3 where k = 1, 2.

T2=
⊕

j R[[invariants on the jth path]](product of corners on the jth path,

α3)
(i) exiting at α2 through γ2,3 and ending at α3 where i = 1, 2.
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From the above examples, we conclude that:

• For every additional n, there are new transvectants (αk, αl)
(i) where i = 1, 2

and 1 ≤ k < l ≤ n.

• The lattice diagram of N3(n) is obtained by adding these new transvectants
together with αn to the lattice diagram for N3(n−1) .

• The first term of the Stanley decomposition has no products of transvectants
outside the square brackets.

• The transvectants (αk, αl)
(1) = γk,l where 1 ≤ k < l ≤ n never appears inside

the square brackets.

• The transvectants (αk, αl)
(2) = ξk,l where 1 ≤ k < l ≤ n appears inside as

well as outside the square brackets.

• The Stanley decomposition of N3(n) is the sum of terms T1 and T2 where

T1 = [[invariants on the jth path]](products of corners on the jth path). Exit
at αk and end atr αn wkere k = 1, ..., n− 1.

T2 = [[invariants on the jth path]]( product of corners on the jth path, αm)
(i).

Exit at αm through γm−1,m and ending at αn, where i = 1, 2 and m =
3, 4, ..., n.

In general, we have the following theorem for obtaining the Stanley decomposition
of systems with linear part N3(n) as:

Theorem 4. The Stanley decomposition of the ring of invariant of kerN(3)n is
given by the sum of terms

⊕

j T1 and
⊕

j T2 where j will range over all possible
number of paths for kerX3(n) . Where,

T1 = [[invariants on the jth path]](products of corners on the jth path) exit αk
and end at αn where k = 1, ..., n− 1.

T2 = [[invariants on the jth path]]( product of corners on the jth path, αm)
(i)

exit at αm through γm−1,m and ending at αn, where i = 1, 2 and m = 3, 4, ..., n.
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Proof. We prove by induction on n. It is true for n = 2 and n = 3, by the above
examples. We suppose that it is true for k = n−1 and show that it hold for k = n.
Since

kerX3(n) = kerX3(n−1) ⊠ kerX3

Suppressing all transvectants of the form β1, ...βn and ξk,l for 1 ≤ k ≤ l ≤ n
since they are of weight zero and noting that they will be added to every square
brackets depending on the terms they are found we have: R[[αi, ..., αn−1]]ϕ⊠R[[αn]]

Expanding the box product:
R[[αi, ..., αn−1]]ϕ⊠R[[αn]] =

(
R[[αi+1, ..., αn−1]]ϕ⊕R[[αi, αi+1, ..., αn−1]]αiϕ

)
⊠

(
R⊕ R[[αn]]

)

Distributing the box product gives three kinds of terms.

1. Two terms that are computed to final form:

R[[αi+1, ..., αn−1]]ϕ⊕ R[[αi, αi+1, ..., αn−1]]αiϕ

2. One box product: R[[αi+1, ..., αn−1]]ϕ ⊠ R[[αn]]αn, that must be computed
by further expansions.
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3. One box product that recycles: R[[αi, αi+1, ..., αn−1]]αiϕ⊠ R[[αn]]αn

= R[[αi, αi+1, ..., αn−1, αn]]αiαnϕ⊕ R[[αi, αi+1, ..., αn−1, αn]](αiϕ, αn)
(1)

⊕ [R[[αi, αi+1, ..., αn−1]]ϕ⊠ R[[αn]]](αi, αn)
(2)

We delete the last term and insert (αi, αn)
(2) = ξi,n in all square brackets to-

gether with other suppressed tranvectants. Recombining terms whenever possible,
we finally find the Stanley decomposition of kerX3(n) .

Equivalently, finding all the additional transvectants for kerX(3)n of the form
γi,n and ξi,n where 1 ≤ i < n and adding these together with αn to the lattice
diagram of kerX(3)n−1 , we obtain the lattice diagram for ker X(3)n as shown above
and the sum of the jth paths of the form T1 and T2 gives the Stanley decomposition
of kerX3n as required.

We summarize our work by applying Theorem 4 in finding the Stanley decom-
position for the ring of invariants with linear part N3333.

The new transvectants created are γ1,4, γ2,4, γ3,4, ξ1,4, ξ2,4, ξ3,4
By adding these transvectants and α4 to the lattice diagram for N333, we illus-

trate how to get the Stanley decomposition from the lattice diagram below:
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The Stanley decomposition of the ring of invariants X3333 is then given by the
sum of the terms

⊕

j T1 and
⊕

j T2. Let R = R[[β1, β2, β3, β4, ξ1,2, ξ1,3]]. The final
results are:
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kerX3333 = R[[α1, α2, α3, α4, ξ1,4]]⊕R[[α1, α2, α3, α4, ξ1,4]]γ1,2 ⊕

R[[α1, α2, α3, α4, ξ1,4]]γ1,3 ⊕R[[α1, α2, α3, α4, ξ1,4]]γ1,4 ⊕

R[[α1, α2, α3, α4, ξ1,4]]γ1,2γ1,3 ⊕R[[α1, α2, α3, α4, ξ1,4]]γ1,2γ1,4 ⊕

R[[α1, α2, α3, α4, ξ1,4]]γ1,3γ1,4 ⊕R[[α1, α2, α3, α4, ξ1,4]]γ1,2γ1,3γ1,4 ⊕

R[[α2, α3, α4, ξ1,4, ξ2,4]]γ2,4 ⊕R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,2γ2,4 ⊕

R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,3γ2,4 ⊕R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,2γ1,3γ2,4 ⊕

R[[α2, α3, α4, ξ1,4, ξ2,4]]ξ2,4 ⊕R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,2ξ2,4 ⊕

R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,3ξ2,4 ⊕R[[α2, α3, α4, ξ1,4, ξ2,4]]γ1,2γ1,3ξ2,4 ⊕

R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ3,4 ⊕R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,2γ3,4 ⊕

R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,3γ3,4 ⊕R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,2γ1,3γ3,4

R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]ξ3,4 ⊕R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,2ξ3,4 ⊕

R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,3ξ3,4 ⊕R[[α3, α4, ξ1,4, ξ2,4, ξ3,4]]γ1,2γ1,3ξ3,4 ⊕

R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,2, α4)
(1) ⊕R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,2, α4)

(2) ⊕

R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,3, α4)
(1) ⊕R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,3, α4)

(2) ⊕

R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,2γ1,3, α4)
(1) ⊕R[[α4, ξ1,4, ξ2,4, ξ3,4]](γ1,2γ1,3, α4)

(2) ⊕

R[[α2, α3, α4, ξ2,3, ξ2,4]]γ2,3 ⊕R[[α2, α3, α4, ξ2,3, ξ2,4]]γ2,3γ2,4 ⊕

R[[α2, α3, α4, ξ2,3, ξ2,4]]γ1,2γ2,3R[[α2, α3, α4, ξ2,3, ξ2,4]]γ1,2γ2,3γ2,4 ⊕

R[[α2, α3, α4, ξ2,3, ξ2,4]]ξ2,3 ⊕R[[α2, α3, α4, ξ2,3, ξ2,4]]γ2,4ξ2,3 ⊕

R[[α2, α3, α4, ξ2,3, ξ2,4]]γ1,2ξ2,3R[[α2, α3, α4, ξ2,3, ξ2,4]]γ1,2ξ2,3γ2,4 ⊕

R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ2,3γ3,4R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ1,2γ2,3γ3,4 ⊕

R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ2,3ξ3,4 ⊕R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ1,2γ2,3ξ3,4 ⊕

R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ3,4ξ2,3 ⊕R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ1,2γ3,4ξ2,3 ⊕

R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]ξ2,3ξ3,4 ⊕R[[α3, α4, ξ2,3, ξ2,4, ξ3,4]]γ1,2ξ2,3ξ3,4 ⊕

R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ2,3, α4)
(1) ⊕R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ2,3, α4)

(2) ⊕

R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ1,2γ2,3, α4)
(1) ⊕R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ1,2γ2,3, α4)

(2) ⊕

R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ1,2ξ2,3, α4)
(1) ⊕R[[α4, ξ2,3, ξ2,4, ξ3,4]](γ1,2ξ2,3, α4)

(2) ⊕

R[[α3, α4, ξ2,3, ξ3,4]](γ1,2, α3)
(1) ⊕R[[α3, α4, ξ2,3, ξ3,4]](γ1,2, α3)

(2) ⊕

R[[α3, α4, ξ2,3, ξ3,4]](γ1,2γ3,4, α3)
(1) ⊕R[[α3, α4, ξ2,3, ξ3,4]](γ1,2γ3,4, α3)

(2) ⊕

R[[α4, ξ2,3, ξ3,4]](γ1,2, α3)
(1), α4)

(1) ⊕R[[α4, ξ2,3, ξ3,4]]((γ1,2, α3)
(1), α4)

(2)

.
To verify that this is the true Stanley decomposition consider the table function

which in this case is given by

T12 =
w + 3d2w3 + 3d4w5 + d6w7

(1− dw2)4(1− d2)7
+
2d2w3 + 4d4w5 + 2d6w7 + 2d2w + 4d4w3 + 2d6w5

(1− dw2)3(1− d2)8

+
d2w3 + 3d4w5 + 2d6w7 + d2w + 4d4w3 + 3d6w5 + d4w + d6w3

(1− dw2)2(1− d2)9



66 D.M. Malonza, G.W. Gachigua, J.K. Sigey

+
3d3w3 + 3d3w + 2d5w5 + 3d5w3 + d5w

(1− dw2)(1− d2)9
+
d3w3 + d3w + d5w5 + d5w3

(1− dw2)2(1− d2)8

+
d4w3 + d4w

(1− dw2)(1− d2)8

By multiplying the table function by w, differentiating with respect to w and
putting w = 1, it can be shown that

∂

∂w
wT12 |w=1=

1

(1− d)12
.
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Modelling Distribution of Under-Five
Child Diarrhoea Across Malawi
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Abstract. Analysis of diarrhoea data in Malawi has been mostly
done using classical methods. However, of late new approaches such
as Bayesian methods have been introduced in literature. This study
aimed at trying out new statistical techniques in comparison with clas-
sical ones as well as finding out how each isolates dominant risk fac-
tors for childhood diarrhoea. This was done by fitting Logit, Pois-
son, and Bayesian models to 2006 Malawi Multiple Indicator Cluster
Survey data, which was collected with an aim of estimating indica-
tors of women and child health per district. The comparison between
Logit and Poisson models was done via chi-square’s goodness-of-fit test.
Confidence and Credible Intervals were used to compare Bayesian and
Logit/ Poisson model estimates. Modelling and inference in Bayesian
method was done through MCMC techniques. The results showed
agreement in directions and significance of estimates from Bayesian
and Poisson/ Logit models, but Poisson provided better fit than Logit
model. Further, all models identified child’s age, breastfeeding status,
region of stay, and toilet-sharing status as significant factors for deter-
mining the child’s risk. The models also agreed in ruling out effects
of mothers education, area of residence (rural or urban), and source
of drinking water on the risk. But, Bayesian model proved significant
closeness to lake/river factor, which was not the case with Poisson/
Logit model. The findings imply that classical and semi-parametric
models are equally helpful, while Poisson is better than Logit model
when estimating the child’s risk to diarrhoea.

1. Introduction

Diarrhoea is an increase in volume of stool or frequency of defecation. It is the
commonest clinical sign of gastrointestinal diseases, but it can also reflect primary
disorders outside of the digestive system [27]. The disease can be manifested in
different levels of clinical intensity, ranging from acute to chronic or severe stages.
Acute diarrhoea appears rapidly and may last from five to ten days. Chronic di-
arrhoea lasts much longer than this [35]. An estimated 3.5 million deaths each
year are attributable to diarrhoea worldwide, 80% of which occur in children un-
der the age of 5 years [57]. In Malawi, the disease accounts for 11% of deaths
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in children aged below 5 years [30]. To that effect, Malawi government recently
adopted UNICEF/ WHO’s seven-point plan for diarrhoea control. This includes
fluid replacement to prevent dehydration; zinc treatment; rotavirus and measles
vaccinations; promotion of early and exclusive breastfeeding and vitamin A supple-
mentation; promotion of hand washing with soap; improved water supply quan-
tity and quality, including treatment and safe storage of household water; and
community-wide sanitation promotion [32]. Based on these guidelines, diarrhoea
control policies were formulated between 2010 and 2011 by a committee with rep-
resentatives from Ministries of Health and Irrigation, University of Malawi-The
Polytechnic and other organisations. The committee recommended achieving po-
litical support for raising the profile of diarrhoeal disease; ensuring that policies
are effectively coordinated and implemented; increasing collaboration and integra-
tion through a Technical Working Group (TWG); developing national programs;
and information, education and communication to allow one clear message to be
disseminated at national level [32].

However, there is still knowledge gap in citizens of sub-Saharan Africa on possi-
ble prevention strategies for childhood diarrhoea. Research indicate that morbidity
and mortality from childhood diarrhoea are compounded by inappropriate house-
hold case management and frequent misuse of antibiotics by citizens of countries
such as Gambia, Guinea-Bissau, Kenya, Malawi, Nigeria, Tanzania, DRC and Su-
dan. In addition, limited knowledge, among health care providers in these coun-
tries, of proper treatment of diarrhoea also contributed to poor outcomes [13].
More recent cross-sectional survey study in Temeke Municipality, Dar es Salaam-
Tanzania indicate poor Mothers’ knowledge on predisposing factors of childhood
diarrhoea, which was directly correlated with education level. It was also found
out that only about one third of the respondents were aware of risk factors for
childhood diarrhoea that cited poor sanitation and water as main factors. Fur-
ther, diarrhoea episodes were perceived wrongly as normal growth stage and that
they were caused by several other “illnesses” [27]. These results agree with those
of Munthali [27] in Malawi, who found out that mothers and caregivers in Rumphi
wrongly associated child diarrhoea to child’s teeth development and breastfeeding
by a pregnant mother. A multivariate analysis in Accra, Ghana, on incidence of
diarrhoea among children, by Boadi and Kuitunen [5] has attributed risk to mor-
bidity due to diarrhoea to household economic status, mother education, access
to water and sanitation facilities, hygiene practices, flies infestation and regular
consumption of street food.

Most of these studies employed classical approaches whose restrictions are often
violated in circumstances in which the data are collected. This often overshadows
true effects of variables on risk to diarrhoea. This can be avoided by employing
modern nonparametric Bayesian techniques. Fresh applications of such methods
on childhood diarrhoea in sub-Saharan Africa are due to Kandala et al [17] on
1999 and 2003 Nigerian DHSs and Kazembe et al. [19] on 2000 Malawian DHS
datasets. Using a Bayesian geo-additive model based on Markov-Chain-Monte-
Carlo estimation, Kandala et al [17] observed that overall prevalences of diarrhoea,
cough, and fever recorded in 1999 (among children aged 3 years) were similar to
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those seen in 2003 (among children aged 5 years). But morbidity attributable
to each of the three causes varied differently at state level. In addition, place
of birth (hospital versus other), type of feeding (breastfed only versus other),
parental education, maternal visits to antenatal clinics, household economic status,
marital status of the mother, and place of residence (urban versus rural) were
each significantly associated with the childhood morbidity studied. Further, both
surveys revealed that children from urban areas were found to have a significantly
lower risk of fever than their rural counterparts. It was also found out that most
other factors affecting diarrhoea, cough, and fever differed in the two surveys.
Besides, the risk of developing each of the three conditions increased in the first 6-8
months after birth, but then gradually declined. Likewise, through a logistic model
with spatial random effects that were partitioned into shared and specific effects
Kazembe et al [19] observed that shared area-specific effects were persistently high
in central and southern regions of the country. On the other hand, fever-specific
effects were high along the Lakeshore areas, and diarrhoea-specific effects were
excessive in central and south-eastern zones of the country.

While modern approaches offer alternatives to classical methods, most studies
that have used these methods in sub-Saharan Africa have applied them in isolation
to classical techniques, which may not easily demonstrate their usefulness. It is
important to mention that inferences from Bayesian models are usually more rea-
sonable compared to classical estimates. Often times, classical regression provides
identical estimates for all levels of a variable. For instance, an estimate may be
obtained that predicts amount of change in number of diarrhoea cases correspond-
ing to one unit change in region of stay, which may be particularly inappropriate
for Bayesian multilevel application whose goal is to identify the locations in which
residents are at high risk. In addition, classical regression model may over fit the
data, for example giving an implausibly high estimate of average number of cases.
This can happen in areas where only few diarrhoea observations were available.
Bayesian multilevel models avoid this by taking into account variations in data
at both individual and group levels [12]. Further, multilevel models have ability
to separately estimate predictive effects of individual predictor and its group-level
mean which are sometimes interpreted as “direct” and “contextual” effects of the
predictor [12].

In addition, most parametric models often lack capability of identifying non-
linear relationships between dependent and independent variables. The use of
Bayesian semi-parametric approaches avoids these shortcomings [16]. Neverthe-
less, classical models are essential in a wealth of applications where one needs
to compensate for paucity of data [25]. The various approaches to data analysis
(frequentist, Bayesian, machine learning, exploratory or other) should be seen as
complementary to one another rather than as competitors for outright domination
[25]. Unfortunately, parametric formulations become easy targets for criticism
when, as occurs rather often, they are constructed with too little thought [25].
The lack of demands on the user made by most statistical packages does not help
matters and, despite enthusiasm one may have for Markov chain Monte Carlo
(MCMC) methods, their ability to fit very complicated parametric formulations
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can be a mixed blessing [25].
This study aimed at investigating variations in the risk of diarrhoea in under-

five children in Malawi by applying statistical models to explain the diarrhoea
incidence. Specifically the study compared estimates found using classical and
modern semi-parametric models; identified appropriate classical model to use when
explaining a child’s risk to diarrhoea; and evaluated influence of socio-economic
and bio-demographic factors on the child’s risk.

2. Methodology

2.1 Study design

This study was an applied quantitative research employing Bayesian semi-parametric
additive, Logistic, and Poisson regression modelling on 2006 Malawi Multiple In-
dicator Cluster Survey (MICS) data. The national survey data was used with
surety to allow implementation of intended statistical analyses, since estimates of
a random variable from a large random sample are believed to possess all opti-
mal properties of an estimator. Perhaps due to the rigorous process of random
sampling employed surveys usually give accurate estimates of population param-
eters [14], a property that is desirable in statistical inference. Further, national
survey data had cross-sectional information from all districts which would make it
possible to estimate distributions of child diarrhoea and amount of risk posed by
various parts of the country.

Further, logistic model was used due to the fact that the outcome variable, two-
week total number of diarrhoea cases, was believed to follow binomial distribution.
Introduced in the 1940s, Logistic regression is an example of a GLM where the
random component is a Bernoulli random variable whose distribution is specified
by probabilities P (Y = 1) = π of success and P (Y = 0) = 1 − π of failure. If
the outcome of a trial can only be either a success or a failure, then the trial is
called a Bernoulli trial. The total number of successes

∑
(Y = 1) in one Bernoulli

trial, which can be 1 or 0, is called a Bernoulli random variable,
∑

(Y = 1) Ber(π).
When many independent and identical Bernoulli trials n have been carried out, the
resulting sequence of identically and independently distributed Bernoulli variables
is called a Bernoulli process [1]. For n independent observations on a binary
response with parameter π, the total number of successes,

∑
(Y = 1) has the

Binomial distribution specified by the indices n and π,
∑

(Y = 1) Bin(n, π),
and belonging to the exponential family of distributions, that is, probability mass
function has form f(y; θ) = exp[a(y)b(θ) + c(θ) + d(y)].

Each diarrhoea observation in MICS had two possible outcomes; either a child
suffered from diarrhoea or did not. Thus, each outcome was a Bernoulli process.
Further, it is known that total number of children that were observed is fixed,
with n = 15, 018, and from the 2004 DHS, prevalence of under-five child diarrhoea
in Malawi was 22%, hence π = 0.22, which was believed to be constant from
one observation to another in the children population. In addition, each observed
child was an individual and therefore the outcome in an observed child could not
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influence that of the next child. Hence, outcomes were independently distributed
in the children’s population. Therefore, the total number of cases in the country
at any time of observation was a binomial random variable. Its probability mass
function is specified as

F (y; (n, π)) =

(
n

y

)

πy(1− π)n−y

=

(
n

y

)

(1− π)n
[

π

1− π

]y

= exp

[

log

(
n

y

)

+ n log(1− π) + y log
π

1− π

]

,

which is an exponential form with c(π) = (1−π)n, d(y) =
(
n
y

)
, b(π) = log(π/(1−π))

and a(y) = y. The natural parameter is therefore log(π/(1 − π)), log of odds of
response 1, the logit of π, it’s canonical link. Because of this link function, the
binomial or logistic model is also called logit model.

The actual value of π in the population can vary as the value, x of X varies;
hence the notation π may be replaced by π(x) to reflect its dependence on that
value [2].

The relationship between x and π(x) is a non-linear S-shaped curve, called
logistic function, given by:

π(x) = E
(∑

(Y = 1)x1,··· ,xp

)

=
exp(β0 + β1x1 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + · · ·+ βpxp)
,

where β0, · · · , βp are parameters to be estimated from the data y. In situation
where explanatory variable x1 is binary exposure of interest, exp(β1) is adjusted
ratio of odds of outcome occurring in exposed group versus non-exposed group,
adjusting for effects of other explanatory variables x2, · · · , xp [1, 2]. As x gets
large, (x) approaches 0 if β < 0 and it approaches 1 if β > 0.

The transformation given below, logarithm of odds of success, called Logit
transform, linearises the logistic function;

π̂ = log

(
π(x)

1− π(x)

)

= β0 + β1x1 + · · ·+ βpxp.

