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Using subspace theory together with appropriate smoothness and decay conditions, we calculated the deficiency
indices and absolutely continuous spectrum of fourth order difference equations with unbounded coefficients.
In particular, we found the absolutely continuous spectrum to be R with a spectral multiplicity one.
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1 Introduction

In this paper, we have considered a symmetric fourth order difference equation of the form

Ty(t) = L% [p2 (1) A ( 2)] = Alpr (A9t = D] +po(t)i(t)

—i{ A A2t — 2)) + A% (g () AG(t— 1))} (1.1)
+i{A(@®I®) + (@ (LG - 1))}
St

defined on a weighted Hilbert space ¢2 (N) with w(t) > 0 as the weight function, t € N, po(t) # 0, pi, q;,
k =0,1,2, 5 = 1,2 are real valued functions and their second difference, that is, A?p;, and A? q; exists and
tend to zero as t — oo. Here, of course, z is the spectral parameter. In (1.1), the notation A refers to a forward
difference operator, that is, for any mapping f, Af(¢) = f(t + 1) — f(t). The notations that will be used in this
study are largely standard and follow closely those of [28]. In most cases, the underlying interval will be taken as
I = [a, 00) for a large regular end-point a, a > 0, but Remlings’s results [23] will be used to extend the spectral
results to the integral interval [0, 00).

There has been a number of papers on difference equations and difference operators but in most cases the
studies have been focussed either on the Hamiltonian systems of the difference equations or deficiency indices
with little or no emphasis on spectral theory, see for example [11]-[14], [17], [28]. In the situations where the
studies have gone beyond deficiency indices, the authors have only considered difference equations or operators
of second order with bounded coefficients [13]. Behncke and one of the authors [7], [8] went further to investigate
the absolutely continuous spectrum of higher order difference operators with almost constant coefficients but in
the case of unbounded coefficients, they only managed to study a fourth order difference operator with even order
coefficients only. This is due to the difficulty involved in computing the roots of a fourth order polynomial and
more so if the coefficients are unbounded.

Another difficulty that is always encountered in the difference systems is that the minimal operator generated
by (1.1) may be neither densely defined nor single valued, its maximal operator may not be well defined and

* e-mail: johnagure @yahoo.com, Phone: +254 721 271 122, Fax: +254 57 351221
** e-mail: otivoe @yahoo.com, Phone: +254 723 843 943, Fax: +254 57 351221
*** Corresponding author: e-mail: foluoch2000 @ yahoo.com, Phone: +254 702 115 965, Fax: +254 57 351221

[\iﬂWI LEY Iﬁi ON |—| N E Ll BRARY © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



324 J. O. Agure, D. O. Ambogo, and F. O. Nyamwala: Spectral theory of fourth order equations

thus the selfadjoint extension operator for minimal operator cannot be discussed by application of von Neumann
theory for densely defined Hermitian operators. This, therefore, requires the theory of Hermitian subspaces where
the von Neumann theory has been extended in order to discuss the selfadjoint extension of the minimal Hermitian
subspaces and for more details see [25]-[27], [29] and the references cited therein.

In order to avoid the first difficulty mentioned above, we have employed the techniques in [15, Sect. 3.3]
which have also been used in [10] to approximate the roots of the associated characteristic polynomial which
are pertinent ingredients in the analysis of the deficiency indices of the minimal subspace generated by (1.1) and
also the absolutely continuous spectrum of the selfadjoint extension subspace of this minimal subspace. We have
managed to circumvent the second problem by doing our analysis through the subspaces generated by (1.1).

Itis a well known fact, at least by now, that the study of absolutely continuous spectrum of difference equations
parallel that of their continuous counterparts, the differential equations and in that light, this study can be con-
sidered as a continuation of [7, Sect. 5] as well as the discrete counterpart of the paper by Behncke [4]. Though
it should be noted that there is a big difference in terms of the approach used. Whereas the minimal operator
is densely defined and the maximal operator is well defined in the continuous case, the same is not true in the
discrete case and hence the only sure way to do the analysis is via the subspace theory. The case of discrete
Kummer-Liouville transformation of the coefficients is being pursued by Behncke and one of the authors and
therefore will appear in a different paper. Singular continuous spectrum would be assumed to be absent in our
case since singular continuous spectrum is not bounded under finite rank perturbations and therefore asymptotic
summation as outlined in the paper by Benzaid and Lutz [11] cannot handle this component of the spectrum.

Our main results state that if the coefficients py, q;, k = 0,1, 2, j = 1, 2, are allowed to be unbounded, satisfy
appropriate smoothness and decay conditions, and the Hamiltonian satisfies the definiteness and regular condi-
tions, the deficiency indices of the minimal subspace is (n,n), where 2 < n < 4 and the absolutely continuous
spectrum of the selfadjoint extension subspace is the whole of R and has spectral multiplicity one. These results
are, however, invariant under higher order smoothness and decay conditions. If the minimal difference operator
generated by (1.1) is densely defined and the corresponding maximal difference operator is well defined, then
similar results are also true for the difference operators.

The spectral multiplicity has been studied using the theory of M -matrix as developed by Hinton and Schneider
[18