The estimation of parameters is usually done through Maximum Likelihood tech-
nique. The Maximum Likelihood estimates of parameters β, and consequently
of the probabilities πi = g(xT

i
β), are obtained by maximizing the log-likelihood

function;

l(π; y) =

N∑

i=1

[

yi log πi + (ni − yi) log(1− πi) + log

(
ni
yi

)]

using iterative weighted least squares procedure (see Dobson, 2002).
Since for n Bernoulli iid observations, total number of diarrhoea cases,

∑
(Y =

1), at any time was a positive integer, then Poisson distribution was assumed for
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total number of cases throughout the four-month period. When the response is
a count, one can use a count regression model to explain this response in terms
of given predictors. Sometimes, total count is bounded, in which case a binomial
response regression should probably be used. In other cases, the counts might be
sufficiently large that a normal approximation is justified so that a normal linear
model may be used [9]. One of the common distributions for counts is Poisson.
If
∑

(Y = 1) is a Poisson random variable with mean µ = E[
∑

(Y = 1)] =
V ar[

∑
(Y = 1)] > 0, then:

P (
∑

(Y = 1) = y) =
exp(µ)µy

y!
= exp [µ− log(y!) + y logµ] , y = 0, 1, 2, · · ·

From the exponential form, it is clear that the link function relating µ with pre-
dictors is log link given by logµ = α+

∑
βx, where the parameters are estimated

using usual procedure of MLE. According to Faraway (2006), Poisson distribution
arises naturally in several ways. For instance, if the count is some number out of
some possible total, then the response would be more appropriately modeled as a
binomial. However, for small success probabilities and large totals, the Poisson is a
good approximation and can be applied. For example, in modelling the incidence
of rare forms of cancer, the number of people affected is a small proportion of
the population in a given geographical area. A Poisson regression model can be
used in preference to a binomial. If µ = nπ while n → ∞, then B(n, π) is well
approximated by Pois(µ). Also, for small π, logit(π) ≈ log π, so that the use of
the Poisson with a log link is comparable to the binomial with a logit link.

It is important to mention that to allow for correlation within households,
robust standard error was to be calculated using residuals at the cluster level. An
important result concerning Poisson random variables is that their sum is also
Poisson. Specifically, suppose that Yi Pois(µi) for i = 1, 2, and are independent,
then

∑

i Yi Pois(
∑

i µi). This is useful because sometimes one has access only
to the aggregated data. If we assume individual-level data is Poisson, then so is
the summed data and Poisson regression can still be applied [8, 9]. From 2004
Malawi DHS, π = 0.22 and n ≈ 10, 000 for under-five child diarrhoea. Therefore,
π was considerably small while n being a large number. Hence, approximation
of binomial regression with logit link by a Poisson regression with a log link was
valid.

For the Bayesian semi-parametric model, the term comes from the fact that
both parametric and nonparametric forms of relationship are assumed in one
model. In this respect, continuous covariates are treated non-parametrically with
the help of smoothing functions whereas categorical variables are related paramet-
rically to the response variable [16, 17]. In general, a Bayesian model is considered
to be a regression (linear or generalized linear model) in which the parameters
the regression coefficients are given a probability model [11]. The use of semi-
parametric model was therefore thought of in order to capture both linear effects
of discrete covariates and non-linear effects of continuous covariates on the child’s
risk to diarrhoea. Further, the data had some categorical explanatory variables
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with more than two levels; hence the model was employed in order to show the
results in reduced form of covariates. Assuming that total number of observed
cases at any time in the four months of MICS study,

∑
(Y = 1) is a random vari-

able belonging to an exponential family with parameters n and π, then
∑

(Y = 1)
satisfies the logistic model

logit(π) = α +
∑

βx,

where α and β stand for parameter components, and x for a vector of factors or
covariates.

Further, it was assumed that α and β were distributed as gamma random
variables with fixed scale and location parameters, u = v = 0.001, except for a
continuous variable child age whose parameters were assumed to have normal prior
distributions with 0 means and inverse gamma distributed variances.

It was assumed that regression parameters in this model are not static, but vary
at: (1) child’s individual-level; with focus on child’s age and breast feeding status;
(2) child’s family-level; focusing on mother’s education, family source of drinking
water, and whether or not the family toilet is shared and (3) child’s residential
location; with focus on region of stay (north, centre, or south), closeness to the
lake or river (lake/river shore or highland), and area of residence (rural or urban).

Briefly, the GLMs assume that, given covariates u and unknown parameters,
the distribution of the response variable y belongs to an exponential family, with
mean µ = E(y|y, γ) linked to a linear predictor η by

µ = h(η), η = uγ.

Here, h denotes a known response function, and γ are unknown regression
parameters. The following structured additive predictor was used in this study to
estimate a flexible Bayesian semi-parametric model that was fitted to MICS data
[6]:

ηr = f1(xr1) + · · ·+ fp(xrp) + u1γ,

where r is a generic observation index, xrj denote generic covariates of different
type and dimension, and fj(j = 1, 2, , p) are (not necessarily smooth) functions of
the covariates. The functions fj may comprise the usual non-linear effects of
continuous covariates, time trends and seasonal effects, two-dimensional surfaces,
varying coefficient terms, i.i.d. random intercepts and slopes, spatially correlated
effects, and geographically weighted regression [6].

Once a model of this type is specified, inferences can be drawn from avail-
able data for population means at any level of data. These estimators, which can
be regarded from a Bayesian perspective as posterior means or from a Frequen-
tist perspective as Best Linear Unbiased Predictors (BLUPs), often have better
properties than simple sample-based estimators using only data from the unit in
question. This makes them useful in the problem of ”small-area estimation,” that
is, making estimates for units or domains for which there is a very limited amount
of information [33].
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2.2 Geographic Location and Population Distribution

As earlier alluded to, MICS was conducted in all districts in Malawi, a country
that is located in south-east Africa, landlocked between Mozambique to its eastern
and southern sides, Zambia to its western side, and Tanzania to its northern side.
It covers a total earth surface area of 118, 484km2, of which 94, 276km2(79.6%)
is made of land and 24, 208km2(20.4%) of water. By 2008, the country had a
population of 13, 077, 160 people and its land was divided into three major re-
gions: central, 35, 592km2 had 5, 510, 195 people (42.14% of national population);
northern, 26, 931km2 had 1, 708, 930 people (13.08% of national population); and
southern region, 31, 753km2 with 5, 858, 035 people (44.80% of national popula-
tion). About 90% of the countrys population lives in rural areas where, among
other things, access to health services and poverty are major hardships [31]. The
country’s population had 7, 157, 985 (45.1%) people in the age group of 0 − 14
years (3, 586, 696 males; 3, 571, 298 females), as of October, 2011 [24].

2.3 Study Population and Sampling Techniques

The MICS study sampled 31,200 occupied households and interviewed 30,553
(97.9%) of them. In addition, 23,238 under-five children were listed from inter-
viewed households, of which questionnaires for 22,994 (98.9%) were completed.
Further, 27,073 women (age 15-49 years) were identified from interviewed house-
holds, of which 26,259 (97%) were interviewed and 8,556 men (age 15-49 years)
were identified in every third household and 7,636 (89.2%) of them were inter-
viewed [28]. With an aim to obtain estimates, at district level, on key indicators
related to well-being of children and women, MICS study targeted a sample of size
1,200 households (HHs) per district to obtain statistically valid estimates at 95%
CL for majority of indicators. By then, there were 28 districts in Malawi, two of
which (Likoma and Neno) were too small to draw 1,200 HHs out of total available
HHs. As a result, Likoma was merged with Nkhata Bay and Neno with Mwanza,
thereby reducing number of study districts to 26. Weighted estimates for the three
regions and Malawi as a whole were obtained based on data from the 26 districts
[28].

A two-stage cluster sampling design was used to select the households, where
within each district 40 census enumeration areas (identified as clusters) were se-
lected, and within each cluster a systematic sample of 30 households was drawn.
A total of 31,200 HHs (26 districts multiplied by 1,200 HHs) were selected in 1,040
clusters (26 districts multiplied by 40 clusters) in that process. The 1,040 selected
clusters were all visited during the fieldwork period [28].

The targeted population in this study was children aged at most 5 years. The
outcome variable of interest was cases/non-cases of diarrhoea as in 2006 MICS. The
explanatory variables included child’s age, child’s breastfeeding status (weaned
or still breastfeeding), child’s area of residence (rural or urban), region of stay
(northern, central or southern), toilet facility (shared between families or not),
mother’s education, source of drinking water, and closeness to lake/river.
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2.4 Instrumentation and Data Collection

The MICS study, conducted from July to November, 2006, used four question-
naires that were translated into Chichewa and Tumbuka vernacular languages to
collect data. One questionnaire, termed household questionnaire, administered
to head of household or any person who was able to provide information was
used to identify all eligible persons for specific forms. It collected information
regarding household listing, education, water and sanitation, household charac-
teristics, insecticide treated nets, orphan-hood, child labour, and salt iodization.
The other questionnaire, called under-five children questionnaire, administered to
mothers or caretakers of under-five children collected information on Vitamin A,
breastfeeding, care of illness, diarrhoea, malaria, immunization, and anthropome-
try. Another questionnaire, termed women questionnaire, administered to women
aged 15-49 years gathered data on child mortality, birth history, tetanus toxoid,
maternal and newborn health, marriage/union, contraception, sexual behaviour,
HIV/AIDS, and maternal mortality. The fourth questionnaire, called men ques-
tionnaire, administered to men aged 15-49 years collected data on marriage/union,
contraception, sexual behaviour, and HIV/AIDS.

2.5 Confidentiality and Ethical Clearance on Data Use

The MICS data do not show identities and particulars of respondents. This study
has maintained confidentiality of participants in reporting of results. The data
was used with permission from National Statistical Office of Malawi.

2.6 Data Analysis Procedures

The sample data were examined in Stata package to check for completeness of
values for all variables. The children with incomplete data in some variables were
dropped from analysis, with randomness assumption. Further, baseline charac-
teristics of children were analysed in Stata Version 10 package. These included
totals and percentages of studied children based on individual, household, cluster
location, and regional characteristics. The variable-specific estimates of two-weeks
diarrhoea incidences were calculated in Stata Version 10 package. This explored
incidences before applying statistical models to data in light of study objectives.
The crude odds ratios (ORs) estimating a child’s risk to diarrhoea given two levels
of a particular factor were calculated in Stata Version 10 package. This aimed at
foreshadowing findings to third objective in this study before fitting the models
to data. To achieve the objectives of this study, logistic model (with logit link),
Poisson model (with log link), and Bayesian semi-parametric model were fitted to
the data, using Stata Version 10 package for classical models, and BayesX package
for the Bayesian model. The results from logistic model are reported as odds ra-
tios (ORs) of effects of levels of the factors together with their corresponding 95%
CIs. The relative risks with their 95% CIs are reported from the Poisson model.
On the other hand, results from the Bayesian method are reported as estimates
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of posterior mean effects of factors, together with their corresponding 95% CrIs,
and contextual non-parametric effects, with CrIs are reported for the non-linear
variable age.

The consistency of estimates between the Bayesian semi-parametric model and
either Binomial or Poisson model was compared through estimates for sizes of
credible and confidence intervals. This answered the first objective of this study.
The logistic and Poisson models were compared based on chi-square’s goodness-
of-fit test results. This answered the second objective of this study. The test was
preferred to the usual coefficients of determination (R2) since the two models were
non-nested and the data used was enumerative (counts) in nature. A goodness-
of-fit test is a statistical test of how well the data at hand support an assumption
about the distribution of a population or random variable of interest [1]. The test
determines how well an assumed distribution fits the data. If the data are collected
in a table of k cells with at least 5 counts per cell, and observed counts in cell i
are denoted Oi while expected counts are denoted Ei, then the statistic,

X2 =
n∑

i=1

(Oi − Ei)
2

Ei
,

has chi-square distribution with k − 1 degrees of freedom (that is, E = np for a
binomial random variable).

For a 1-tailed test, if the computed X2 > chi− square(k−1, ) from distribution
tables, then the null hypothesis for particular assumed distribution is rejected at
α level, otherwise the null hypothesis is accepted. The closer the value observed
in each cell to the expected value in that cell from the assumed distribution the
higher the chances of accepting the distributional assumption of the model. Fur-
ther, model adequacy statistics, such as pseudo-R2 and parameter p-values, for
individual models were studied before each model was compared with another.

For the Bayesian model, adequacy was checked via Deviance Information Cri-
terion (DIC) and posterior predictive checking was done via posterior credible in-
tervals. The DIC is a generalization of the Akaike Information Criterion (AIC) and
Bayesian information criterion (BIC), also termed Schwarz criterion. It is most ap-
plicable in Bayesian model selection problems where the posterior distributions of
the models have been obtained through Markov chain Monte Carlo (MCMC) simu-
lation. The DIC is an asymptotic approximation as sample size gets large, just like
the AIC or BIC. It is only valid when the posterior distribution is approximately
multivariate normal. Deviance can be defined as D(θ) = −2 log(p(y|θ))+C, where
y is the data, θ are the unknown parameters of the model and p(y|θ) is the likeli-
hood function. C is a constant that cancels out in all calculations that compare
different models and, which therefore, does not need to be known. The expectation
D = E[D(θ)] is a measure of how well the model fits the data; the larger this is,
the worse the fit. The effective number of parameters of the model is computed as
pD = D−D(θ), where θ is the expectation of θ. The larger this is, the better it is
for the model to fit the data. The Deviance Information Criterion is calculated as

DIC = pD +D.
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The idea is that models with smaller DIC should be preferred to models with
larger DIC. Models are penalized both by the value of D, which favours a good fit,
but also (in common with AIC and BIC) by the effective number of parameters
pD. Since D will decrease as the number of parameters in a model increases, the
term compensates for this effect by favouring models with a smaller number of
parameters. Hence, DIC is a compromise between model fit and complexity [26].
The advantage of DIC over other criteria, for Bayesian model selection, is that it is
easily calculated from the samples generated by the MCMC simulation. AIC and
BIC require calculating the likelihood at its maximum over θ, which is not readily
available from the MCMC simulation. But to calculate DIC, simply compute D
as the average of D(θ) over the samples of θ, and D(θ) as the value of D evaluated
at the average of the samples of θ. Then the DIC follows directly from these
approximations.

2.7 Checking Randomness of Outcome Variable

The models were fitted with assumption that diarrhoea variable as well as the
error resulting from fitting each parametric model was a random variable. This
assumption had to be proved in the process of fitting the models. A procedure to
employ depends on several factors, such as type of outcome variable (discrete or
continuous), the way in which the data are observed and recorded (sequentially
or not), and the nature of the study design (cluster or not), among others. One
simplest method used for a binary variable recorded sequentially and randomized
individually is a non-parametric test called Runs Test. A run is a sequence of
like elements that are preceded and followed by different elements or no element
at all [1]. By arranging the diarrhoea cases and non-cases in the order they were
recorded, it was easy to come up with the Runs, and, hence, the probabilities of
obtaining any number of runs. The logic behind the Runs Test for randomness is
that if one obtains an extreme number of runs (too many or too few), then it can
be decided that the elements in the sequence under study were not generated in a
random fashion [1]. Thus, it sufficed to prove randomness using the Runs Test in
this study.

The test was performed in StataSE 10 package with the assumption that data
was recorded sequentially and randomized individually. A two-tailed hypothesis
test that was conducted was as follows: H0: Diarrhoea observations were generated
randomly versus H1: Diarrhoea observations were not randomly generated. The
test statistic is R = number of runs. The decision rule is to reject H0 at level α,
if R ≤ C1 or R ≥ C2. In this case, C1 and C2 are critical values obtained from
cumulative distribution function F (r) for the total number of runs R in samples of
sizes n1 for cases and n2 for non-cases, with total tail probability P (R ≤ C1+R ≤
C2) = α.
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2.8 Validity and Reliability of Estimates

The investigators in MICS study pre-tested the questionnaires during the month
of June 2006 in Chichewa and Tumbuka speaking areas of the country and in
both urban and rural settings. Based on the results of the pre-test, modifications
were made to the wording and translation of the questionnaires [28]. This ensured
internal validity of the findings that can be gotten using MICS data. The fact that
random sampling techniques were used to collect MICS data, external validity as
well as reliability of results can also be assumed. However, in case the randomness
test disapproves of assumption of randomness of diarrhoea variable then use of
Bayesian semi-parametric model strengthens external validity and reliability of
estimates from classical models where the results from the two types of models
tallied.

3. Results and Interpretations

3.1 Baseline and Cross-Classification Results

There were 22, 994 under-five children who were surveyed in 2006 MICS. A total
of 15, 018 (65.3%) of these had complete information on all studied variables and
hence, their data was analysed in this study. The incomplete data was dropped
based on randomness assumption. That is, dropped data points could produce
similar results if analysed separately. Further, the large sample that remained
ensured that dropping incomplete data points could not seriously distort findings.
The results presented in Table 3.1 show that the study involved almost equal num-
bers of female (50.4%) and male (49.6%) children. Further, it is shown that most
of the studied children were in age group 12 − 23 months (23%), with mean age
of 28 months and standard deviation of 16 months. In addition, a large propor-
tion (56.1%) of the children was weaned, with more children (87.1%) residing in
rural areas. Furthermore, most children (85.1%) had mothers whose highest ed-
ucation was primary. It is also indicated that most children (39.5%) were living
in southern region of Malawi. Besides, more children (62.2%) were living in fam-
ilies that were not sharing toilets. Similarly, a large proportion of the children
(71.7%) were drinking from piped water source. Finally, the results show that
more children (53.1%) were residing along Lake Malawi and Shire Valley areas. In
this respect, Lake Malawi and Shire Valley districts included Karonga, Rumphi,
Nkhata-bay, Nkhotakota, Salima, Dedza, Mangochi, Balaka, Machinga, Zomba,
Mwanza, Blantyre, Chikhwawa, Thyolo, and Nsanje. Whereas Chitipa, Mzimba,
Kasungu, Ntchisi, Dowa, Lilongwe, Mchinji, Ntcheu, Phalombe, Chiradzulu, and
Mulanje were regarded as highland districts.

On incidence rate, the results indicate that 3, 282 (21.85%) children had diar-
rhoea at some time in two weeks preceding the survey. In addition, the incidence
rate was proportionally distributed in males (10.97%) and females (10.88%). Fur-
ther, the rate was highest in age group 12− 23 months (8.5%). It was also high in
the breastfed children (13.4%). Furthermore, the rate was proportional between
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children who were living along Lake Malawi and Shire River valley (10.86%) and
those from highlands (10.99%). Additionally, the rate was highest in central re-
gion (9.36%) compared to the other two regions. Similarly, the rate was higher
in children who were living in rural areas of the country (19.38%). Likewise, in-
cidence was higher in children whose families were not sharing toilets (12.45%).
Besides, the rate was highest in children whose mothers’ highest education was
primary (18.87%) compared to other studied education levels. Finally, the rate
was higher in children who were drinking from piped water (15.28%) compared to
other sources.

The crude odds ratios show that female children were as likely as male children
to catch diarrhoea, although gender is not significant. Further, it is shown that
weaned children had 59.8% reduced odds of catching diarrhoea than those who
were breastfed. Further, children aged 12 − 23 months had 84.1% higher odds
of catching diarrhoea than those aged 0 − 11 months. While children aged 24 −
35; 36 − 47; and 48 − 59 months had respectively 18.8%; 52.8%; 65.4% reduced
odds of catching diarrhoea compared to those aged 0 − 11 months. Furthermore,
children from rural areas had 20.7% higher odds of catching diarrhoea than those
from urban areas. Likewise, children who were living along Lake Malawi and
Shire River banks had 16.2% reduced odds of catching diarrhoea than those from
highlands. On region of stay, the results show that children who were living in
central and southern regions had respectively 76.1% and 37.6% higher odds of
catching diarrhoea compared to those who were living in the northern region. In
addition, a child from secondary educated mother had 11.3% reduced odds of
catching diarrhoea than the one from primary educated mother. But the results
show no difference between odds of children from primary and tertiary educated
mothers catching diarrhoea. Besides, the results show that children whose families
were sharing toilets had 32.8% increased odds of catching diarrhoea than those
whose families were not. Finally, it is shown that children who were drinking from
unprotected well had 15.3% increased odds of catching diarrhoea compared to
those who were drinking from piped water. But there was no significant difference
in odds of catching diarrhoea between children who were drinking from piped water
and those drinking from protected well or surface water.

3.2 Logistic and Poisson Model Results

The results in Table 3.2 show that logistic model as a whole fits the diarrhoea
data significantly better than an empty model, that is, a model with no predic-
tors (LR = 985.24, p < 0.001). However, chi-square’s goodness-of-fit test result
leads to rejection, at 5% level, of the binomial distribution assumption of total
number of cases at any time of observation (GoF = 1019, p = 0.0015). For Pois-
son model, the output for unconditional mean and variance of diarrhoea cases
give mean of 0.2185 and variance of 0.1708. The values, though for unconditional
mean and variance, indicate slight under-dispersion. However, the variance is not
substantially smaller than the mean, E(

∑
(Y = 1)) ≈ var(

∑
(Y = 1)) ≈ 0.2, and

thus predictor variables could be of help. Further, using Microsoft Excel ‘rand’
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Characteristic Total(%) Incidence (%) OR(95% CI, p-value)

Overall 15, 018 (100) 3,282 (21.85)

Gender: Male (ref) 7,450 (49.61) 1,648 (10.97)
Female 7,568 (50.39) 1,634(10.88) 0.969 (0.897-1.047, 0.432)

Age: 0-11(ref) 2,826 (18.82) 682 (4.54)
12-23 3,458 (23.03) 1,277 (8.5) 1.841 (1.646-2.058, <0.001)
24-35 3,400 (22.64) 698 (4.65) 0.812 (0.72-0.916, <0.001)
36-47 3,054 (20.34) 399 (2.66) 0.472 (0.412-0.542, <0.001)
48-59 2,280 (15.18) 226 (1.5) 0.346 (0.293-0.408, <0.001)

Breastfeeding: Breastfed
(ref)

6,585 (43.85) 2,013 (13.40)

Weaned 8,433 (56.15) 1,269 (8.45) 0.402 (0.371-0.436, <0.001)

Area of residence Urban
(ref)

1,936(12.89) 371 (2.47)

Rural 13,082 (87.11) 2,911 (19.38) 1.207 (1.07-1.362, 0.002)

Altitudinal locale: Highland
(ref)

7,037 (46.86) 1,651 (10.99)

Lakeshore/riverine 7,981 (53.14) 1, 631 (10.86) 0.838 (0.775-0.905, < 0.001)

Region: Northern (ref) 3,650 (24.30) 604 (4.02)
Central 5,429 (36.15) 1,405 (9.36) 1.761(1.582-1.96, <0.001)
Southern 5,939 (39.55 1,273 (8.48) 1.376 (1.236-1.532, <0.001

Mothers education: Primary
(ref)

12,779 (85.09) 2,834 (18.87)

Secondary 2,165 (14.42) 437 (2.91) 0.887 (0.793-0.994, 0.038)
Higher 74 (0.49) 11 (0.07) 0.613 (0.322-1.164, 0.13)

Family toilet: Not shared
(ref)

9,348 (62.25) 1,869 (12.45)

Shared 5,670 (37.75) 1,413 (9.41) 1.328 (1.228-1.437, < 0.001)

Drinking water source:
Piped (ref)

10,766 (71.69) 2,294 (15.28)

Protected well 818 (5.45) 188 (1.25) 1.102 (0.93-1.305, 0.26)
Unprotected well 2,455 (16.35) 584 (3.89) 1.153 (1.039-1.279, 0.007)
Surface water 979 (6.52) 216 (1.44) 1.045 (0.893-1.224, 0.58)

Table 3.1: Baseline analysis and cross-classification results for child diarrhoea
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function, random samples of 100, 1000, 5000, 10000 and 15000 generated from
the diarrhoea variable produced prevalence rates of 0.27, 0.251, 0.242, 0.241, and
0.239 respectively, indicating that increasing sample size resulted in reduction of
prevalence rate. So, it was reasonable to approximate binomial model with logit
link by Poisson model with log link, but with robust standard errors to account
for clustering of data. The results for Poisson model with robust (residual-based)
standard errors indicate that the model is significantly better than an empty model
(LR = 973, p < 0.001). Further, the goodness-of-fit test is accepted at 5% level
(GoF = 9225, p = 1.00), showing that the data give no statistical evidence that
the diarrhoea variable does not follow Poisson distribution.

The estimates from Logit and Poisson models show that, adjusting for other
factors, a weaned child had respectively 30.5% and 23.2% reduced odds and risk of
catching diarrhoea compared to a breastfed child. In addition, the two models show
that children who were living in central region had respectively 67.5% and 47.2%
higher odds and risk of catching diarrhoea than those who were living in northern
region, adjusting for other factors. Likewise, children from southern region had
respectively 36.5% and 27.2% adjusted higher odds and risk of catching diarrhoea
compared to children from the north. Furthermore, it is indicated that odds and
risk of catching diarrhoea increased by 27.3% and 19.2% respectively in children
whose families shared toilets compared to those whose families did not, controlling
for other factors. The results also show that adjusted odds and risk of catching
diarrhoea in children aged 12− 23 months were respectively higher by 92.8% and
57% than in children aged 0− 11 months, while there was no difference in odds or
risk between age group 24−35 and age 0−11 months. However, the adjusted odds
and risk were respectively lower by 33.1% and 30% in children aged 36 − 47 and
lower by 50.4% and 46.2% in age 48− 59 compared to those aged 0− 11 months.
Similarly, both models showed that children living in families that shared toilets
had 27.3% and 19.2% respectively higher odds and risk of catching diarrhoea.

Finally, the two models showed no evidence of difference in adjusted odds
and risk of catching diarrhoea between children living in rural and urban areas,
lakeshore/riverside areas and highlands, primary educated and higher than pri-
mary educated mothers, and in children drinking from piped and other sources of
drinking water. These results agree with crude ORs reported before.

3.3 Runs Test for Randomness Results for Diarrhoea Vari-
able

The results from Runs Test for randomness of diarrhoea variable analysed in Stata
for n = 15, 018, using either continuity or split mean as cut-off points, with or
without continuity correction produced number of runs statistic, r = 4, 963 (z =
−3.99, p < 0.0001). Hence, the data provide no evidence, at 5% level, that the
diarrhoea observations were generated in randomly. This was expected as 2006
MICS sampling was done at cluster level and not individual level. Since, analysis
of the data is done list wise, it is very likely to find that observations are not a
random sample viewed from case by case situation rather than cluster wise.
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Variable Logit, OR (95%CI, p) Poisson, RR (95%CI,
p.)

Breastfeeding: ref (Breast-
fed)

0.695 (0.6-0.8, p<0.001) 0.768 (0.693 - 0.85,
p<0.001)

Age in months ref (0-11)
12-23 1.928 (1.17-2.16, p <

0.001)
1.57 (1.452-1.699,
p<0.001)

24-35 1.09 (0.93-1.29, p = 0.29) 1.055(0.936-1.19, p =
0.378)

36-47 0.669 (0.55-0.81, p <

0.001)
0.7(0.604-0.813, p< 0.001)

48-59 0.496 (0.4-0.61, p < 0.001) 0.538(0.453-0.637,
p<0.001)

Area of residence:
ref(Urban)

1.122 (0.985, 1.28,
p=0.08)

1.09(0.989-1.202,
p=0.083)

Attitudinal local:
ref(highland)

0.918 (0.84, 1.002,
p=0.055)

0.939(0.881-1.001,
p=0.052)

Region: ref (Northern)
Central 1.678(1.495-1.88,

p<0.001)
1.472 (1.348-1.608,
p<0.001)

Southern 1.365(1.22-1.528,
p<0.001)

1.272 (1.167-1.387,
p<0.001)

Mothers education:
ref(primary)

Secondary 0.922 (0.818, 1.04,
p=0.185)

0.941(0.861-1.029,
p=0.182)

Higher 0.783 (0.404, 1.52,
p=0.47)

0.822 (0.485-1.395,
p=0.468)

Family toilet: ref(not
shared)

1.273 (1.17-1.38, p<0.001) 1.192 (1.123-1.266,
p<0.001)

Drinking water source:
ref(piped)

Protected well 0.997(0.84, 1.19, p=0.97) 0.995 (0.878-1.129,
p=0.942)

Unprotected well 1.036(0.93, 1.16, p=-0.53) 1.025 (0.947-1.109,
p=0.539)

Surface water 1.084(0.92, 1.28, p=0.343) 1.063 (0.943-1.2, p=0.321)

Overall model fit GoF=1019, p=0.002;
LR=985, p<0.001

GoF=9225, p=1.00;
W=973, p<0.001

Table 3.2: Logit and Poisson model, adjusted OR and RR, results
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3.4 Bayesian semi-parametric model results

The results presented in this section were run in BayesX package Version 2.0.1,
using the following code:

b.regress ca1 = cage_11(psplinerw2) + bf2 + ed3a + ws8 + water3

+ dist3 + hh6 + ufreg, family =binomial iterations=12000 burnin

=2000 step=10 predict using d.

The Markov chain Monte Carlo (MCMC) simulations were run on the set of full
conditional posterior distributions in order to derive the full posterior estimates for
all parameters of interest (see [10]). The options iterations, burning and step define
the total number of iterations, the burn in period, and the thinning parameter of
the MCMC simulation run [6]. Specifying step=10 as above forces BayesX to store
only every 10th sampled parameter which leads to a random sample of length 1000
for every parameter in this case. Therefore, a sample of 10000 random numbers
is obtained with the above specifications. The model presented in Table 3.3 has
DIC based on un-standardized deviance results, Deviance (barmu) = 14847.347,
pD = 11.887, DIC = 14871.121, and DIC based on saturated deviance results,
Deviance (barmu) = 14847.347, pD = 11.887, DIC = 14871.121.

The results show that posterior mean amount of diarrhoea cases were expected
to be low in weaned children, in children whose mothers education was higher than
primary, and in children who lived close to Lake Malawi or Shire River. However,
the posterior mean amount of cases were expected to be high in children whose
families were sharing toilets, in children who were drinking from non-piped water
source, in children who were living in rural areas, and in children who were living
in other regions than northern region. These results were supported by direct
fixed-effects results for each categorical variable that were analysed in BayesX as
well. Finally, it is clear that the 80% credible intervals indicate significance of all
variables studied. While, the 95% credible intervals show that mothers education,
source of drinking water and area of residence were not significant factors for
determining a child risk to diarrhoea, but the rest variables are proven significant.
These results agree with those from logit and Poisson models.

For non-linear effects of age, it is clear that expected posterior mean cases of
diarrhoea was low in age groups 0 − 11 months, 36 − 47 months, and 48 − 59
months, but high in age groups 12 − 23 months and 24 − 35 months. However,
the 95% credible intervals show that age groups 0 − 11 and 24 − 35 months have
no significant effects. But the most vulnerable age group to diarrhoea is 12 − 23
months as found in logit and Poisson models.
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Variable Posterior mean 95%CrI 80%CrI

Constant -1.137 -1 -1

Breastfeeding: ref(breastfed) -0.376 -1 -1

Mothers education: ref (primary) -0.111 0 -1

Family toilet: ref(not shared) 0.258 1 1

Drinking water source: ref(piped) 0.029 0 1

Altitudinal locale: ref(highland) -0.202 -1 -1

Area: ref(urban) 0.110 0 1

Region: ref(northern) 0.123 1 1

Age group in months: 0-11 - 0.016 0 0
12-23 0.624 1 1
24-35 0.078 0 1
36-47 -0.411 -1 -1
48-59 -0.714 -1 -1

Table 3.3: Bayesian model results

4. Discussion of Results

4.1 Consistency of estimates found by Bayesian and Logit/
Poisson models

The presented results have shown that significance and direction of estimates from
Bayesian semi-parametric model and Poisson or logit model were generally similar.
The exception is in closeness to lake/river variable which was found to be statisti-
cally significant using the Bayesian model but insignificant using logit or Poisson
model. The three models have coincidentally ruled out usefulness of mother’s
education, area of residence (rural or urban), and source of drinking water in
determining the child’s risk of diarrhoea.

4.2 Classical Models Comparison

The chi-square’s goodness-of-fit tests’ results suggest that Poisson log-linear re-
gression model, with robust standard errors, fits the diarrhoea data set well than
the logistic regression model. This was expected as, unlike logistic model, Poisson
model with robust standard errors takes into account household correlations due
to clustering of data.

4.3 Risk Factors for Child Diarrhoea

The results suggest that gender of a child has little (if any) to do with a child’s risk
to diarrhoea, as female were as likely as male children to catch diarrhoea. This may
imply that biological make-up of a child’s body gives no bias to gender in terms
of vulnerability to diarrhoea. Further, it has been found out that breastfeeding
status of a child is useful for determining a child’s risk to diarrhoea. Thus, weaned
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children were found to have lower chances of catching diarrhoea than breastfed
children. This may reflect low possibilities of gastro transmission in a weaned
child who chooses what to put to the mouth independent of the mother. It may
also reflect on low hygiene considerations in breastfeeding mothers when giving
food items to breastfeeding babies in the country. In addition, age of a child was
found to be a useful factor in estimating a child’s risk to diarrhoea. To that effect,
age group 12− 23 months has been found to be the most risky group to diarrhoea
compared to all other age groups studied. The results also suggest that the risk is
lower in age 0− 11 months and after 23months of a child’s life.

These variations across age groups may reflect breastfeeding stages of a child.
For instance, the weaning time, which is reported to pose more threats of diarrhoea
attacks to a child [22], is around 17.6 months [19] which is spanned in age 12− 23
months. Further, the low risk in age 0 − 11 months may reflect the fact that
the data had a mixture of exclusively and predominantly breastfed children who
are reported to be at low risk of morbidity and mortality due to diarrhoea [3,
14, 15, 34, 57, 37] and the general breastfed children. The 2006 MICS, whose
data was analysed in this study, reported that approximately 56% of children
aged less than 6 months were exclusively breastfed. Thus, the observed low risk
of catching diarrhoea in age 0 − 11 months, which overlaps age 0 − 6 months,
reflect the high percentage of exclusively breastfed children analysed in the study.
Furthermore, the results show a shift of most risky age group upward from age
6 − 11 months reported in 2004 Malawi DHS or age 6 − 8 months reported by
Kandala et al (2008) for the 1999 and 2003 Nigerian DHSs to age 12-23 months
reported in this study. The shift also seems to mimic the trend of diarrhoea in
breastfeeding children reported recently by researchers in Malawi. Although this
study did not intend to explore interactions of studied factors, there seems to be
an interaction between child’s age and breastfeeding status. Studies in Malawi
have shown an increase in diarrhoea during and following weaning time among
exclusively breastfed infants reportedly weaned at 6 months [7]. The fact that
weaning time in Malawi is around 17.6 months [19] which is within 12−23months
age group then these results are not a surprise as earlier observed. As per tradition,
weaning time entails introduction of complementary infant foods which, may in
turn spread diarrhoea to the child if not hygienically prepared by the mother. This
is why researchers have recommended that greater emphasis should be placed on
hygienic preparation of weaning foods and water purification in order to decrease
infant diarrhoeal morbidity in resource-limited settings [21].

Furthermore, region of stay has been found to be a significant factor for deter-
mining child’s risk to diarrhoea. Thus, the results suggest that children from the
central and southern regions are at higher risk compared to those from northern
region. Compared with southern region, children from central region have higher
chances of catching diarrhoea. The causes of such differences can be far from
speculation. However, the findings agree with the 2004 Malawi DHS results and a
study report by Kazembe et al (2009).

Likewise, the findings have also shown that children whose mothers’ highest
education qualification is secondary have marginally lower chances of catching di-
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arrhoea compared to those with primary educated mothers. But the findings sug-
gest no difference in the risk of diarrhoea between children with primary educated
mothers and those with tertiary educated mothers, as well as between children with
secondary educated mothers and tertiary educated mothers. However, mother’s
education was found to be statistically insignificant factor for determining child
diarrhoea. This may reflect the way the study was designed, which just sought
differences in academic qualification and not in health education of mothers. Al-
though other studies in sub-Saharan Africa have supported influence of mother’s
academic qualification on a child’s chances of catching diarrhoea (see [18]), there
cannot be any immediate reason as to why one can think that mere differences in
levels of academic or formal education achievements (other than health education)
can result in differences in child’s risk to diarrhoea. No wonder there was no dif-
ference in effects between secondary and tertiary education, the same results could
be expected if levels of tertiary education were compared (for instance, diploma
and degree). What is felt to have an effect on child’s health is the mother’s knowl-
edge in health, which is richly provided in the primary education curriculum in
Malawi. But also, mere health education literacy of the mother that can be at-
tained through attendance of antenatal or postnatal care services could serve the
purpose of controlling a child’s health.

Besides, the findings suggest that children from rural areas have high chances of
catching diarrhoea compared to those from urban areas, although area of residence
was found to be statistically insignificant factor in determining a child’s risk. This
agrees with results from the 2004 Malawi DHS. The situation may reflect low rates
of exclusive breastfeeding practices in rural areas of the country. It is reported that
exclusive breastfeeding reduces diarrhoea threats in under-five children [57]. A
study report by Kerr et al (2007) has indicated that only 4% of Malawian children
are exclusively breastfed for 6 months in rural areas of Ekwendeni, Mzimba district.
Thus, a majority of mothers living in rural areas of Ekwendeni do not practice
exclusive breastfeeding during the first 6 months of a child’s life. If the situation
is true in other rural parts of the country, then the high risk to diarrhoea findings
for rural children noted in this study may not be a surprise.

Furthermore, the results have found closeness to lake/river as a useful factor
in determining a child’s risk to diarrhoea. The findings suggest that children liv-
ing along Lakeshore or river banks have reduced chances of catching diarrhoea
compared to those from highlands. The opposite was expected, but these results
may reflect high utilization of water sanitation interventions rolled by government
and other stakeholders, such as free water guard in drinking water [23] and im-
proved drinking water sources, such as piped water and boreholes, targeted to
lakeshore/riverine dwellers in recent years who were previously believed to be at
high risk of diarrhoea than highlanders. Thus, high use of safe and clean drinking
water by residents of lakeshore or shire valley has reversed the old trend of child
diarrhoea cases between highlands and lakeshore areas.

The findings also suggest that there is no difference in tendencies of catching
diarrhoea in children who drink from protected well or surface water to those
drinking from piped water. But children who drink from unprotected well were
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found to have marginally increased chances of catching diarrhoea compared to
those drinking from piped water. However, source of drinking water was found to
be statistically insignificant factor in determining a child’s risk to diarrhoea. But
the findings may reflect splash effects of the water sanitation interventions projects,
such as free water guard, which were underway in many parts of the country around
or during the time of MICS study which could not bring significant differences in
diarrhoea cases in children who were drinking from different water sources.

Finally, the findings suggest family toilet facility is a useful factor in estimating
a child’s risk to diarrhoea. Thus, children from families that shared toilets were
found to have increased chances of catching diarrhoea than those whose families
did not share toilets. This may reflect high possibilities of diarrhoea germs trans-
mission from other people who use the same toilet as the child or her mother to
the child.

5. Conclusions and Recommendations

5.1 Conclusions

The findings suggest that estimating child’s risk to diarrhoea using Bayesian semi-
parametric model is as good as using logistic or Poisson model. This is the case
since the two groups of models have agreed in isolating most significant as well as
insignificant factors for determining the child’s risk to diarrhoea. But of the two
classical models used, the goodness-of-fit of Poisson regression, with robust stan-
dard errors, is better than logistic model. It can further be concluded that region
from which a child comes (northern, central, or southern), child’s age, whether or
not a child is still breastfeeding, whether or not a child comes from a family that
shares toilet with other families, and closeness to lake/river are statistically signif-
icant factors in determining likelihood of the child catching diarrhoea. However,
under-five child diarrhoea has little (if any) to do with area of residence (rural or
urban), source of drinking water, and mother’s education.

5.2 Implications of Findings

The findings suggest that applying Bayesian semi-parametric models together with
classical models can help to confirm classical model estimates or this can provide
alternative estimates which can be trusted when one is not sure of level of satis-
faction of classical model assumptions. Thus, various approaches to data analysis
should be seen as complementary to one another rather than as competitors for
outright domination [25].

5.3 Limitations of the study

The study sample had 7, 976 (34.69%) children with missing values in at least one
variable of interest. This may have influenced the results in this study in one way
or another as the nature of variability of the dropped data was not known, but was
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just assumed to be random. In addition, the study did not exhaust all possible
models for the diarrhoea data since it was just an application study on use of
statistical models in explaining under-five diarrhoea incidence. It is important to
mention that other models, such as Negative Binomial, Generalized Estimating
Equations were possible, especially in situations where serious under-dispersion
could be noted when fitting the Poisson model and where inter-cluster correlations
were possible.

The study findings on actual epidemiology of under-five child diarrhoea inci-
dence in the Malawian population may not be accurate since the survey data used
are from 2006 which is not the most current one in the country. Thus, focus of
this study was on whether a statistical model can be used to explain/ predict the
child’s risk of diarrhoea rather than on whether the findings on diarrhoea situa-
tion in the country reflect the true current situation on the ground. Thus, much
attention was on formal theory of the applied statistical models and their practical
outcomes rather than on diarrhoea findings. Finally, the models applied were not
extended to capture seasonality of child diarrhoea in Malawi although it is obvious
that findings on seasonality of the disease could add more meaning to the study,
as study reports have indicated that there is higher probability of infant diarrhoea
in the rainy compared to the dry season in Malawi [7].

5.4 Recommendations

It is recommended that Bayesian semi-parametric models should be employed in
parallel with classical models as a checking tool when the researcher is in doubts
of meeting classical model assumptions. Further, researchers should consider fit-
ting Poisson regression model with robust standard errors when analysing child
diarrhoea data that is randomized at cluster level compared to ordinary logistic
regression model. In addition, more interventions in child diarrhoea are needed in
central region of the country by government and other stakeholders in health in
order to contain the problem in the region. Also, Ministry of Health and other
stakeholders should continue mobilising for better hygiene practices in breastfeed-
ing mothers in the country, especially around weaning period. The ministry and
other stakeholders may initiate campaign for independent family toilets in the
country as child diarrhoea is associated with sharing of toilets. Above all, there
is need for another study that may try to find causes of high risk to diarrhoea in
children from central region of Malawi.
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Abstract. The concept of normal form is used to study the dynamics
of non-linear systems. The set of systems of differential equations that
are in normal form with respect to a particular linear part has the
structure of a module of equivariants and is best described by giving
a Stanley decomposition of that module. In this work we describe the
normal form for vector fields on R3n with linear nilpotent part made
up of coupled n 3 × 3 Jordan blocks. We use an algorithm based
on the notion of transvectants from classical invariant theory known
as boosting to equivariants in determining the normal form when the
Stanley decomposition for the ring of invariants is already known.

Keywords: transvectant, equivariants, box product, Stanley decomposition.

1. Introduction

There are well-known procedures for putting a system of differential equations
ẋ = Ax + v(x), where v is a formal power series beginning with quadratic terms,
into normal form with respect to its linear part A, which can be found in [3] and [7].
Our concern in this paper is to describe the normal form space of A, that is the set
of all v such that Ax+v(x) is in normal form. Our main result is a procedure that
solves the description problem when A is a nilpotent matrix N33...3 with coupled n
3× 3 Jordan blocks, provided that the description problem is already for the ring
of invariants of the system. This procedure will be illustrated with examples and
then be generalized.

A coupled system with n 3× 3 Jordan blocks has the form
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












ẋ1
ẏ1
ż1
...
ẋn
ẏn
żn














=














N3

N3

N3

. . .

N3

N3

N3



























x1
y1
z1
...
xn
yn
zn














+ · · ·

That is,

ẋ = N33...3x+ · · · , (1.1)

where, x ∈ R3n, N33...3 =








N3

N3

. . .

N3







, N3 =





0 1 0
0 0 1
0 0 0



,

and the dots denote higher order terms starting with quadratic terms.

A Stanley decomposition of a ring or a module is a way of expressing each
element of the ring or module uniquely as a linear combination of Stanley basis
elements with coefficients that are polynomials in restricted set of variables. For
example, in the ring R[[x, y]]/

〈
xy − x − 1

〉
of polynomials in x and y modulo

the ideal generated by the syzygy (relation) xy − x − 1 = 0, any terms divisible
by xy can be eliminated and each polynomial can then be expressed uniquely as
f(x) + g(y)y. The Stanley decomposition of the ring is therefore:

R[[x, y]]/
〈
xy − x− 1

〉
= R[[x]]⊕ R[[y]]y.

The Stanley basis is {1, y} and the coefficients are arbitrary polynomials f(x) ∈
R[[x]] and g(y) ∈ R[[y]].

The idea of normal form (simplification) near an equilibrium point goes back
at least to Poincare (1880), who was among the first to bring forth the theory in a
more definite form. Poincare considered the problem of reducing a system of non-
linear differential equations to a system of linear ones. The formal solution of this
problem entails finding near-identity coordinate transformations which eliminate
the analytic expressions of the nonlinear terms.

Cushman et al. in [2], using a method called “covariant of special equivari-
ant” solved the problem of finding Stanley decomposition of N22,...,2 system. Their
method begins by creating a scalar problem that is larger than the vector problem
and their procedures are derived from classical invariant theory. Their approach
made it necessary to repeat calculations of classical invariants theory at the levels
of equivariants. Malonza in [5], solved the same problem by “Groebner basis”
methods found in [1] rather than borrowing from classical theory.
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Murdock and Sanders in [8], developed an algorithm based on the notion of
transvectants to determine the form of normal form of a vector field with nilpotent
linear part, when the normal form is known for each Jordan block of the linear
part taken separately. The algorithm is based on the notion of transvectants from
the classical invariant theory known as boosting to module of equivariants when
the Stanley decomposition for the ring of invariants is known.

Sri Namachchivaya et al. in [9], have studied a generalized Hopf bifurcation
with nonsemisimple 1:1 resonance having equilibrium point with the linear part
governed by the matrix

A=







iω 1
iω

iω 1
iω






.

The normal form for such a system contains only terms that belong to both the
semisimple part of A and the normal form of the nilpotent part, which is a coupled
Takens-Bogdanov system with N22. This example illustrates the physical signif-
icance of the study of normal forms for systems with a nilpotent linear part. In
this paper we study coupled Takens-Bogdanov systems with an arbitrary number
of 2× 2 blocks. We shall use N(3)n to denote N33...3 with n 3× 3 Jordan blocks.

Our results are mainly based on the work found in [8], that is, application of
transvectant’s method for computing normal form for the module of equivariants
of nilpotent systems. In Section 2, 3 and 4 we put together background knowledge
for understanding the content of this work. In Section 5, which forms the central
part of this paper we shall compute the module of equivariants, that is, the normal
form of N(3)n .

2. Invariants and Stanley Decompositions

Let Pj(R
n,Rm) denote the vector space of homogeneous polynomials of degree

j on Rn with coefficients in Rm. Let P(Rn,Rm) be the vector space of all such
polynomials of any degree and let P∗(R

n,Rm) be the vector space of formal power
series. If m = 1, P∗(R

n,R) becomes the ring of formal power series on Rn, where R
denotes the set of real numbers. From the viewpoint of smooth vectors fields, it is
most natural to work with formal power series (Taylor series), but since in practice
these must be truncated at some degree, it is sufficient to work with polynomials.
Now, for any nilpotent matrix N , we define the Lie operator

LN : Pj(R
n,Rn) → Pj(R

n,Rn)

by
(LNv)x = v′(x)Nx−Nv(x) (2.1)

and the differential operator

DNx : Pj(R
n,R) → Pj(R

n,R)
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by
(DNxf)(x) = f ′(x)Nx = (Nx.▽)f(x). (2.2)

In addition observe that,

LN (fv) = (DNf)v + fLNv. (2.3)

A function f is called an invariant of Nx if ∂
∂t
f(eNtx) |t=0= 0 or equivalently

f ∈ kerDN . Since
DN(f + g) = DNf +DNg

DNfg = fDNg + gDNf

it follows that if f and g are invariants, so are f+g and fg; that is ker DN is both a
vector space over R and also a subring of P(Rn,R), known as the ring of invariants.
Similarly a vector field v is called an equivariants of Nx, if ∂

∂t
(e−Ntv(eNtx)) |t=0= 0

that is v ∈ kerLN .
There are two normal form styles in common use for nilpotent systems, the

inner product normal form and the sl(2) normal form. The inner product normal
form is defined by P(Rn,Rn) = imLN ⊕ kerLN∗ where N∗ is the conjugate trans-
pose of N . To define the sl(2) normal form, one first sets X = N and constructs
matrices Y and Z such that

[X, Y ] = Z, [Z,X] = 2X, [Z, Y ] = −2Y. (2.4)

An example of such an sl(2) triad {X, Y, Z} is

X =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






, Y =







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






, Z =







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







Having obtained the triad {X, Y, Z} we create two additional triads {X,Y,Z}
and {X,Y,Z} as follows:

X = DY , Y = DX , Z = DZ (2.5)

X = LY, Y = LX, Z = LZ (2.6)

The first of these is a triad of differential operators and the second is a triad of Lie
operators. Both the operators {X,Y,Z} and {X,Y,Z} inherit the triad properties
(2.4). Observe that the operators {X,Y,Z} map each P(Rn,Rn) into itself. It
follows from the representation theory sl(2) that

P(Rn,Rn) = imY ⊕ kerX = imX⊕ kerY (2.7)

Clearly the ker X ia s subring of P(Rn,R), the ring of invariants and it follows
from (2.3) that ker X is a module over this subring. This is the sl(2) normal form
module.
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3. Box Products of Stanley Decompositions

Let X1, Y1, Z1 be a triad acting on a vector space V1, and X2, Y2, Z2 be a triad
acting on V2. There is a natural triad X, Y, Z defined on the tensor product space
V = V1 ⊕ V2 by the equation X = X1 ⊞X2, Y = Y1 ⊞ Y2, Z = Z1 ⊞ Z2, where

A⊞B = A⊕ I + I ⊕ B.

The tensor product may be replaced with ordinary product of polynomials if there
is no overlap between the variables appearing in the polynomials in the two spaces
being tensored. (This nonoverlap condition implies that the ordinary product
satisfies the algebraic requirements for a tensor product map.) See [6].

Let Vk, k = 1, 2 be sl(2) representation spaces with triads {Xk, Yk, Zk}. Then
V1⊗V2 is a representation space with triad {X, Y, Z}, where X = X1⊗ I + I⊗X2

(and similarly for Y and Z).

We define the box product of ker X1 and ker X2 by

(ker X1 ⊠ ker X2) = kerX.

Now, Consider a system with nilpotent linear part

N =

[
N̂ 0

0 Ñ

]

,

where N̂ and Ñ are nilpotent matrices of sizes n̂ × n̂ and ñ × ñ respectively
(n̂ + ñ = n), in (upper) Jordan form. Let {X,Y,Z}, {X̂, Ŷ, Ẑ}, and {X̃, Ỹ, Z̃}
be the associated triads of operators acting on R[[x1, ..., xn]],R[[x1, ..., xn̂]] and

R[[xx̂+1, ..., xn]] respectively. Suppose that f = f(x1, ..., xn̂) ∈ ker X̂ and g =
g(xn̂+1, ..., xn) ∈ ker X̃ are weight invariants of weight wf and wg, and i is an
integer in the range 0 ≤ i ≤min(wf , wg). We define external transvectant of f and
g of order i to be the polynomial (f, g)(i) ∈ R[[x1, ..., xn]] given by

(f, g)(i) =

i∑

j=0

(−1)jW i,j
f,g(Ŷ

jf)(Ỹi−jg), (3.1)

where

W i,j
f,g =

(
i
j

)
(wf − j)!

(wf − i)!
.
(wg − i+ j)!

(wg − i)!
.

We say that a transvectant (f, g)(i) is well-defined if i is in the proper range for
f and g. Notice that the zeroth transvectant is always well-defined and reduces
to the product: (f, g)(0) = fg. Now given Stanley decomposition for ker X̂ and
ker X̃, the following results found in [8] provide the first steps towards obtaining a
Stanley decomposition for kerX.
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Theorem 1. Each well-defined transvectant (f, g)i of f ∈ ker X̂ and g ∈ ker X̃
belongs to ker X. If f and g are doubly homogeneous polynomials of types (df, wf)
and (dg, wg) respectively, (f, g)i is a doubly homogeneous polynomial of type (df +

dg, wf + wg − 2i). Suppose that Stanley decompositions for ker X̂ and ker X̃

are given, then a basis for the (finite-dimensional) subspace (ker X)d of homoge-
neous polynomials in ker X with degree d is given by the set of all well-defined
transvectants (f, g)i where f is a standard monomial of the Stanley decomposition

for ker X̂ and g is a standard monomial of the Stanley decomposition for ker X̃

and df + dg = d.

Remark: A standard monomial associated with a Stanley decomposition is an ex-
pression of the form fm1

1 · · · fmk

k ϕ of R[[f1, ..., fk]]ϕ, where R[[f1, ..., fk]]ϕ is a term
in the Stanley decomposition. Notice that “monomial” here means a monomial
in the basic invariants, which are polynomials in the original variables x1, ..., xn.
Given a Stanley decomposition of kerX, its standard monomials of a given type(or
degree) form a basis for the (finite dimensional) vector space of invariants of that
type(or degree).

4. Boosting Rings of Invariants to Module of

Equivariants

In this section we describe the procedure for obtaining a Stanley decomposition of
the module of equivariants (or normal form space) ker X of a system, given the
Stanley decomposition of the ring of invariants ker X of the system.

It is well known that the module of all formal power series vector fields on Rn

can be viewed as the tensor product R[[x1, ..., xn]]⊗ Rn, see[8]. In fact the tensor
product can be identified with the ordinary product ( of a field times a constant
vector) since (just as in the case of a tensor product of two polynomial spaces
with nonoverlapping variables, as mentioned in section 3 ) the ordinary product
satisfies the same algebraic rules as a tensor product. This also follows fron the
following theorem found in [6].

Theorem 2.The unique map Pj+1(R
n,R)⊗Rn → Pj(R

n,Rn) sending f ⊗v → fv
is an isomorphism of vector spaces, under which the triad {X,Y,Z} on Pj(R

n,Rn)
corresponds with {X⊞ (−Y ),Y⊞ (−X),Z⊞ (−Z)}.

Specifically, every formal power series vector field can be written as

f1(x)e1 + ... + fn(x)en =









f1(x)
.
.
.

fn(x)








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where the ei are the standard basis vectors of Rn.

Next, the Lie derivative X = LN∗ can be expressed as the tensor product of
X and −N∗, that is X = X ⊗ I + I ⊗ (−N∗). Under the identification of ⊗ with
ordinary product, this means X(fv) = (Xf)v + f(−N∗), where f ∈ R[[x1, ..., xn
and v ∈ Rn in agreement with the following calculation, in which v′ = 0 because
v is constant.

X(fv) = LN∗(fv)

= (DN∗f)v + f(LN∗v)

= (DN∗f)v + f(v′N∗x−N∗v)

= (DN∗)v + f(−N∗v).

This kind of calculation also shows that sl(2) representation (on vector fields
) with triad {X,Y,Z} is the tensor product of the representation (on scalar fields
) with triad {X,Y,Z} and the representation on RN with triad {−N∗,−M∗,−H}
that is

ker X = ker X⊠ Rer.

It follows (as in Theorem 1 above) that a basis from the normal form space
ker X is given by well defined transvectants (f, v)(i) as f ranges over a basis for
ker X ⊂ R[[x1, ..., xn]] and v ranges over a basis for ker N∗ ⊂ Rn. The first of
these bases is given by the standard monomials of a Stanley decomposition for
ker X. The second is given by the standard basis vectors er ∈ R such that r is
the index of the bottom row of a Jordan block in N . It is useful to note that the
weight of such an er is one less than the size of the block. Then we define the
transvectant (f, v)i as

(f, er)
i =

i∑

j=0

(−1)jW i,j
f,er

(Yjf)((−M∗)j−1er)

= (f, g)i =

i∑

j=0

(−1)jW i,j
f,g(Y

jf)((M∗)j−1g).

From here, the computational procedures of box products are the same as those
used in describing rings of invariants in [8], except that infinite iterations never
arise.

5. Normal Form for Systems with Linear Part N3(n)

In this section we describe the module of equivariants (or normal form space) ker X
of a system, given the Stanley decomposition of the ring of invariants ker X of the
system.
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First, we shall consider the normal form for nonlinear systems with linear part
having two and three blocks, that is N33 and N333 as examples before generalizing
to N333...3.

5.1 System with linear part N33.

The Stanley decomposition for the ring of invariants with linear part N33 is given
by: ker X33 = R[[α1, α2, β1, β2, ξ1,2]] ⊕ R[[α1, α2, β1, β2, ξ1,2]]γ1,2 as found in [4].
Since β1, β2 and ξ1,2 has weight zero, it is convenient to remove them since we do
not expand along terms of weight zero by setting R = R[[β1, β2, ξ1,2]] and write

ker X33 = R[[α1, α2]]⊕ R[[α1, α2]]γ1,2

= R[[α2]]⊕ R[[α1, α2]]α1 ⊕ R[[α1, α2]]γ1,2

= R⊕ R[[α2]]α2 ⊕ R[[α1, α2]]α1 ⊕ R[[α1, α2]]γ1,2

In this case the basis elements are e3 and e6. Therefore we need to compute the
box product of the ring ker X33 with Re3 ⊕ Re6 which are both of weight 2.

Therefore ker X33=(ker X33)⊠(Re3⊕Re6). Distributing the box product there
are two cases to consider.
Case 1: [R⊕ R[[α2]]α2 ⊕ R[[α1, α2]]α1 ⊕ R[[α1, α2]]γ1,2]⊠ Re3.
There are four products namely:

a) R⊠ Re3 = Re3
b)R[[α2]]α2 ⊠ Re3 = R[[α2]]α2e3 ⊕ R[[α2]](α2, e3)

(1) ⊕ R[[α2]](α2, e3)
(2)

c) R[[α1, α2]]α1⊠Re3 = R[[α1, α2]]α1e3⊕R[[α1, α2]](α1, e3)
(1)⊕R[α1, [α2]](α1, e3)

(2)

d)R[[α1, α2]]γ1,2⊠Re3 = R[[α1, α2]]γ1,2e3⊕R[[α1, α2]](γ1,2, e3)
(1)⊕R[α1, [α2]](γ1,2, e3)

(2)

Recombining terms gives
[R⊕ R[[α2]]α2 ⊕ R[[α1, α2]]α1 ⊕ R[[α1, α2]]γ1,2]⊠ Re3 =
R[[α1, α2]]e3 ⊕ R[[α2]](α2, e3)

(1) ⊕ R[[α2]](α2, e3)
(2)R[[α1, α2]](α1, e3)

(1)⊕
R[[α1, α2]](α1, e3)

(2)⊕R[[α1, α2]]γ1,2e3⊕R[[α1, α2]](γ1,2, e3)
(1)⊕R[[α1, α2]](γ1,2, e3)

(2).
Case 2: Similarly we have,

[R⊕ R[[α2]]α2 ⊕ R[[α1, α2]]α1 ⊕ R[[α1, α2]]γ1,2]⊠ Re6 =
R[[α1, α2]]e6 ⊕ R[[α2]](α2, e6)

(1) ⊕ R[[α2]](α2, e6)
(2) ⊕ R[[α1, α2]](α1, e6)

(1)⊕
R[[α1, α2]](α1, e6)

(2)⊕R[[α1, α2]]γ1,2e6⊕R[[α1, α2]](γ1,2, e6)
(1)⊕R[[α1, α2]](γ1,2, e6)

(2)

Adding terms in case 1 and 2 we obtain:

ker X33 =

R[[α1, α2]]e3 ⊕ R[[α1, α2]](α1, e3)
(1) ⊕ R[[α1, α2]](α1, e3)

(2) ⊕ R[[α2]](α2, e3)
(1)⊕

R[[α2]](α2, e3)
(2) ⊕ R[[α1, α2]]γ1,2e3 ⊕ R[[α1, α2]](γ1,2, e3)

(1) ⊕ R[[α1, α2]](γ1,2, e3)
(2)⊕

R[[α1, α2]]e6 ⊕ R[[α1, α2]](α1, e6)
(1) ⊕ R[[α1, α2]](α1, e6)

(2) ⊕ R[[α2]](α2, e6)
(1)⊕

R[[α2]](α2, e6)
(2) ⊕ R[[α1, α2]]γ1,2e6 ⊕ R[[α1, α2]](γ1,2, e6)

(1) ⊕ R[[α1, α2]](γ1,2, e6)
(2).

Finally, to complete the calculation, it is necessary to compute the transvec-
tants that appear. These are of the form (f, e3)

(i) and (f, e6)
(i) for i = 0, 1, 2 where
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f = {α1, α2, γ1,2}.

(f, e3)
(0) =











0
0
f
0
0
0











(f, e3)
(1) = wff











0
−1
0
0
0
0











−











0
0

2Yf
0
0
0











=











0
−1wff
−2Yf
0
0
0











=











0
−XYf
−2Yf
0
0
0











.

Observe that the weight of wf = XY.

(f, e3)
(2) = wf(wf − 1)Yf(M∗)2e3 − 2(wf − 1)YfM∗e3 + 2Y2fe3

= −2











X2Y2f
XY2f
Y2f
0
0
0











.

We ignore the nonzero constants -1 and -2 because we are concerned with com-
puting basis elements. Similarly for the basis e6 we have:

(f, e6)
(0) =











0
0
0
0
0
f











, (f, e6)
(1) =











0
0
0
0

XYf
Yf











(f, e6)
(2) =











0
0
0

X2Y2f
XY2f
Y2f











.

Therefore the normal form ker X33 for system with linear part N33 is :
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ker X33 =

R[[α1, α2, β1, β2, ξ1,2]]











0
0
1
0
0
0











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
XYα1

Yα1

0
0
0











⊕ R[[α1, α2, β1, β2, ξ1,2]]











X2Y2α1

XY2α1

Y2α1

0
0
0











⊕ R[[α2, β1, β2, ξ1,2]]











0
XYα2

Yα2

0
0
0











⊕ R[[α2, β1, β2, ξ1,2]]











X2Y2α2

XY2α2

Y2α2

0
0
0











⊕

R[[α1, α2, β1, β2, ξ1,2]]











0
0
γ1,2
0
0
0











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
XYγ1,2
Yγ1,2
0
0
0











⊕ R[[α1, α2, β1, β2, ξ1,2]]











X2Y2γ1,2
XY2γ1,2
Y2γ1,2
0
0
0











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
0
0
0
0
1











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
0
0
0

XYα1

Yα1











⊕

R[[α1, α2, β1, β2, ξ1,2]]











0
0
0

X2Y2α1

XY2α1

Y2α1











⊕ R[[α2, β1, β2, ξ1,2]]











0
0
0
0

XYα2

Yα2











⊕ R[[α2, β1, β2, ξ1,2]]











0
0
0

X2Y2α2

XY2α2

Y2α2











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
0
0
0
0
γ1,2











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
0
0
0

XYγ1,2
Yγ1,2











⊕ R[[α1, α2, β1, β2, ξ1,2]]











0
0
0

X2Y2γ1,2
XY2γ1,2
Y2γ1,2











.
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5.2 System with linear part N333

The Stanley decomposition for ring of invariants of a system with linear part N333

is given by:

ker X333 =

R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]⊕ R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,2⊕

R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,3 ⊕ R[[α1, α2, α3, β1, β2, β3, ξ1,2, ξ1,3]]γ1,2γ1,3⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ2,3 ⊕ R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]ξ2,3⊕

R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ1,2γ2,3 ⊕ R[[α2, α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]]γ1,2ξ2,3⊕

R[[α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]](γ1,2, α3)
(1) ⊕ R[[α3, β1, β2, β3, ξ1,2, ξ1,3, ξ2,3]](γ1,2, α3)

(2).

as found in [4].

The basis elements for ker X333 are e3, e6 and e9. Therefore we need to com-
pute the box product of the invariants ring ker X333 with Re3 ⊕ Re6 ⊕ Re9. Thus
ker X333 = kerX333 ⊠ [Re3 ⊕ Re6 ⊕ Re9]. Let R = R[[β1, β2, β3, ξ1,2, ξ1,3]], then
ker X333 = [R[[α1, α2, α3]]⊕R[[α1, α2, α3]]γ1,2⊕R[[α1, α2, α3]]γ1,3⊕R[[α1, α2, α3]]γ1,2γ1,3⊕
R[[α2, α3, ξ2,3]]γ2,3⊕R[[α2, α3, ξ2,3]]ξ2,3⊕R[[α2, α3, ξ2,3]]γ1,2γ2,3⊕R[[α2, α3, ξ2,3]]γ1,2ξ2,3⊕
R[[α3, ξ2,3]](α3, γ1,2)

(1) ⊕ R[[α3, ξ2,3]](α3, γ1,2)
(2)]⊠ [Re3 ⊕ Re6 ⊕ Re9].

There are three cases to consider. Computing, simplifying and recombining
the three cases we obtain the normal form as:
ker X333 =

R[[α1, α2, α3]]e3n ⊕ R[[α3]](α3, e3n)
(i) ⊕ R[[α2, α3]](α2, e3n)

(i) ⊕ R[[α1, α2, α3]](α1, e3n)
(i)

⊕R[[α1, α2, α3]]γ1,2e3n ⊕ R[[α1, α2, α3]](α1γ1,2, e3n)
(i) ⊕ R[[α2, α3]](α2γ1,2, e3n)

(i)

⊕R[[α3]](γ1,2, e3n)
(i) ⊕ R[[α1, α2, α3]]γ1,3e3n ⊕ R[[α1, α2, α3]](α1γ1,3, e3n)

(i)

⊕R[[α2, α3]](α2γ1,3, e3n)
(i) ⊕ R[[α3]](γ1,3, e3n)

(i) ⊕ R[[α1, α2, α3]]γ1,2γ1,3e3n

⊕R[[α1, α2, α3]](α1γ1,2γ1,3, e3n)
(i) ⊕ R[[α2, α3]](α2γ1,2γ1,3, e3n)

(i) ⊕ R[[α3]](γ1,2γ1,3, e3n)
(i)

⊕R[[α2, α3, ξ2,3]]γ2,3e3n ⊕ R[[α3, ξ2,3]](α3γ2,3, e3n)
(i) ⊕ R[[α2, α3, ξ2,3]](α2γ2,3, e3n)

(i)

⊕R[[α2, α3, ξ2,3]]ξ2,3e3n ⊕ R[[α3, ξ2,3]](α3ξ2,3, e3n)
(i) ⊕ R[[α2, α3, ξ2,3]](α2ξ2,3, e3n)

(i)

⊕R[[α2, α3, ξ2,3]]γ1,2γ2,3e3n ⊕ R[[α3, ξ2,3]](α3γ1,2γ2,3, e3n)
(i) ⊕ R[[α2, α3, ξ2,3]](α2γ1,2γ2,3, e3n)

(i)

⊕R[[α2, α3, ξ2,3]]γ1,2ξ2,3e3n ⊕ R[[α3, ξ2,3]](α3γ1,2ξ2,3, e3n)
(i) ⊕ R[[α2, α3, ξ2,3]](α2γ1,2ξ2,3, e3n)

(i)

⊕R(γ1,2, α3)
(1)e3n ⊕ R[[α3, ξ2,3]]

(

(γ1,2, α3)
(1), e3n)

)(i)

⊕ R(γ1,2, α3)
(2)e3n

⊕R[[α3, ξ2,3]]
(

(γ1,2, α3)
(2), e3n)

)(i)

where i = 1, 2 and n = 1, 2, 3 such that e3(1) = e3, e3(2) = e6 and e3(3) = e9.

In general, from the above examples we conclude that the normal form of a
system with linear part N(3)n is obtained by computing the box product

ker X(3)n = ker X(3)n ⊠ (⊕n
k=1Re3k).
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The basis of the normal form of ker X(3)n are transvectants of the form: (f, e3k)
(i)

where f are the standard monomials of the Stanley decomposition of the ring of
invariants, ker X(3)n , i = 0, 1, 2 and k = 1, ..., n.
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Abstract. We determine the Credit Default Swap spread term struc-
ture where the firm’s asset price process is driven by a jump-diffusion
model. In order to get an efficient implementation of a Monte Carlo
algorithm, we propose a antithetic variate as a variance reduction pro-
cedure. The antithetic variate is derived from the compound Poisson
process in the jump-diffusion process.

1. Introduction

Among the various methods that can be used to determine the insurance premium
that the protection buyer of a Credit Default Spread (CDS) pays to the protection
seller, for protection against the credit risk for an exposure on assets of the reference
entity, is the cash flow method (see, e.g., Hull [4], Hull and White [5] ). In this
article, we consider an extension of the Merton model where a firm has issued both
equity and debt. The total value of the firm assets Vt which comprises equity and
debt is modelled as a jump-diffusion model (Zhou [7]):

dVt
Vt

= µdt+ σvdWt + (Π− 1)dNt, (1.1)

where µ represents expected return on firm’s assets; Wt is a Weiner process; Nt

is a Poisson process with intensity λ; Π is the jump size with expected value of
ν+1; dWt, dNt and Π are assumed to be mutually independent. According to [7],
modelling firm asset values by a geometric Brownian motion does not produce the
term structure of CDS spreads observed from market data. As an extension [7],
has incorporated jumps in the asset process.

We characterise default of the firm by a first-passage model. The firm defaults
when the value of its assets falls below a certain fixed barrier.

The rest of the article is as follows in Section 2, we consider the valuation
method and we present the valuation formula for the CDS spread. We determine
the risk neutral risk dynamics in section 3. In section 4, we discuss a basic Monte
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Carlo technique and how it can be made efficient by variance reduction techniques.
We give numeric results based of implementing the algorithm and conclude in
section 6.

2. Valuation of a CDS

We consider the discounted cash flow method to determine the periodic premium
payments that the protection buyer of a CDS makes to the protection seller. Fol-
lowing [5], the CDS spread is found by discounting the future payments at the risk
free rate r. We assume that there is a risk-neutral probability Q equivalent to the
real world probability. Our approach is a risk-neutral pricing methodology.

The first passage-time model entails that a default event happens at τ which
is such that

τ = min{t : Vt ≤ K, t ≥ 0}, (2.1)

where K is the fixed barrier. In general, the time to default τ has no tractable
distribution (see Giesecke et al. [1]).

The protection buyer makes periodic payments at times ti for i = 1, 2, · · · , d
until maturity (t = T ) or default, whichever happens first. There are two compo-
nents of the buyer payments. At time ti the buyer pays Ns(ti− ti−1)1{τ>ti}, where
s is the CDS spread of a newly issued CDS and N is the notional value of assets
protected by the CDS and 1{.} is the indicator function. The other part is the
accrual payment of Ns(τ − ti)1{ti<τ<ti+1}. The present value of the total payments
to the seller is

EQ

[
d∑

i=1

(
e−rtiNs∆ti1{τ>ti} + e−rτNs(τ − ti)1{ti<τ<ti+1}

)

]

,

where ∆ti = ti− ti−1. Assuming that the CDS is cash settled, if the firm defaults,
the protection seller makes a default payment of N(1 − RR), where RR is there
recovery rate which we will assume to be deterministic and is known at inception
t0 = 0 of contract. The present value is given by EQ[e

−rτN(1− RR)1{τ≤T}].

To the buyer the value of the CDS is the surplus of payments to the receipts.
The CDS spread is the value s that makes the surplus zero and its value is given
by:

s =
EQ[e

−rτ (1− RR)1{τ≤T}]

EQ

[
∑d

i=1

(
e−rti∆ti1{τ>ti} + e−rτ (τ − ti)1{ti<τ<ti+1}.

)] (2.2)

The formula (2.2) cannot be evaluated by analytic means because the random
variable τ does not have a closed form distribution. In section 4, we develop a
Monte Carlo algorithm to approximate s.
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3. Risk-neutral dynamics

Since our approach will be a risk-neutral valuation, we determine the corresponding
firm dynamics under Q. Assuming a finite number of jumps and a jump sizes, we
can apply a general Ito formula (Hanson [3]) for semi-martingale processes such
as (1.1). In this case the solution for (1.1) is

d ln(Vt) = (µ− σ2
v/2)dt+ σvdWt + ln(Π)dNt, (3.1)

which upon being integrated yields

Vt = V0 exp((µ− σ2
v/2)t+ σvWt + ln(Π)Nt). (3.2)

In a small interval ∆ti = ti− ti−1, the Poisson process Nt is such that the number
of jumps is 0 or 1. Using a uniform spacing, i.e., ∆ti = ∆t = T/n, where n is
the number of partitions of [0,T]. Similarly to [7], we assume that the jump size is
lognormally distributed, i.e., ln(Π) ∼ N(µπ, σ

2
π), where N(, ) denotes the normal

distribution. From the properties of the lognormal distribution, ν = E(Π) − 1 =
exp(µπ + σ2

π/2)− 1. Letting Xt = ln(Vt), we may write

∆Xti = (µ− σ2
v/2)∆t + σv∆Wti +

dNti∑

j=1

πij. (3.3)

From which it follows that

Xti −Xti−1
= xi + yiπi, (3.4)

where

xi ∼ N((µ− σ2
v/2)T/n, σ

2
vT/n), πi ∼ N(µπ, σ

2
π) (3.5)

yi =

{
0, with probability 1− λT/n
1, with probability λT/n,

(3.6)

see [7] for this decomposition.
In the risk-neutral world, EQ(Vt) = V0e

rt. One can determine the expected
value of Vt from (3.2) by conditioning on N(t). The same idea has been used by
Merton [6] in option pricing where the underlying price follows a jump diffusion
process. In this case E(Vt) = V0e

(µ+λν)t. From which it follows that µ = r − λν.
Finally the risk-neutral dynamics of the firm’s asset value is given by

dVt
Vt

= (r − λν)dt+ σvdWt + (Π− 1)dNt,

= rdt+ σvdWt + (Π− (ν + 1))dNt + dÑt,

where Ñt = Nt − λt is a compensated Poisson process and the corresponding
solution may be written as:

d ln(Vt) = (r − σ2
v/2− λν)dt + σvdWt + ln(Π)dNt, (3.7)
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4. Monte Carlo Algorithm

In an elementary Monte Carlo algorithm, in order for the standard deviation to be
reduced by ten the number of Monte Carlo loops has to be increased by a hundred
fold. However Monte Carlo algorithms can be derived with lower variances. We
will use an antithetic procedure for variance reduction.

To illustrate the antithetic variate method, from (3.5), may write xi = (µ −
σ2
v/2)T/n+σv

√

T/nZ1 and πi = µπ+σπZ2, where Z1 and Z1 are standard normal
variates. The two variables xi and πi are usually referred to as the thetic variables.
To obtain the antithetic variates, we let x

(a)
i = (µ − σ2

v/2)T/n − σv
√

T/nZ1 and

π
(a)
i = µπ − σπZ2. The compound Poisson process

∑dNti

j=1 πij in (3.3), involves a
summation normal variables and for this reason derivation of antithetic variates is
straight forward. See [3], for instance. In an implementation an algorithm based
on as antithetic technique, Z1 and Z2 are a prior draw and are reused in leu of
being generated afresh. For more details on the antithetic control variate method
in finance, see e.g., Glasserman [2].

For each Monte Carlo simulations we determine whether or not there has been
default based on the two pathsXt and X

(a)
t hitting the fixed barrier ln(K). Finally,

the Monte Carlo algorithm with the antithetic variate to determine the CDS spread
is as follows:

1. Subdivide [0, T ] into n equal parts. Denote ti = T · i/n.

2. Determine protection payment times tk such that tk = tk−1 + δt for k =
1, 2, · · · , Nk.

3. Perform Monte Carlo simulations for j = 1, 2, · · · ,M . For each j perform
the following:

(a) Generate the mutually independent random vector (xi, πi, yi) according
to (3.5) and (3.6)

(b) i. Let Xt0 = ln(V0) and calculate Xti according to (3.4).

ii. Let X
(a)
t0 = ln(V0), X

(a)
ti = x(a) + yiπ

(a)
i

(c) i. Find the smallest integer i ≤ n: Xti ≤ ln(K). If such i exists, set
τ = i.

ii. Find the smallest integer i ≤ n: X
(a)
ti ≤ ln(K). If such i(a) exists,

set τ (a) = i(a).

(d) i. Calculate the discounted protection payment PPj ∀k: τ ≥ tk when
i exists, otherwise PPj = 0.

ii. Calculate the discounted protection payment PP
(a)
j ∀k: τ (a) ≥ tk

when i(a) exists, otherwise PP (a) = 0.

(e) i. Calculate the discounted accrual payment APj = (τ− tk)e−rτ when
i exists, otherwise APj = 0.
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Figure 5.1: Jump parameters: C: λ = 0.1, σπ = 1.0, B: λ = 1.0, σπ = 0.1 and A:
λ = 10.0, σπ = 0.01

ii. Calculate the discounted accrual payment AP
(a)
j = (τ (a)−tk)e−rτ

(a)

when i(a) exists, otherwise AP
(a)
j = 0.

(f) i. Calculate the discounted default payment DPj when i exists, oth-
erwise DPj = 0.

ii. Calculate the discounted default payment DP
(a)
j when i(a) exists,

otherwise DP
(a)
j = 0.

(g) Set aDPj = 0.5(DPj+DP
(a)
j ), aAPj = 0.5(APj+ aAP

(a)
j ) and aPPj =

0.5(PPj + PP
(a)
j )

4. Calculate

s =

(1/M)
M∑

j=1

aDPj

(1/M)

(
M∑

j=1

aPPj +
M∑

j=1

aAPj

) .

5. Numerical Results

In this section we present our results based on the Monte Carlo method with
antithetic variates to determine CDS spread. Figure 5.1 shows the CDS spread for
maturities ranging from 0.5 to 20 years. The graph has been plotted for different
jump parameters. The rest of the parameters are as follows: V0 = 100.0, r = 0.05,
σv = 0.2, µ = 0.0, we also assume a constant recovery rate RR of 0.4 and quarterly
insurance buyer payments. The graph shows that the CDS spread decrease as
with maturity. This is mainly due the positive drift of the asset price process. An
increase in jump intensity λ and σπ increases the CDS spread since the likelihood
of default is higher. However to get term structure spreads consistent with market
data we increase λ and decrease σπ.
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T (years) λ σπ s (bps)
0.5 0.1 1.0 157.10

1.0 0.1 0.36
1.0 0.1 1.0 177.15

1.0 0.1 9.38
7.0 0.1 1.0 416.11

1.0 0.1 137.22
18.0 0.1 1.0 393.51

1.0 0.1 122.37

Table 5.1: CDS spreads for different maturities and different jump sensitivities

From Table 5.1, we confirm that generally the CDS spread increases with ma-
turity but for longer T it decreases. If a firm survives the first few years it becomes
well adapted to its industry and hence the likelihood of default decreases.

6. Conclusion

In this paper we derived a Monte Carlo method which is based on the antithetic
technique of variance reduction. The algorithm is used to determine the CDS
spread for a firm that has issued debt whose asset price dynamics follow a jump-
diffusion process. The results based on the model developed confirm market ob-
servations.
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Abstract. This paper concerns finding optimal routes that minimize
the overall cost of transporting confectionery products from the Zomba
Bakery by applying mathematical modelling. We used the baseline in-
formation collected from the company to estimate variables of interest
and to understand the problem. The study was designed as a Mul-
tiple Travelling Salesman Problem (m-TSP) with distribution centres
as nodes and in-between distances as weighted edges. An optimization
problem was then formulated using linear programming and graph the-
ory techniques; and implemented using Prim’s algorithm [20]. From
the distribution centres, it was possible to find optimal routes or Min-
imum Spanning Tree (MST) that reduce cost of delivery considerably
by 40%. Other than the derived MST, other routes registered higher
fuel and operation costs. MST also provided the possibility of using
one vehicle to visit all distribution centres thereby reducing the num-
ber of vehicles to be used. The study also demonstrated the possibility
of obtaining solution to seemingly complex problems using relatively
simple mathematical ideas.

Keywords: Transport Optimization, Linear programming, Prim’s algorithm,
Minimum Spanning Tree

1. Introduction

The optimal route finding problem, e.g. for a fleet of vehicles, has long been
studied. The reader is referred to [10, 13, 3, 4, 7] among other references for detailed
exposition on the topic. Transport optimisation models or vehicle routing problems
(VRP) [11] find their application in diverse fields including food distribution, air
plane and train scheduling.

In 1941, Hitchcock [10, p.319] developed the first transportation model. This
was later modified by Dantzig [10] who used a simplex method to compute optimal
solution of the problem.
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Literature to date describes several variants of VRPs. For instance, Muthukan-
nan [14] modelled an urban transit system utility by relating the demand of a node
to the aggregate cost of travel, travel time and accessibility. Tavares [24] proposed
the application of Geographic Information System (GIS) in 3D route modelling for
waste collection taking relief into consideration to minimize fuel consumption. In
their findings, the optimization for the lowest fuel consumption yielded 52% sav-
ings on fuel, yet travelling a 34% longer distance. The study hence showed the
importance of considering simultaneously the relief of the territory and lowest fuel
consumption criterion when optimizing vehicle routes.

Several studies on transport models have focused on variants of Travelling Sales-
man Problem (TSP) [13] with particular constraints, e.g. Multiple Travelling Sales-
man Problem (m-TSP), Euclidean Travelling Salesman Problem (ETSP) and Mul-
tiple Travelling Salesman Problem with Time Window (m-TSPTW) [23, 6, 5, 11].
Most of these studies have utilized comprehensive and special evolutionary algo-
rithms to solve the problems with multi-objective functions, and have hence been
prone to uncertainty factors [1, 18, 22, 25]. However they have shown advantages
and disadvantages of solution approaches based on each algorithm capabilities.
The studies have also suggested that many problems in transportation logistics
can be modelled and solved similarly whenever routes can be enumerated. Hence
the present study aims at finding the optimal routes for delivering products to
markets in a Malawian setup, where application of such relatively simple ideas is
scanty.

In this paper we apply a mathematical model that describes distribution of
goods and compute an optimal solution using simple algorithms. In [23], Shafie
points out that robot (vehicle) counts can be less important when robots (vehi-
cles) and manpower (labour) costs are low. He thus concludes that by considering
minimal cost (distance), energy consumption is reduced. As such, in our study,
only distance minimization was considered. The study demonstrates the applica-
tion of mathematics to the industry through use of existing techniques in problem
identification and solution method at a locally manufacturing company in Zomba
district.

2. Materials and Methods

A sample of data from the company were scrutinized to understand the study
characteristics. They included distribution system, travel times, product demands
and fuel savings. In addition, information regarding choice of routes and the
number of vehicles used when distributing the products were also collected.

At the time of the study, Zomba bakery had 13 active distribution centres with
only one source which is the Bakery itself. Since the overall aim was to minimize
the total costs of moving the products from the Bakery to all of the 13 centres,
we decided that the problem was an m-TSP- a special case of VRP, and hence
we designed a Multi-Objective (MO) function (2.1) that depended on five criteria,
namely; fuel costs (per litre), time of delivery, distance (in km), labour (number
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of personnel involved per trip) and number of vehicles needed for the execution of
the entire process. Hence, the following structural MO function was formulated;

5∑

k=1

Zk (2.1)

where k is the decision criterion. For instance, if k=1, fuel cost criterion, then

Z1 =

13∑

j=1

C1
1jX1j = C1

1,1X1,1 + C1
1,2X1,2 . . .+ C1

1,13X1,13. (2.2)

Similarly for k = 2 (labour),

Z2 =

13∑

j=1

C2
1jX1j = C2

1,1X1,1 + C2
1,2X1,2 . . .+ C2

1,13X1,13 (2.3)

k = 3 (number of vehicles) yields

Z3 =

13∑

j=1

C3
1jX1j = C3

1,1X1,1 + C3
12X1,2 . . .+ C3

1,13X1,13; (2.4)

k = 4 (distance),

Z4 =

13∑

j=1

C4
1jX1j = C4

1,1X1,1 + C4
1,2X1,2 . . .+ C4

1,13X1,13 (2.5)

and k = 5 (time of delivery) gives

Z5 =
13∑

j=1

C5
1jX1j = C5

1,1X1,1 + C5
1,2X1,2 . . .+ C5

1,13X1,13 (2.6)

for all j = 1, 2, ....., 13.
Here, i = 1 represents the central store, while j = 1, 2, ..., 13 represents all

distribution centres. Ck
1j is the cost incurred to transport one unit of goods from

the central store 1, the Bakery, to jth distribution centre with respect to criterion
k; and X1j is the amount of goods transported from the Bakery to destination j.
Since only distance minimization was considered in this study, our m-TSP involved
minimizing Z4 in equation (2.5):

Minimize
13∑

j=1

C4
1jX1j (2.7)

subjective to non-negativity constraints X1j ≥ 0.

m-TSP consists of determining a set of routes for m salesmen who all start from
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and turn back to home city (depot). Thus, in general the m-TSP could be defined
as follows; Given a set of nodes, let there be m salesmen located at a single depot
node. The remaining nodes (cities) that are to be visited are called intermediate
nodes [5]. Then, the problem consists of finding tours for all m salesmen, who
all start and end at the depot, such that each intermediate node is visited exactly
once and the total cost of visiting all nodes is minimised. In our case, the cost
metric was defined in terms of distance.

The first data category on the distance minimization procedure was the route data.
This was because the selection of freight nodes and route segments, as well as their
distances, was a major factor in minimizing the costs of transporting goods from
the Bakery to a destination. Data relevant to the master route list and node defi-
nitions available in the map were sourced from the National Spatial Data Centre
through google earth software. Table 2.1 displays this information, where the ab-
breviations stand for the centres: Zomba Bakery, Malosa, Changalume, Thondwe,
Namadzi, Nasawa, Mayaka, Jali, Turn-off Centre, Kachulu, Mpasakamwa, Migowi
and Phalombe, respectively.

Table 2.1: Distribution centres, their codes and minimum distance from Zomba
Bakery

Abbreviation Za Ma Ce Th Nz Na Mk Ji Tc Ku Mp Mg Ph

Code 1 2 3 4 5 6 7 8 9 10 11 12 13

Distance (km) 0 24 15 16 27 37 35 21 19 31 26 61 67

Recognizing that the cost system is inherently complex, sensitive to market changes,
that it varies from company to company and that the breakdown of costs is rarely made
available, the study only utilised values as in (Table 2.2). Any user of this model is free
to modify these costs to suit his or her problem characteristics.

Table 2.2: Estimates of Fuel Usage for some distances. Source: Zomba Bakery

Retail Centre Chiponde Kachulu Phalombe Zomba City

Fuel usage (litres) 50 30 45 35

Distance (kilometres) 156 31 67 20

Consumption(litres per 100 km) 32.05 96.77 67.16 175

Wear and tear costs K 84,240 K 16,740 K 36,180 K 10,800

Distance Minimization: The Spanning Tree

Here, we illustrate how the distance-dependencies of the transportation network could
be modelled. Then we considered Kruskal’s and Prim’s algorithms [16, 20] to solve the
problem. All routes and distribution points mimic an undirected connected weighted
graph with distribution points as vertices while distances between any two points acted
as weighted edges of the graph. Because our route system involved a lot of edges, we
employed the Prim’s algorithm to determine the total minimum distance that vehicles
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could travel by visiting each distribution point exactly once.

Using information in Table 2.1, we came up with the graph (route map) depicting the
distribution of the products from Zomba Bakery to the distribution centres as shown
in Figure 2.1, where numbers over edges indicate distances bewteen the two connecetd
nodes identified by their code numbers.

Figure 2.1: Route Map
The undirected graph in Figure 2.1 was then coded in Matlab giving the sparse

matrix in Table 2.3 in which the (i,j)th entry in the matrix is the weight (distance) of
the edge (route) between nodes (distribution centres) i and j, where a weight of zero
means that no edge existed between the nodes.

Table 2.3: Distance Matrix
Za Ma Ce Th Nz Na Mk Ji Tc Ku Mp Mg Ph

Za 0 24 15 16 0 0 0 21 19 0 0 0 0
Ma 24 0 0 0 0 0 0 0 0 0 0 0 0
Ce 15 0 0 19 0 0 0 0 0 0 0 0 0
Th 16 0 19 0 11 0 20 0 0 0 0 0 0
Nz 0 0 0 11 0 22 0 0 0 0 0 0 0
Na 0 0 0 0 22 0 12 0 0 0 0 0 0
Mk 0 0 0 20 0 12 0 14 0 0 0 0 0
Ji 21 0 0 0 0 0 14 0 12 0 5 0 0
Tc 19 0 0 0 0 0 0 12 0 12 0 0 0
Ku 0 0 0 0 0 0 0 0 12 0 0 0 0
Mp 0 0 0 0 0 0 0 5 0 0 0 31 41
Mg 0 0 0 0 0 0 0 0 0 0 31 0 14
Ph 0 0 0 0 0 0 0 0 0 0 41 14 0
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3. Results and Discussion

Appendix I gives the MATLAB code implementing Prim’s algorithm for the problem;
and Table 3.1 gives results (Minimum Spanning Tree (MST) upon executing the program.

Table 3.1: Results of Minimum Spanning Tree Matrix

ZB Ma Ce Th Nz Na Mk Ji Tc Ku Mp Mg Ph

ZA 0 24 15 16 0 0 0 0 19 0 0 0 0
Ma 0 0 0 0 0 0 0 0 0 0 0 0 0
Ce 0 0 0 0 0 0 0 0 0 0 0 0 0
Th 16 0 0 0 11 0 0 0 0 0 0 0 0
Nz 0 0 0 0 0 0 0 0 0 0 0 0 0
Na 0 0 0 0 0 0 0 0 0 0 0 0 0
Mk 0 0 0 0 0 12 0 0 0 0 0 0 0
Ji 0 0 0 0 0 0 14 0 0 0 5 0 0
Tc 0 0 0 0 0 0 0 12 0 12 0 0 0
Ku 0 0 0 0 0 0 0 0 0 0 0 0 0
Mp 0 0 0 0 0 0 0 0 0 0 0 31 0
Mg 0 0 0 0 0 0 0 0 0 0 0 0 14
Ph 0 0 0 0 0 0 0 0 0 0 0 0 0

From the the matrix in Table 3.1, non-zero entries are edges that connect two ad-
jacent nodes, giving the Minimum spanning Tree (MST) or optimal routes shown in
Figure 3.1.
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Figure 3.1: Minimum Spanning Tree
It can be seen from the Minimum Spanning Tree which optimal routes vehicles ought

to take when delivering products to the outlets. Total distance, time taken and fuel used
to visit all the centres using the above computed MST were then compared with similar
values that would be obtained if all the centres were visited using the current random
routes that the company uses. The results are presented in Table 3.2.
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Table 3.2: Comparison Between Optimal and Other Routes

Route I II III IV MST

Distance(Km) 308 210 195 227 185
Fuel usage(litres) 51 35 32 39 30
Fuel costs K 23,100 K 15,750 K 14,550 K 17,025 K13,875
Total Time (Hr) 6.16 4.2 3.9 4.54 3.7

Using the computed optimal routes to visit each of the 13 centres, one finds that the
total fuel cost is K 13,875. Table 3.2 shows that the longer the distance vehicles could
take in delivering goods to the centres, the higher the fuel costs, especially when the
routes are repeated.

Furthermore, from Table 3.2, one finds that if the proposed optimised routes were
used by the company, both distance and time costs would decrease by 40% on average.
In addition, the MST indicates that Management of Zomba Bakery would not need more
vehicles than they have in order to visit each distribution centre because even one vehicle
could visit all the centres at a minimum cost.
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Abstract. We present new notions and aspects of orthogonality of elemen-
tary operators in normed spaces. Characterizations, generalizations and
applications of orthogonality are also considered. In particular, results on
orthogonality of the range and the kernel of elementary operators and the
operators inducing them in norm-attainable classes are established.
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1. Introduction

Orthogonality in normed spaces is a concept that has been analyzed for quite a period of
time. Benitez [4] described several types of orthogonality which have been studied in real
normed spaces namely: Robert’s orthogonality, Birkhoff’s orthogonality, Orthogonality
in the sense of James, Isoceles, Pythagoras, Carlsson, Diminnie, Area among others.
Some of these orthogonalities are described as follows. For x ∈ M and y ∈ N where M
and N are subspaces of E which is a normed linear space, we have,

(i) Roberts: ‖x− λy‖ = ‖x+ λy‖, ∀, λ ∈ R.

(ii) Birkhoff: ‖x+ y‖ ≥ ‖y‖.

(iii) Isosceles: ‖x− y‖ = ‖x+ y‖.

(iv) Pythagorean: ‖x− y‖2 = ‖x‖2 + ‖y‖2.

(v) a-Pythagorean: ‖x− ay‖2 = ‖x‖2 + a2‖y‖2, a 6= 0.

(vi) Diminnie: sup{f(x)g(y) − f(y)g(x) : f, g ∈ S′} = ‖x‖‖y‖ where S′ denotes the
unit sphere of the topological dual of E.

(vii) Area: ‖x‖‖y‖ = 0 or they are linearly independent and such that x,−x, y,−y
divide the unit ball of their own plane (identified by R2) in four equal areas.
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Consider a normed space A and let TA,B : A → A. An elementary operator T has the
following representation:

T (X) =

n∑

i=1

AiXBi, ∀ X ∈ A,

where Ai, Bi are fixed in A. Let A = B(H). For A, B ∈ B(H) we define the particular
elementary operators:

(i) the left multiplication operator LA : B(H) → B(H) by:
LA(X) = AX, ∀ X ∈ B(H).

(ii) the right multiplication operator RB : B(H) → B(H) by :
RB(X) = XB, ∀ X ∈ B(H).

(iii) the generalized derivation (implemented by A, B) by:
δA,B = LA −RB.

(iv) the normal derivation (implemented by A) by:
δA,A = LA −RA.

(v) the basic elementary operator(implemented by A, B) by:
MA, B(X) = AXB, ∀ X ∈ B(H).

(vi) the Jordan elementary operator(implemented by A, B) by:
UA, B(X) = AXB +BXA, ∀ X ∈ B(H).

Regarding orthogonality involving elementary operators, Anderson[1] established the
orthogonality of the range and kernel of normal derivations. Others who have also
worked on orthogonality include: Kittaneh [22], Mecheri [30] among others. For details
see [1-28, 32-34]. We shall investigate the orthogonality of the range and the kernel of
several types of important elementary operators.
Some of these orthogonalities are described as follows. For x ∈ M and y ∈ N where M
and N are subspaces of E which is a normed linear space, we have,

(i) Roberts: ‖x− λy‖ = ‖x+ λy‖, ∀, λ ∈ R.

(ii) Birkhoff: ‖x+ y‖ ≥ ‖y‖.

(iii) Isosceles: ‖x− y‖ = ‖x+ y‖.

(iv) Pythagorean: ‖x− y‖2 = ‖x‖2 + ‖y‖2.

(v) a-Pythagorean: ‖x− ay‖2 = ‖x‖2 + a2‖y‖2, a 6= 0.

We extend this study to the NA(H) and NA(H)-classes.

2. Orthogonality in NA(H)-classes

Definition 1. Let T : NA(H) be the class of all norm-attainable operators an a Hilbert
space H and let T : NA(H) → NA(H) be defined by

T (X) =

n∑

i=1

AiXBi, ∀ X ∈ NA(H),
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where Ai, Bi are fixed in NA(H). We define the range of T by

RanT = {Y ∈ NA(H) : Y = T (X), ∀ X ∈ NA(H)},

and the Kernel of T by

KerT = {X ∈ NA(H) : T (X) = 0, ∀ X ∈ NA(H)}.

It is known [30] that for any of the examples of the elementary operators defined in
Section 1 (inner derivation, generalized derivation, basic elementary operator, Jordan
elementary operator), the following implications hold for a general bounded linear oper-
ator T on a normed linear space W , i.e.

RanT⊥KerT ⇒ RanT ∩KerT = {0}

⇒ RanT ∩KerT = {0}.

Here RanT denotes the closure of the range of T and KerT denotes the kernel of T and
RanT⊥KerT means RanT is orthogonal to the Kernel of T in the sense of Birkhoff.

Lemma 1. Let A,B,C ∈ NA(H) with CB = I (I is an identity element of NA(H)).
Then for a generalized derivation δA,B = AX−XB and an elementary operator ΘA,B(X) =
AXB −X, RB(RanδA,C ∩KerδA,C) = RanΘA,B ∩KerΘA,B. Moreover, if RanδA,C ∩
KerδA,C = {0} then RanΘA,B ∩KerΘA,B = {0}.

Proof. First, we see that if CB = I then RBδA,C = ΘA,B. To see this, ∀ X ∈ NA(H),
RBδA,C(X) = AXB − XCB = AXB − X = ΘA,B. Suppose that P ∈ RB(RanδA,C ∩
KerδA,C). Now, it is a fact that the uniform norm assigns to real- or complex-valued
continuous bounded operator RB defined on any set NA(H) the nonnegative number
‖RB‖∞ = sup{‖RB(X)‖ : X ∈ NA(H)}. Since RBδA,C = ΘA,B and RB is continuous
for the uniform norm, then P ∈ RanΘA,B∩KerΘA,B. Conversely, since RC is continuous
for the uniform norm, then by the same argument we prove that if P ∈ RB(RanΘA,B ∩
KerΘA,B) then P ∈ RB(RanδA,C ∩KerδA,C).

Remark 4. Let A,B,C ∈ NA(H) with CB = I (I is an identity element of NA(H)).
Then RB(RanδA,C ∩ KerδA,C) = RanΘA,B ∩ KerΘA,B. Indeed, since RanΘA,B ⊆
RanΘA,B, then by adapting the proof of Lemma above, the equality holds.

Let A ∈ NA(H). The algebraic numerical range V (A) of A is defined by:

V (A) = {f(A) : f ∈ NA(H)′ and ‖f‖ = f(I) = 1}

where NA(H)′ is the dual space of NA(H) and I is the identity element in NA(H).

Definition 2. If V (A) ⊆ R, then A is called a Hermitian element. Given two Hermitian
elements S and R, such that SR = RS then D = S +Ri is called normal.

Proposition 1. Let S and R be Hermitian elements. Then δS,R is also Hermitian.

Proof. From [24], it is known that if X is a Banach space then V (δS,R) = V (S)− V (R)
for all S,R ∈ B(X). Therefore, V (δS,R) ⊆ V (LS)− V (LR) = V (S)− V (R) ⊆ R.

We note that the converse of Proposition 1 is true if NA(H) = B(X) where X is a
Banach space.
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Lemma 2. If D and E are normal elements in NA(H) then δD,E is also normal.

Proof. Assume D = S + Ri and E = T + Ui where S,R, T, U are Hermitian ele-
ments in NA(H) such that SR = RS and TU = UT. Then δD,E = δS,T + iδR,U with
δS,T δR,U = δR,U δS,T . Since S,R, T, U are Hermitian, then by Proposition 1 δR,U and
δS,T are Hermitian and so is δD,E.

Lemma 3. ([24]) Let X be a Banach space and T ∈ B(X). If T is a normal operator,
then RanT⊥KerT .

Theorem 1. Let NA(H) be as defined above.If D and E are normal elements in NA(H)
then

RanδD,E⊥KerδD,E.

Proof. Assume that D and E are normal elements in NA(H). Then by Lemma 2, δD,E
is normal and by Lemma 3 RanδD,E⊥KerδD,E.

Corollary 1. If A,B ∈ NA(H) are normal and there exists C ∈ NA(H) such that
BC = I then RanΘA,C ∩KerΘA,C = {0}.

Proof. If A,B ∈ NA(H) are normal elements, then by Theorem 1,
RanδA,B⊥KerδA,B. This implies that RanδA,B ∩KerδA,B = {0}. Using Lemma 1, we
conclude that RanΘA,C ∩KerΘA,C = {0}.

The following theorem from Kittaneh [22] gives an orthogonality condition for generally
linear operators. The proof is omitted.

Theorem 2. Let be NA(H) a normed algebra with the norm ‖.‖ satisfying ‖XY ‖ ≤
‖X‖‖Y ‖ for all X, Y ∈ NA(H) and let δ : NA(H) → NA(H) be a linear map with
‖δ‖ ≤ 1. If δ(Y ) = Y for some Y ∈ NA(H), then ‖δ(X) − X + Y ‖ ≥ ‖Y ‖, for all
X ∈ NA(H).

We utilize the Theorem 2 to prove some results for general elementary operators. Let T :
NA(H) → NA(H) be an elementary operator defined by T (X) =

∑n
i=1AiXBi, ∀ X ∈

NA(H). From the above theorem we get the following lemma.

Lemma 4. Suppose that T (Y ) = Y for some Y ∈ NA(H). If ‖T‖ ≤ 1, then ‖T (X) −
X + Y ‖ ≥ ‖Y ‖, for all X ∈ NA(H).

Proof. The proof follows immediately from the proof of Theorem 2.

Theorem 3. Suppose that T (Y ) = Y for some Y ∈ NA(H). If

∥
∥
∥
∥
∥

n∑

i=1

AiA
∗
i

∥
∥
∥
∥
∥

1
2
∥
∥
∥
∥
∥

n∑

i=1

B∗
iBi

∥
∥
∥
∥
∥

1
2

≤ 1,

then ‖T (X) −X + Y ‖ ≥ ‖Y ‖, for all X ∈ NA(H).
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Proof. We only need to show that ‖T‖ ≤ 1. Let Z1 = [A1, ..., An] and Z2 = [B1, ..., Bn]
T .

Taking Z1Z
∗
1 and Z∗

2Z2 shows that

‖Z1‖ =

∥
∥
∥
∥
∥

n∑

i=1

AiA
∗
i

∥
∥
∥
∥
∥

1
2

and

‖Z2‖ =

∥
∥
∥
∥
∥

n∑

i=1

B∗
iBi

∥
∥
∥
∥
∥

1
2

.

From [14], it is known that T (X) = Z1(X ⊗ In)Z2, where In is the identity of Mn(C).
Therefore it follows that ‖T (X)‖ ≤ ‖Z1‖‖Z2‖‖X‖. Hence ‖T‖ ≤ 1.

3. Orthogonality of Elementary Operators

At this point we consider the orthogonality of Jordan elementary operators. We later
consider the necessary and sufficient conditions for their normality. We state the follow-
ing theorem from [21] on orthogonality.

Theorem 4. Let A,B ∈ B(H) be normal operators, such that AB = BA, and let
U(X) = AXB −BXA. Furthermore, suppose that A∗A+ B∗B > 0. If S ∈ KerU , then
|‖U(X) + S‖| ≥ |‖S‖|.

Remark 5. The norm |‖.‖| is a unitarily invariant norm.

A unitarily invariant norm is any norm defined on some two-sided ideal of B(H) and
B(H) itself which satisfies the following two conditions. For unitary operators U, V ∈
B(H) the equality |‖UXV ‖| = |‖X‖| holds, and |‖X‖| = s1(X), for all rank one opera-
tors X. It is proved that any unitarily invariant norm depends only on the sequence of
singular values. Also, it is known that the maximal ideal, on which |‖UXV ‖| has sense,
is a Banach space with respect to that unitarily invariant norm. Among all unitarily
invariant norms there are few important special cases. The first is the Schatten p-norm
(p ≥ 1) defined by ‖X‖p = (Σ+∞

j=1sj(X)p)1/p on the set Cp = {X ∈ B(H) : ‖X‖p < +∞}.
For p = 1, 2 this norm is known as the nuclear norm (Hilbert-Schmidt norm) and the
corresponding ideal is known as the ideal of nuclear (Hilbert-Schmidt) operators. The
ideal C2 is also interesting for another reason. Namely, it is a Hilbert space with respect
to the ‖.‖2 norm. The other important special case is the set of so-called Ky Fan norms
‖X‖k = Σkj=1sj(X). The well-known Ky Fan dominance property asserts that the condi-
tion ‖X‖k ≤ ‖Y ‖ for all k ≥ 1 is necessary and sufficient for the validity of the inequality
|‖X‖| ≤ |‖Y ‖| in all unitarily invariant norms. For further details refer to [21].
We extend Theorem 4 to distinct operators A,B,C,D ∈ B(H) in the theorem below.

Theorem 5. Let A,B,C,D ∈ B(H) be normal operators, such that AC = CA, BD =
DB, AA∗ ≤ CC∗ , B∗B ≤ D∗D. For an elementary operator U(X) = AXB − CXD

and S ∈ B(H) satisfying ASB = CSD, then ‖U(X) + S‖ ≥ ‖S‖, for all X ∈ B(H).

Proof. From AA∗ ≤ CC∗ and B∗B ≤ D∗D, let A = CU, and B = V D, where U, V
are contractions. So we have AXB − CXD = CUXVD − CXD = C(UXV − X)D.
Assume C and D∗ are injective, ASB = CSD if and only if USV = S. Moreover, C and
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U commute. Indeed from A = CU we obtain AC = CUC. Therefore, C(A− UC) = 0.
The result follows since A = CU and C is injective. Similarly, D and V commute. So,

‖U(X) + S‖ = ‖[AXB − CXD] + S‖

= ‖[U(CXD)V − CXD] + S‖

≥ ‖S‖,∀X ∈ B(H).

Now, under the condition of Theorem 5, A and C have operator matrices A =
(
A0 0
0 0

)

and C =

(
C0 0
0 0

)

with respect to the space decomposition H = R(C)⊕

N (C), respectively. Here, A0 is a normal operator on R(C) and C0 is an injective and

normal operator on R(C). B and D have operator matrices B =

(
B0 0
0 0

)

and D =
(
D0 0
0 0

)

with respect to the space decomposition H = R(D) ⊕ N (D), respectively.

Here, B0 is a normal operator on R(D) and D0 is an injective and normal operator on

R(D). X and S have operator matrices X =

(
X11 X12

X21 X22

)

and S =

(
S11 S12
S21 S22

)

which are as operator from the space decomposition H = R(D)⊕N (D) into the space
decomposition H = R(C)⊕N (C), respectively.

In this case, U(X) = AXB − CXD =

(
A0X11B0 − C0X11D0 0

0 0

)

and A0S11B0 −

C0S11D0 = 0. Therefore, ‖A0X11B0 − C0X11D0 + S11‖ ≥ ‖S11‖.
Hence,

‖U(X) + S‖ = ‖

(
A0X11B0 − C0X11D0 0

0 0

)

+

(
S11 S12
S21 S22

)

‖

= ‖

(
A0X11B0 − C0X11D0 + S11 S12

S21 S22

)

‖

≥ ‖

(
S11 S12
S21 S22

)

‖.

Next consider the case of ideals of compact operators.We recall the following theorem in
[16,Theorem III. 12.2].

Theorem 6. If J is a separable ideal of compact operators, associated with some unitar-
ily invariant norm, then its dual is isometrically isomorphic with another ideal of compact
operators (not necessarily separable) and it admits the representation: fY (X) = tr(XY ).

Definition 3. Let J be some separable ideal of compact operators, and let T : J → J be
some elementary operator given by T (X) =

∑n
i=1AiXBi. Then its conjugate operator

T ∗ : J ∗ → J ∗ has the form T ∗(Y ) =
∑n

i=1BiY Ai.
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Indeed from the theorem above we have

fY (T (X)) = tr(T (X)Y )

= tr(

n∑

i=1

AiXBiY )

= tr(X

n∑

i=1

BiY Ai)

= tr(XT ∗(Y ))

= fT ∗(Y )(X).

Definition 4. The vector ξ in a Hilbert space H is a smooth point of the sphere S(0, ‖ξ‖)
if there exists a unique support functional φξ ∈ H∗, such that φξξ = ‖ξ‖ and ‖φξ‖ = 1.

Definition 5. If there exists the Gateaux derivative of the norm at the point ξ in a
Hilbert space H i.e. if there exists the limit

lim
R∋t→0

‖ξ + tζ‖ − ‖ξ‖

t
= 0,

then it is equal to Reφξζ,where φξ is the functional from the Definition 4. Moreover, in
this case ζ is orthogonal to ξ if and only if φξζ = 0.

Remark 6. It is also well known in general that if Banach space X has a strictly convex
dual space then every nonzero point is a smooth point of the corresponding sphere. For
details see [3].

Consider an arbitrary separable ideal of compact operators J , such that J ∗ is strictly
convex. According to Anderson’s result, for all Z ∈ J there exists a unique operator
Z0 ∈ J ∗ such that Z0(Z) = ‖Z‖ and ‖Z0‖ = 1. We recall that an ideal J is reflexive
if it is equal to the algebra of all bounded linear operators which leave invariant each
subspace left invariant by every operator in J . So if we suppose that J is reflexive then
the mapping Z → Z0, Z0 = τ(Z) is a bijection (and also involution) of the unit spheres
of the spaces J and J ∗. Moreover, S is orthogonal to Z in the space J (see [16]) if and
only if Z0(Y ) = 0.

Lemma 5. Let J be a reflexive ideal in B(H) such that J ∗ is strictly convex, and let
T : J → J be some elementary operator given by T (X) =

∑n
i=1AiXBi. Then RanT is

orthogonal (in the sense of Birkhoff) to the operator R if and only if τ(R) = R0 ∈ KerT ∗.

Proof. From Definitions 3 and 5, we see that RanT is orthogonal (in the sense of Birkhoff)
to the operator R implies that for all Z ∈ J , R0(T (Z)) = 0 or (T ∗(R0)Z) = 0 for all
Z ∈ J and as a consequence T ∗(R0) = 0.

Next, consider the elementary operator acting on the ideal of operators in B(H). We
prove that for such elementary operators its range is orthogonal to its kernel as we see
in the theorem below.

Theorem 7. Let J be a reflexive ideal in B(H) such that J ∗ is strictly convex, and
let T : J → J be some elementary operator given by T (Z) = AZB + CZD, where
A,B,C,D ∈ B(H) are distinct normal operators, such that AC = CA, BD = DB,

AA∗ ≤ CC∗ , B∗B ≤ D∗D. Then J = RanT ⊕KerT.
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Proof. From Lemma 5 and [21,Theorem 3], we get T (R) = 0 implies that for all Z ∈ J ,
|‖T (Z) + R‖| ≥ |‖R‖|, which implies that T ∗(R) = 0 which further implies that for
all Z ∈ J ∗, |‖T ∗(Z) + R0‖| ≥ |‖R0‖|, which implies that T ∗∗(R00) = 0 if and only if
T (R) = 0. We conclude that T (R) = 0 if and only if T (Z) is orthogonal to R for all
Z ∈ J . Next consider ξn ∈ RanT and ζn ∈ KerT. If ξn + ζn tends to η then, from the
inequality ‖ζn−ζm‖ ≤ ‖ξn+ζn−ξm−ζm‖ we come to a conclusion that ζn is Cauchy and
hence ζn → ζ ∈ KerT. Moreover, ξn → η − ζ ∈ RanT. Therefore, η ∈ RanT +KerT.

Hence it follows that RanT+KerT is closed. Now assume that ‖T (Z)+Y+X‖J ≥ ‖X‖J
for all Z, and for all Y ∈ KerT. If we choose Y = 0 then X ∈ KerT. Put Y = −X and
Z = 0, this implies that X = 0. It follows that (RanT + KerT )⊥ = {0}. In fact, this
last assertion follows from [33, Lemma 3.6].

4. Finite Operators and Orthogonality

Definition 6. Let H be a complex separable and infinite dimensional Hilbert space and
B(H) be the algebra of all bounded linear operators on H. An operator A ∈ B(H) is
called finite if ‖I − (AX −XA)‖ ≥ 1, ∀ X ∈ H. Equivalently, we say that A is a finite
operator if the distance from the identity to the range of the inner derivation δA is greater
or equal to 1.We denote the set of all finite operators by F (H).

Examples of finite operators include: Hyponormal, p-hyponormal, log-hyponormal, dom-
inant, quasihyponormal, k-quasihyponormal, (p,k)-quasihyponormal, paranormal and
normaloid operators. We define these operators as follows:

Definition 7. Let H be a complex separable and infinite dimensional Hilbert space and
B(H) be the algebra of all bounded linear operators on H. An operator A ∈ B(H)
is called normal if AA∗ = A∗A, where A∗ is the adjoint of A, hyponormal if A∗A −
AA∗ ≥ 0, p-hyponormal if (A∗A)p − (AA∗)p ≥ 0, for 0 < p ≤ 1, quasihyponormal
if A∗(A∗A − AA∗)A ≥ 0, k-quasihyponormal if A∗k(A∗A − AA∗)Ak ≥ 0, for k ∈ N,

(p, k)-quasihyponormal if A∗k((A∗A)p − (AA∗)p)Ak ≥ 0, for k ∈ N,0 < p ≤ 1, log-
hyponormal if A is invertible and satisfies: log(A∗A) ≥ log(AA∗), paranormal if ‖Ax‖2 ≤
‖A2x‖‖x‖, ∀ x ∈ H, normaloid if ‖A‖ = r(A), where r(A) is the spectral radius of A.
If A satisfies ‖A2‖ ≥ ‖A‖2, then A is said to be in class A operators and A is called a
dominant operator if for all complex β, Ran(A − β) ⊂ Ran(A − β)∗ or equivalently if
there is a real number Mβ ≥ 1 such that ‖(A− β)∗x‖ ≤Mβ‖(A− β)x‖ for all x ∈ H.

Remark 7. We have

(a) Normal ⊂ Hyponormal ⊂ p − hyponormal ⊂ p − quasihyponormal ⊂ (p, k) −
quasihyponormal ⊂ normaloid.

(b) log-hyponormal ⊂hyponormal ⊂ paranormal.

(c) Normal ⊂ hyponormal ⊂ paranormal ⊂ normaloid.

Lemma 6. An operator A ∈ B(H) is finite if and only if it’s adjoint is finite.

Proof. The proof is obvious, so it is omitted.
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One way of defining the numerical range is through states. Let B(H) denote a complex
Banach algebra with identity I. A state on B(H) is a functional f ∈ (B(H))∗ such that
f(I) = 1 = ||f ||. For T ∈ B(H), the numerical range of T is defined by W0(T ) = {f(T ) :
f is a state on B(H)}, [34]. W0(T ) is a compact convex set containing convhσ(T ), the
convex hull of the spectrum of T. An element A ∈ B(H) is finite if 0 ∈ W0(AX −XA)
for each X ∈ B(H)
We see that the following conditions are equivalent from [34, Theorem 4].

Proposition 2 (34, Theorem 4). For A ∈ B(H) the following are equivalent: (i) 0 ∈
W0(AX −XA) for each X ∈ B(H) ; (ii) ‖I − (AX −XA)‖ ≥ 1, ∀ X ∈ H. (iii) there
exists a state f on B(H) such that f(AX) = f(XA) for every X ∈ B(H).

Proposition 3. Let A ∈ B(H) be such that there is a nonzero selfadjoint linear func-
tional φ on B(H) such that φ(AX) = φ(XA) for all X ∈ B(H). Then A is a finite
operator.

Proof. Let C = {T ∈ B(H) : φ(TX) = φ(XT ), for all X ∈ B(H)}. Since C is a C∗-
subalgebra of B(H) which contains A, C∗(A) ⊆ C. Let φ = φ+ + φ−. Then it follows
that φ+(UXU∗) = φ+(X) and φ−(UXU∗) = φ−(X) for all unitaries U ∈ U(C) and
X ∈ B(H). Thus φ+(TX) = φ+(XT ) and φ−(TX) = φ−(XT ) for all X ∈ B(H) and
T ∈ C, hence φ+(AX) = φ+(XA) and φ−(AX) = φ−(XA) for all X ∈ B(H). Since at
least one of φ+, φ− must be nonzero, it follows that A must be a finite operator.

Definition 8. Let A ∈ B(H). The reduced approximate spectrum of A, σra(A), is the set
of scalars λ for which there exists a normed sequence {xn} in H satisfying (A−λI)xn → 0
and (A− λI)∗xn → 0. We define the set R0 = {A ∈ B(H) : σra(A) 6= ∅}.

Theorem 8. A ∈ B(H) is a finite operator if A ∈ R0.

Proof. Let A ∈ B(H). If A ∈ R0, then there exists λ ∈ σra(A) and a normed sequence
{xn} in H such that (A− λI)xn → 0 and (A− λI)∗xn → 0. Now, for all X ∈ B(H), we
have

‖I − (AX −XA)‖ = ‖I − ((A− λI)X −X(A − λI))‖

= |I − (〈(A − λI)Xxn, xn〉 − 〈X(A − λI))xn, xn〉)|.

Taking limits as n→ ∞, we obtain,

‖I − (AX −XA)‖ = 1, ∀ X ∈ H.

and hence A is finite.

Next we consider the Berberian technique involving ∗-isometric isomorphisms which
preserve order. We state the following theorem from [31].

Theorem 9. Let H be a complex Hilbert space. Then there exists a Hilbert space H ′ ⊃ H

and ϕ : B(H) → B(H) (A 7→ A′) satisfying: ϕ is an ∗-isometric isomorphism preserving
the order such that
(i) ϕ(A∗) = ϕ(A)∗, ϕ(I) = I ′, ϕ(αA+βB) = αϕ(A)+βϕ(B), ϕ(AB) = ϕ(A)ϕ(B), ||ϕ(A)|| =
||A||, ϕ(A) ≤ ϕ(B), if A ≤ B for all A,B ∈ B(H) and for all α, β ∈ C.

(ii) σ(A) = σ(A′) = σa(A) = σa(A
′) = σp(A

′), where σa(A) is the approximate spectrum
of A and σp(A) is the point spectrum of A.
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Proof. See proof in [31].

We apply the above theorem in the next result as follows:

Theorem 10. Let B(H) be a C∗ -algebra, and let A be a finite operator then I does not
belong to RanδA.

Proof. By Theorem 9 it is known that there exists a ∗-isometric isomorphism ϕ : B(H) →
B(H) which preserves the order such that

‖I − (AX −XA)‖ = ‖ϕ(I − (AX −XA))‖

= |I − (ϕ(A)ϕ(X) − ϕ(X)ϕ(A))|.

with ϕ(A) ∈ B(H) for a finite operator A ∈ B(H).
So,

‖I − (AX −XA)‖ = ‖ϕ(I − (AX −XA))‖

= ‖I − (ϕ(A)ϕ(X) − ϕ(X)ϕ(A))‖

≥ 1,

which implies that I does not belong to RanδA.

Theorem 11. Let A ∈ B(H) be a normal operator. Then A is finite if σra(A) 6= ∅.

Proof. From Remark 7, A being normal implies A is normaloid. But for normaloid
operators, it is a fact that ‖A‖ = r(A). So there exists λ ∈ σra(A) such that ‖A‖ = |λ|.
But, λ is in the boundary of σra(A), therefore, there exists a normed sequence {xn} in
H such that (A − λI)xn → 0 and (A − λI)∗xn → 0, because ‖A‖ = |λ|. From [31], see
the assertion for finiteness of A.

Theorem 12. Let H be a complex separable and infinite dimensional Hilbert space and
B(H) be the algebra of all bounded linear operators on H. For each positive integer k
let Rk denote the set of operators on H that have an k-dimensional reducing subspace.
Then Rk is a subspace of F (H).

Proof. Let H be decomposed as H = H1 ⊕ H2 where H1 is a k-dimensional reducing

subspace of A given by the following matrix representation, A =

(
A1 0
0 A2

)

, relative to

the decomposition of H. Let X =

(
X1 X2

X3 X4

)

for all X ∈ B(H). A simple computation

shows [31] that

‖I − (AX −XA)‖ ≥ ‖I1 − (A1X1 −X1A1)‖ = ‖I2 − (A2X4 −X4A2)‖,

where I =

(
I1 0
0 I2

)

is the identity operator on H. This shows that W0(AX −XA)

contains the numerical range of A1X1 −X1A1. Since H1 is finite dimensional, the latter
commutator has trace 0 and thus by [34],

0 =
1

k
tr(A1X1 −X1A1) ∈W0(A1X1 −X1A1)
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since the numerical range is a convex set whose closure contains the spectrum. If A =
X ⊕P where P is an operator of finite rank, then the vector sum of the ranges of P and
P ∗ is a finite dimensional reducing subspace for A, hence A ∈

⋃

k Rk. Therefore, F (H)
contains every operator that can be written as a uniform limit of operators each having
a summand of finite rank. In particular, F (H) contains every operator with a compact
direct summand.

The following example is a nice finite operator.

Example 1. Let A =







0 0 0 1
0 0 1 A2,4

0 0 0 0
0 0 0 0







∈ B(H(4)). Then A is finite if and only if

A2,4 ∈ B(H) is finite.

Indeed, following the proof in [34, Theorem 8], a tedious computation based on the
same argument shows that A is finite.

5. Generalized Finite Operators and Orthogonality

Let H be a complex separable and infinite dimensional Hilbert space and B(H) be the
algebra of all bounded linear operators onH. Let A,B ∈ B(H).We define the generalized
derivation δA,B : B(H) → B(H) by

δA,B(X) = AX −XB, ∀ X ∈ B(H).

Definition 9. Let H be a complex separable and infinite dimensional Hilbert space and
B(H) be the algebra of all bounded linear operators on H. Operators A,B ∈ B(H) are
called general finite if ‖I − (AX − XB)‖ ≥ 1, ∀ X ∈ B(H). We denote the set of all
general finite operators by GF (H). So,

GF (H) = {(A,B) ∈ B(H)×B(H) : ‖I − (AX −XB)‖ ≥ 1, ∀ X ∈ B(H)}.

Theorem 13. For A,B ∈ B(H), the following statements are equivalent (i) ‖I−(AX−
XB)‖ ≥ 1, ∀ X ∈ B(H)
(ii) There exists a state f such that f(AX) = f(XB), for all X ∈ B(H).
(iii) 0 ∈W0(AX −XB),∀ X ∈ B(H).

Proof. For proof, see [31].

For orthogonality in the sense of Birkhoff. Let E be a complex Banach space, we
say that y ∈ E is orthogonal to x ∈ E if for all complex α there holds ‖x+ αy‖ ≥ ‖x‖.
This definition has a natural geometric interpretation. Namely, y⊥x if and only if the
complex line {x+ αy : α ∈ C} is disjoint with the open ball K(0, ‖x‖) , i.e., if and only
if this complex line is a tangent one. Note that if y is orthogonal to x, then x need not
be orthogonal to y. If E is a Hilbert space, then 〈x, y〉 = 0, i.e., orthogonality in the
usual sense. Concerning elementary operators, the range of δA,B is orthogonal to the
null space of δA,B . In particular the inequality ||T −(AX−XB)|| ≥ ||T || means that the
RanδA,B is orthogonal to KerδA,B in the sense of Birkhoff. We see that if RanδA,B is
orthogonal to KerδA,B, then (A,B) is generalized finite if and only if T = I ∈ KerδA,B.
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Abstract. Major advances have been made to understand the epidemiology
of infectious diseases. However, more than 2 million children in the devel-
oping countries still die from pneumonia each year. The efforts to promptly
detect, effectively treat and control the spread of pneumonia is possible if its
transmission dynamics are understood. In this paper, we develop a mathe-
matical model for pneumonia among children under five years of age. The
model is analyzed using the theory of ordinary differential equations and dy-
namical systems. We derive the basic reproduction number, R0, analyze the
stability of equilibrium points and bifurcation analysis. The results of the
analysis show that there exists a locally stable disease free equilibrium point,
Ef when R0 < 1 and a unique endemic equilibrium, Ee when R0 > 1.The
analysis also shows that there is a possibility of a forward bifurcation.

Keywords: Pneumonia Model, Basic reproduction number, forward bifurcation, Sta-
bility, Carriers

1. Introduction

Pneumonia is a high-incidence respiratory disease characterized by an inflammatory
condition of the lungs. It is caused by bacteria, fungi, parasites and viruses. Among the
four micro-organisms with potential to cause pneumonia, bacteria is the leading cause
[35, 32] especially Streptococcus Pneumoniae [8, 18, 25]. When bacteria enters the lungs,
it settles in the alveoli and passages of the lungs where they rapidly grow and multiply
in number. The area of the lung that is invaded then becomes filled with fluid and pus as
the body attempts to fight off the infection [22]. This makes breathing difficult, painful
and limits the intake of oxygen.

Most cases of pneumonia are as a result of inhaling small droplets of coughs or
sneezes containing the bacteria. These droplets get into the air when an infected person
coughs or sneezes [22, 35]. The bacteria can also be carried in the mouth or flora of
nasopharynx of a healthy person without causing any harm [18, 22, 35]. Such people are
referred to as carriers. For carriers, the bacteria invades the lungs and causes infection
[16],[22]. This is possible when the immunity of the individual is lowered.

1Corresponding author. Email: jotieno@strathmore.edu
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There is limited information on the transmission patterns of the pneumococcal dis-
ease in the developing world [8]. However, it is pointed out that the risk factors associ-
ated with the spread of the disease include malnutrition, lack of exclusive breastfeeding,
indoor pollution and antecedent viral infection [8, 25].

Despite the increasing focus on the Millennium Development Goal (MDG) 4 of the
United Nations [36], “to reduce child mortality”, almost 1.9 million children still die
from pneumonia each year in the developing countries, accounting for 20 % of deaths
globally [11]. In Kenya, pneumonia contributes up to 16 % of child mortality [7]. It is
evident that the management of the disease is challenging due to overlap of its symptoms
with that of malaria hence a possibility of mistreatment with antimalarial drugs [40].
Deaths due to pneumonia can occur within three days of illness and any delays in proper
treatment may threaten life [28].

Therefore to realize MDG 4, research should be done to promptly diagnose, ef-
fectively treat and deduce other prevention strategies for pneumonia. For this to be
achieved, accurate projections on possibility of epidemic or endemic and strategies to
put up control measures is required. Mathematical models integrated in epidemiological
research are powerful tools in studying the dynamics of diseases and to find threshold
parameters necessary for controlling the disease. In this paper, we develop and analyze
a mathematical model for pneumonia dynamics in children. Our work is based on an
initial model by Doura et al. [47].

2. Derivation of the Model

The transmission dynamics of pneumonia in the population under study is considered
between four compartments based on the disease status, that is: Susceptible, Carri-
ers, Infectious and Recovered. At time t, the total population size N is divided into:
susceptible S, infected I, carriers C and recovered R such that

N = S + C + I +R. (2.1)

The per capita recruitment rate into the susceptible population is denoted ν. We
assume that the infected immigrants are not included because they are not able to travel.
New infections can be due to effective contact with either a carrier or a symptomatically
infected individual, where the force of infection of susceptibles is denoted by λ. A newly
infected individual joins a carrier class with a probability ρ or a symptomatically infected
class with a probability of 1 − ρ. Carriers can change their status to show symptoms
(infected) [24] at the rate π. Infected individuals recover at the rate η. A proportion
q of the recovered individuals clear all the bacteria from the body and gain temporal
immunity while 1− q of them will still carry the bacteria [52, 51]. The carriers can also
recover to gain temporal immunity at the rate β. In this model, the temporal immunity
is a result of all possible ways that may lead to recovery from the disease. Studies in
[34, 23, 29] show that there is a possibility of reinfection at the rate δ. There is a natural
death rate of µ and a disease induced death rate of α. We define the force of infection
as:

λ = ψ

(
I + εC

N

)

: ψ = κP. (2.2)

Where κ is the rate of contact and P be the probability that a contact is efficient to cause
infection. Combining all the definitions and assumptions, the model for the transmission
dynamics of pneumonia is given by the following system of differential equations:
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dS

dt
= ν + δR − (λ+ µ)S,

dI

dt
= (1− ρ)λS + πC − (µ + α+ η)I,

dC

dt
= ρ(λ)S + (1− q)ηI − (µ+ π + β)C,

dR

dt
= qηI + βC − (µ + δ)R

(2.3)

3. Positivity and boundedness of solutions

We can show from Model (2.3) that the state variables are non-negative and the solutions
remain positive for all time t ≥ 0. Here the parameters in the model are assumed to be
positive. We also show that the feasible solutions are bounded in a region:

Φ = {(S, I, C,R) ∈ R4
+ : N(t) ≤

ν

µ
}

Lemma 1. Let the initial values of the parameters be S(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0,
R(0) = 0 and N(0) ≥ 0 ∈ Φ. Then the solution set
{S(t), I(t), C(t), R(t), N(t)} is positive for all t ≥ 0

Proof. Consider the first equation in (2.3):

dS

dt
= ν + δR − λS − µS.

We have

dS

dt
≥ −(λ+ µ)S

⇒

∫
dS

S
≥

∫

−(λ+ µ)dt

⇒ S ≥ S0e
−(λ+µ)t

Hence, S ≥ 0.

Next, we consider the second equation in (2.3)

dI

dt
= (1− ρ)λS + πC − (µ+ α+ η)I

dI

dt
≥ −(µ+ α+ η)I

∫
dI

I
≥

∫

−(µ+ α+ η)dt

I ≥ I0e
−(µ+α+η)t

Hence, I ≥ 0.

Similarly, we can prove the positivity of C, R and N .
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Lemma 2. The solutions for the system (2.1) are contained and remain in the region
Φ for all time t ≥ 0

Proof. Consider Equation (2.1). Taking the derivatives with respect to time t of (2.1)
and substituting onto it the set of equations in (2.3), we have,

dN(t)

dt
= ν − αI − µN

⇒
dN

dt
≤ ν − µN

⇒ N ≤
ν

µ
+

(

N0 −
ν

µ

)

e−µt

Where N0 is initial population size. Thus,

lim
t→∞

N(t) ≤
ν

µ
.

Using this result together with Lemma 1 and equation 2.1, we have that 0 ≤ N(t) ≤ ν
µ

which implies that N and all other variable (S, I, C and R) are bounded and all the
solutions starting in Φ approach, enter or stay in Φ.

4. Analysis of the Model

We analyze the model for pneumonia transmission in the following sub sections to de-
termine the basic reproduction number and other threshold parameters for pneumonia
dynamics.

4.1 Stability analysis of the disease-free equilibrium (DFE)

The DFE of model (2.3) is obtained by equating the right-hand sides of the equa-
tions in the model to zero and it describes the model in absence of disease or infec-
tion. Here we define carrier and infected classes as diseased classes, DFE denoted by

Ef = (Sf , If , Cf , Rf ) is then given by Ef =
(
ν
µ , 0, 0, 0

)

.

Theorem 1. There is a unique DFE (Ef ) for the model represented by the system of
equations in (2.3)

Proof. This lemma is proven by substituting Ef into the system of Equations (2.3).
The results show that all derivatives are equal to zero, hence DFE is an equilibrium
point.

To establish the linear stability of Ef , we use the next-generation operator approach
[53] on the system (2.3) to compute the basic reproduction number R0. Using the
notation of the matrices F and V as in [53], we have,

F =





(1− ρ)ψ (1− ρ)ψε

ρψ ρψε



 and V =





h1 −π

−(1− q)η h2




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where h1 = µ+ α+ η and h2 = µ+ π + β The eigenvalues for the matrix FV −1 are

0, ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)

.

Thus from Theorem 2 of [53] we have

R0 = ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)

. (4.1)

Lemma 3. The disease-free equilibrium Ef of (2.3) is locally asymptotically stable when-
ever R0 < 1 and unstable when R0 > 1.

Proof. Consider the Jacobian matrix for the model (2.3) at Ef given as

J (Ef ) =







−µ −ψ −ψε δ

0 −h1 π 0
0 (1− q)η −h2 0
0 qη β −(µ+ δ)







and
Trace

[
J (Ef )

]
= −(2µ + δ + h1 + h2) < 0

Det
[
J (Ef )

]
= µ(δ + µ)[h1h2 − (1− q)πη] > 0

}

(4.2)

Since the parameters µ, δ, h1 and h2 are all positive, −(2µ+ δ+h1 + h2) < 0. Therefore
Trace

[
J (Ef )

]
< 0. On the other hand, R0 can never be negative. Since the numerator

{ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]} is positive, the denominator must also be positive,
i.e. h1h2 − (1 − q)πη > 0. This implies that Det

[
J (Ef )

]
> 0, since µ(δ + µ) > 0 and

[h1h2 − (1− q)πη] > 0. Thus

R0 = ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)

< 1.

The solutions in (4.2) imply that E0 is locally asymptotically stable whenever R0 <

1

4.2 Stability of the Endemic equilibrium (EE) and Bifur-
cation analysis)

The endemic equilibrium is denoted by Ee and defined as a steady state solution for
the model (2.3). This can occur when there is a persistence of the disease. Hence
Ee = {Se, Ie, Ce, Re} can be expressed as shown below.

Se = N
R0

Ce =
(µ+ δ) ((1− ρ) (1− q) η + h1ρ) (R0 − 1) ν

R0 ((µ+ δ) (h2h1 − (1− q)π η)− δ (ρ (η π q + h1β) + (1− ρ) (η qh2 + (1− q) η β)))

Ie =
(δ + µ) (π ρ+ (1− ρ)h2) (R0 − 1) ν

R0 ((δ + µ) (h2h1 − (1− q) π η)− δ (ρ (π qη + h1β) + (1− ρ) (η qh2 + (1− q) η β)))

Re =
(ρ (η π q + h1β) + (−ρ+ 1) (h2qη + (1− q) η β)) (R0 − 1) ν

R0 ((δ + µ) (h2h1 − (1− q)π η)− δ (ρ (π qη + h1β) + (1− ρ) (η qh2 + (1− q) η β)))
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Lemma 4. For R0 > 1 a unique endemic equilibrium point Ee exists. There is no
endemic equilibrium otherwise.

Proof. For the disease to be endemic, then dI
dt > 0 and dC

dt > 0, that is,

(1− ρ)ψ
S

N
(I + εC) + πC − h1I > 0

ρψ
S

N
(I + εC) + (1− q)ηI − h2C > 0

(4.3)

From the first inequality of 4.3 we have

h1I < (1− ρ)ψ
S

N
(I + εC) + πC.

Using the fact that S
N ≤ 1,

I <
(1− ρ)ψI + (1− ρ)ψεC + πC

h1
, (4.4)

and from the first inequality of 4.3 we have

C <
ρψI + (1− q)ηI

h2 − ρψε
. (4.5)

Substituting 4.5 into 4.4, we have

I <

(1− ρ)ψI + [(1− ρ)ψε+ π]

[
ρψI + (1− q)ηI

h2 − ρψε

]

h1

1 <
(1− ρ)ψI + [(1− ρ)ψε+ π][ρψI + (1− q)ηI]

h1h2 − h1ρψε

h1h2 − h1ρψε < (1− ρ)ψh2 + ρψπ + (1− ρ)ψε(1 − q)η + (1− q)ηπ

1 <
ψ[ρ(h1ε+ π) + (1− ρ)(h2 + (1− q)εη)]

h1h2 − (1− q)ηπ
= R0

(4.6)

Thus there exists a unique endemic equilibrium when R0 > 1.

Local Stability analysis of the Endemic Equilibrium

We study the local stability of the endemic equilibrium by applying the Routh-Hurwitz
criterion [54].

Theorem 2. If R0 > 1 then the endemic equilibrium Ee of system 2.3 is locally asymp-
totically stable in G.

Proof. Consider the Jacobian matrix at endemic equilibrium denoted by JEe .

JEe =










−λ− µ 0 0 δ

(1− ρ)λ −h1 π 0

ρλ (1− q) η −h2 0

0 qη β −µ− δ









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where λ is defined as the force of infection at endemic equilibrium. We obtain a character-
istic equation P (λ) = |λI−JEe | where I is a 4×4 unit matrix. So that the characteristic
equation becomes, P (λ) = λ4 + a1λ

3 + a2λ
2 + a3λ + a4 Hence from Routh-Hurwitz

criterion, we have the matrix













1 a2 a4 λ4

a1 a3 0 λ3

a2 −
a3
a1

a4 0 λ2

a3 −
a1a4

(

a2−
a3
a1

) 0 0 λ

a4 0 0 1














where,
a1 = 2µ + δ + h2 + h1 + λ

a2 = 2h2µ+ 2h1µ+ µλ+ µ2 + h2δ + h1δ + δ λ+ δ µ− η π + η π q + h2h1 + h2λ+ h1λ

a3 = (µ+ δ) (h1 + h2)
(
µ+ λ

)
+ (h2h1 − (1− q) η π)

(
λ+ δ + 2µ

)
− λδ ((1− ρ) qη + β ρ)

a4 = (1− ρ) (qπ − h2q − (1− q)β) η λδ −
(
µ+ λ

)
(µ+ δ) (η π − h2h1)

−β ρλδ h1 + η π µ q
(
µ+ λ+ δ

)

According the the Routh-Hurwitz criterion, For R0 > 0, the endemic equilibrium (Ee)
is locally asymptotically stable if a1 > 0, a2 −

a3
a1
> 0, a3 −

a1a4
(

a2−
a3
a1

) > 0 and a4 > 0.

Bifurcation analysis

A bifurcation is a qualitative change in the nature of the solution trajectories due to a
parameter change. The point at which this change take place is called a bifurcation point.
At the bifurcation point, a number of equilibrium points, or their stability properties, or
both, change. When R0 < 1, the infectious disease will not invade the population unless
otherwise. We prove using the Center Manifold theorem the possibility of bifurcation at
R0 = 1.

Let S = x1, I = x2, C = x3 and R = x4, so that N = x1 + x2 + x3 + x4. Then (2.3)
is re-written in the form:

dx1
dt = f1 = ν + δx4 − ψ x2

x1+x2+x3+x4
x1 − ψε x3

x1+x2+x3+x4
x1 − µx1

dx2
dt = f2 = (1− ρ)ψ x2

x1+x2+x3+x4
x1 + (1− ρ)ψε x3

x1+x2+x3+x4
x1 + πx3 − h1x2

dx3
dt = f3 = ρψ x2

x1+x2+x3+x4
x1 + ρψε x3

x1+x2+x3+x4
x1 + (1− q)ηx2 − h2x3

dx4
dt = f4 = qηx2 + βx3 − (µ+ δ)x4







(4.7)

Suppose that we choose ψc as a bifurcation parameter. Using (4.1), we solve for ψc at
R0 = 1 as:

ψc =
µ2 + µα+ µ η +Πµ+Πα+ β µ+ β α+ β η + η qΠ

ρ ǫ µ+ ρ ǫ α+ µ+Π+ β + ǫ η − ǫ η q − ρµ− ρ β + ρ ǫ η q
(4.8)

The liberalization matrix of (4.7) at a disease free Equilibrium (Ef ) corresponding to
ψ = ψc is given by:

J (Ef ) |ψ=ψc
= Jψc

=







−µ −ψc −ψcε δ

0 −h1 π 0
0 (1− q)η −h2 0
0 qη β −(µ+ δ)






.
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Zero is a simple eigenvalue of Jψc
if h1 =

ηπ(1−q)
h2

. A right eigenvector w of Jψc
associated

with the zero eigenvalues is given by w = (w1, w2, w3, w4)
T where

w1 =
w3 (η δ (qh2 + (1− q) β)− ψ (µ+ δ) (h2 + (1− q) ǫ η))

η (1− q) (µ+ δ)µ
,

w2 =
w3h2

η (1− q)
,

w3 = w3,

w4 =
w3 (qh2 + (1− q) β)

(1− q) (µ+ δ)
.

and a left eigenvector v of Jψc
corresponding to the zero eigenvalues is given by v =

(v1, v2, v3, v4)
T where

v1 = 0,

v2 =
v3h2
π ,

v3 = v3,

v4 = 0

We now reproduce a theorem stated by Castillo-Chavez and Song [55] .

Theorem 3. [55]. Consider the following general system of ordinary differential equa-
tions with parameter φ

dx
dt = f(x, φ), f : Rn ×R and f ∈ C2(Rn ×R)

where 0 is an equilibrium point of the system (that is f(0, φ) ≡ 0 for all φ) and
assume:

1. A = Dxf(0, 0)= ( ∂fi∂xj
(0; 0)) is the linearization matrix of the system around the

equilibrium point 0 with φ evaluated at 0.

2. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real
parts.

3. Matrix A has a right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue.

Let fk be the kth component of f and

a =

n∑

k,i,j=0

vkwiwj
∂2fk

∂xi∂xj
(0, 0), (4.9)

b =

n∑

k,i=0

vkwi
∂2fk

∂xi∂φ
(0, 0). (4.10)

Then the local dynamics of system 1 around the x = 0 are totally determined by a
and b. In particular,
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1. a > 0, b > 0, when φ < 0 with ||φ|| ≪ 1, (0, 0) is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < φ≪ 1, (0; 0) is unstable and
there exists a negative and locally asymptotically stable equilibrium.

2. a < 0, b < 0, when φ < 0 with ||φ|| ≪ 1, (0, 0) is unstable; when 0 < φ ≪ 1,
(0; 0) is locally asymptotically stable and there exists exists a positive unstable
equilibrium.

3. a > 0, b < 0, when φ < 0 with ||φ|| ≪ 1, (0, 0) is unstable and there exists locally
asymptotically stable equilibrium; when 0 < φ ≪ 1, (0, 0) stable and positive
unstable equilibrium appears.

4. a < 0, b > 0, when φ changes from negative to positive, x = 0 changes its stability
from stable to unstable. Correspondingly, a negative unstable equilibrium becomes
locally asymptotically stable

Algebraic calculations from Theorem 3 are shown in the working below.

∂2f2
∂x2∂x2

= −2 (1−ρ)ψ
x1

,
∂2f3
∂x2∂x2

= −2 ρψ
x1

∂2f2
∂x2∂x3

= (1− ρ)ψ x1

(

− 1
x12

− ǫ
x12

)

,
∂2f3
∂x2∂x3

= ρψ x1

(

− 1
x12

− ǫ
x12

)

∂2f2
∂x2∂x3

= − (1−ρ)ψ
x1

,
∂2f3
∂x2∂x3

= −ρψ
x1

∂2f2
∂x3∂x3

= −2 (1−ρ)ψ ǫ
x1

,
∂2f3
∂x3∂x3

= −2 ρψ ǫ
x1

∂2f2
∂x3∂x4

= − (1−ρ)ψ ǫ
x1

∂2f3
∂x3∂x4

= −ρψ ǫ
x1

∂2f2
∂x2ψc

= 1− ρ,
∂2f3
∂x2ψc

= ρ

∂2f2
∂x3ψc

= (1− ρ)ǫ,
∂2f3
∂x3ψc

= ρǫ

Note:
∂2fk
∂xi∂xj

=
∂2fk
∂xj∂xi

The rest of the second derivatives that in (4.9) and (4.10) are zero. Hence,

a =
(

−2 v3w3
2ψ

π x1

)

(ρ π + (1− p)h2)
(
(h2+(1−q)ǫ η)(h2η q+(1−q)η β+(µ+δ)(h2+(1−q)η))

η2(−1+q)2(µ+δ)

)

,

a < 0.
(4.11)

b = v3h2
2w3(1−ρ)

π η (1−q) + v3h2w3((1−ρ)ǫ)
π + v3w3h2ρ

(1−q)η + v3w3 (ρ ǫ) ,

b > 0.
(4.12)

Using the results in Theorem 3, the results in (4.11) and (4.12) indicate that there is
a forward bifurcation at ψ = ψc and there exist at least one stable endemic equilibrium
when R0 > 1.

5. Numerical Simulation

To observe the dynamics of pneumonia model over time, numerical simulations are done
using MAPLE 14.0. The parameters in table 5.1 are based on the data of children under
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five years of age and are used in the simulation. Some parameters have been derived
from epidemiological literature and WHO database while other parameters have been
allowed to vary within the possible intervals.

Table 5.1: Parameter Value
Parameter Value Source

ν µN0 [47]
κ 1-10 per day Estimated
P 0.89 to 0.99 [47]
ψ κP Expressed as in (2.2)
ǫ 0.001124 [47]
ρ 0.338 [59, 60]
π 0.00274 to 0.01096 per day [47]
η 0.0238 to 0.0476 per day [58]
q 0.5 to 1 [47]
α 0.33 Estimated
δ 0.2 Estimated
µ 0.0002 per day [57]
β 0.0115 [56]

Using the parameter values, the numerical simulations show that a transcritical (for-
ward) bifurcation is likely to occur at ψ = ψc = 0.47, (R0 = 1) where there is only one
stable equilibrium point if R0 < 1 (disease-free equilibrium) and a low endemicity when
R0 is slightly above one (See Figure 5.1 (a) and (b)). This is important to conclude that
there can only be one stable endemic equilibrium when R0 > 1. In models with multi-
group infectious classes, forward bifurcations commonly exist [61]. This could be the
reason for the existence of a forward bifurcation for pneumonia transmission dynamic.

The mathematical technique involved in determining the global stability of the en-
demic equilibrium is quite complicated and therefore in this paper we determine the
global stability of the endemic equilibrium using a numerical simulation (See Figure
5.2). We observe from Figure 5.2 that starting with any number of infected individuals
with the initial population N0 = 100, the number of the susceptible and the infected
will always converge to a stable value (Se = 24.41243257, Ie = 4.549013989 × 10−2).
Assuming that we reduce the transfer rates between the Carriers and the Infected with
the aim or reducing R0, the infected population also reduces.

Using MAPLE 14, data for the infected population in both cases (dotted line and
continuous line in Figure 5.3) was generated and checked for any significant difference
in the two populations. Table 5.2 shows the results of the statistical analysis. Since the
P-value is equal to 2.1344× 10−15 for the t-test for mean difference is less than 0.01, we
conclude that there is a strong significant effect of reducing the rates of transfer between
the carriers and the infected on reducing the infected populations. We also simulate
the effect of different proportions of carriers on transmission by considering different
initial proportions of carriers and different rates of transfer leading to increase in carrier
proportion in the population.
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Figure 5.1: Forward bifurcation diagram in (a) plane I, R0 and in (b) plane I,
ψ. The continuous line represents a stable equilibrium. There are two stable
equilibriums (disease free equilibrium for R0 < 1 and an endemic equilibrium for
R0 > 1). The dotted line represents the unstable disease free equilibrium

Figure 5.2: The phase plane portrait of S vs I for 2.3. The four curves correspond
to the initial conditions I0= 1, 10, 20 and 30 respectively. They all converge at
Ie = 4.549013989 and Se = 24.41243257 as in (b) when the plot is magnified.
showing global asymptotic stability of the endemic equilibrium

6. Interpretation of the model and Biological

Implication

The results from the analysis of the model indicate that a possible disease control strategy
would be to reduce the number of new secondary infections i.e. reducing the value of
the basic reproduction number, R0. Rewriting (4.1) into,

R0 = κP

(
ρ[ε(µ + α+ η) + π] + (1− ρ)[µ+ β + π + (1− q)εη]

(µ + α+ η)(µ + β + π)− (1− q)πη

)

,
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Figure 5.3: (a) Dynamics considering carrier-infected interaction rates. The con-
tinuous line is plotted when π = 0.005, and q = 0.75, while the dotted line is
plotted when π = 0 and q = 0.999. (b) Dynamics considering recovery rate of the
infected and carrier-infected transfer rates. The continuous line is plotted when
η = 0.03,π = 0.005 and q = 0.75 while The dotted line is plotted when η = 0.6,
π = 0 and q = 0.999

Statistics Infected Population Infected population
(π = 0.005, q = 0.75) (π = 0, q = 0.999)

Mean 2.486300321 2.170599263
Variance 20.90683033 20.72202111
Observations 100 100
Hypothesis Mean Difference = 0
df 99
t Statistics 9.408577558
P- Value 2.1344× 10−15

t Critical 1.9842169

Table 5.2: t-Test: Paired Two Sample for Means (testing for the significant differ-
ent between infected populations when the values of π β and q are varied respec-
tively)

it is evident that R0 is directly proportional to the contact rate κ and to the mean time
spent in the diseased classes, 1

(µ+α+η)(µ+β+π)−(1−q)πη . The implication of reducing the
contact rate κ → 0 and mean time spent in the diseased classes ensures that R0 → 0.
It is possible to reduce mean time spent in the diseased classes when the transfer rates
between the carrier and the infected classes are reduced (i.e. π → 0 and q → 1) and
when the transfer rate out from the diseased classes are increased (i.e. α, β → ∞).
This indicates that quarantine (where possible), prompt and effective diagnosis and
treatment of the carriers and the infected individuals may lead to possible reduction of
the new infections to zero. A justification of controlling pneumonia by reducing the R0

is indicated by the forward bifurcation results in the analysis. The presence of a forward
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bifurcation implies that a disease can be cleared from the population by just reducing
the R0.

7. Discussion

Mathematical models of infectious diseases have been used to successfully explain the
transmission dynamics of many diseases and the use of such models has grown expo-
nentially from mid 20th century [62]. Our main aim in this paper was to provide a
mathematical explanation of pneumonia transmission dynamics, taking into considera-
tion the role of carriers and recovery measures in the transmission. We only considered
bacteremic pneumonia since it is the most common among children who are under five
years of age.

The model that we have discussed here is based on the initial model that was studied
by Doura et al. [47]. When studying the transmission dynamics of infectious diseases
with an aim of suggesting control measures, it is natural to consider the stability of
equilibrium points and possibility of bifurcation. In this paper we have established R0,
existence and stability of the equilibrium points and existence of bifurcation points. Our
main results indicates that when R0 < 1 then the disease free equilibrium is stable. It
becomes unstable when R0 > 1. The local stability of the endemic equilibrium point
Ee changes its nature to unstable when ψ crosses the critical value ψc via a forward
bifurcation. This is a clear indication that the effective control measure for pneumonia
is achieved when R0 is reduced.

Most of the results in this paper are in agreement with those of [47]. However, we
find some interesting results in the numerical simulation: reducing the transfer rates
between the carrier and the infected class reduces prevalence of the disease. This is a
control strategy that can be employed for pneumonia dynamics.
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Abstract. We identify sets of irreducible Goppa codes which become equiv-
alent when extended by a parity check bit.
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1. Introduction

We begin by defining a degree r irreducible Goppa code Γ(L, g) over Fq of length q
n in

terms of a single field element α of degree r over Fqn . We then define the extended code

Γ(L, g). We give the well known sufficient conditions on two elements α and β of degree
r for

1. the corresponding irreducible Goppa codes to be equivalent;

2. the corresponding extended irreducible Goppa codes (the Goppa codes defined by
α and β extended by a parity check bit) to be equivalent.

We then give a relationship between a set of all elements related by conditions in 2)
to a bunch of sets of elements related by the conditions in 1) above.

2. Preliminaries

Let q be a power of a prime number, let Fq be the field of order q, Fqn its extension of
order n. The family of Goppa codes was first introduced by V.D. Goppa in 1970 [2]. For
our purposes, in this paper we focus on irreducible Goppa codes, and define irreducible
Goppa codes as follows.

Definition 10. Let g(z) ∈ Fqn [z] be irreducible of degree r and let L = Fqn = {ζi : 0 ≤
i ≤ qn − 1}. Then the irreducible Goppa code Γ(L, g) is defined as the set of all vectors
c = (c0, c1, . . . , cqn−1) with components in Fq which satisfy the condition

qn−1
∑

i=0

ci

z − ζi
≡ 0 mod g(z).

The polynomial g is called the Goppa polynomial. Since g is irreducible over Fqn , g
does not have any root in L and the code is called an irreducible Goppa code. Since g(z)
is of degree r the code Γ(L, g) is called a Goppa code of degree r. In this paper g(z) is
always irreducible of degree r over Fqn .
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3. Extended Irreducible Goppa codes

Definition 11. Let Γ(L, g) be a code of length qn over Fq. Then the extended code

Γ(L, g) is defined by

Γ(L, g) = {(c0, c1, · · · , cqn) : (c0, c1, · · · , cqn−1) ∈ Γ(L, g) and

qn
∑

i=0

ci = 0}.

The extended code Γ(L, g) is often described as the code obtained from Γ(L, g) by
adding a parity check bit to each codeword of Γ(L, g).

4. Irreducible Goppa codes defined by a field element

It is shown in [3] that if α is any root of the Goppa polynomial g then Γ(L, g) is completely
described by any root α of g(z) and a parity check matrix H(α) is given by

H(α) =

(
1

α− ζ0

1

α− ζ1
· · ·

1

α− ζqn−1

)

(4.1)

where L = Fqn = {ζi : 0 ≤ i ≤ qn − 1}. We may denote this code by C(α).

Note that C(α) denotes the same code as Γ(L, g), where g(α) = 0. Also, by using
the parity check matrix H(α) to define C(α), we are implicitly fixing an order on L and,
consequently, an order on the components of the codewords in the code C(α).

Considering that any Goppa code (or extended Goppa code) can be defined by an
element of degree r over Fqn , and conversely, any element of degree r defines a Goppa
code (or extended Goppa code), we make the following definition.

Definition 12. The set S is the set of all elements in Fqnr of degree r over Fqn .

5. Equivalent Goppa codes

Consider the map πζ,ξ defined on S by

πζ,ξ : α 7→ ζα+ ξ

where ζ, ξ ∈ Fqn

It is well known that if πζ,ξ(α) = β then

(Γ(L, g))C(α) is equivalent to (Γ(L, f))C(β)

where g and f are the minimal polynomials of α and β respectively.

6. Equivalent Extended Irreducible Goppa codes

Consider the maps πζ1,ζ2,ξ1,ξ2 defined on S by

πζ1,ζ2,ξ1,ξ2 : α 7→
ζ1α+ ξ1

ζ2α+ ξ2
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for fixed ζj, ξj where ζj , ξj ∈ Fqn , j = 1, 2. For simplicity, where there is no confusion,
we write π for πζ1,ζ2,ξ1,ζ2 .

It is well known that if π(α) = β then C(α) is equivalent to C(β). See [1]

Remark 8. Note that in the definition of π the scalars ζj and ξj are defined up to scalar
multiplication. Hence we may assume that ζ2 = 1 or ξ2 = 1 if ζ2 = 0.

In light of the foregoing, we make the following two definitions:

Definition 13. F1 denotes the set of all maps {πζ,ξ : ζ, ξ ∈ Fqn}.

Remark 9. It is not difficult to see that F1 together with the operation of composition
of maps is a group which acts on the set S.

Definition 14. F2 denotes the set of all maps {πζ1,ζ2,ξ1,ξ2 : ζj , ξj ∈ Fqn , j = 1, 2, ζ1ξ2 −
ζ2ξ1 6= 0}.

Remark 10. It is not difficult to see that F2 together with the operation of composition
of maps is a group which acts on the set S.

7. The New Connection

The new connection, spoken of in the title of this paper, is merely the observation that
one orbit in S under the action of the group F2 (all elements of this orbit define equivalent
extended Goppa codes) is made up of qn+1 orbits in S under the action of the the group
F1. Specifically,

1. the orbit in S containing α under F1 is

A1(α) = {ζα+ ξ : ζ 6= 0, ξ ∈ Fqn};

2. the orbit in S containing α under F2 is

A2(α) =

{
ζ1α+ ξ1

ζ2α+ ξ2
: ζj, ξj ∈ Fqn , j = 1, 2 and ζ1ξ2 − ζ2ξ1 6= 0

}

.

Our task now is to prove the following Theorem:

Theorem 1. For any α ∈ S,

A2(α) = A1(α) ∪ A1

(
1

α

)

∪ A1

(
1

α+ ξ1

)

· · · ∪ A1

(
1

α+ ξqn−1

)

where Fqn = {0, ξ1, · · · ξqn−1}

Proof. Considering the definitions of the sets A1 and A2, it is clear that A1(α) ⊂ A2(α)
and A1( 1

α+ξi
) ⊂ A2(α) for any i. That is the right hand side of the equation in the

Theorem is contained in the left hand side. It remains to show that both have the same
number of elements. So we use a counting argument.
It is easy to see that there are qn+1 distinct sets on the right hand side and each of these
sets contain qn(qn−1) elements. So the right hand side has a total of (qn+1)(qn)(qn−1)
elements. On the left hand side

A2(α) =

{
ζ1α+ ξ1

ζ2α+ ξ2
: ζj , ξj ∈ Fqn , j = 1, 2 and ζ1ξ2 − ζ2ξ1 6= 0

}

.
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1. If ζ1 = 0, then w.l.o.g. ξ1 = 1 and there are qn(qn − 1) = q2n − qn possibilities

2. If ζ1 = 1, then we need to exclude the cases when ξ2 = ζ2ξ1:

(a) ξ2 = 0, then exclude

i. the qn cases when ζ2 = 0 and ξ1 ∈ Fqn

ii. the qn − 1 cases when ζ2 6= 0 ∈ Fqn and ξ1 = 0

(b) ξ2 6= 0. There are qn − 1 such cases. In each such case, for each ξ1 6= 0 (and
there are qn − 1 of them) there is a unique solution for ζ2. Hence there are
(qn − 1)2 possibilities when ξ2 6= 0.

So the total number of possibilities under item 2 is q3n − (2qn − 1) − (qn − 1)2 =
q3n − q2n

Adding the possibilities under 1) and 2) we get q3n − q2n + q2n − qn= q3n − qn =
(qn + 1)(qn)(qn − 1). The proof is complete.

Remark 11. The significance of this Theorem is that we have identified qn + 1 sets of
Goppa codes, all of which become equivalent when extended by a parity check bit. The
author used A1 type sets to count the number of Goppa codes in a previous work [4].
This new connection will facilitate a similar count of extended Goppa codes.
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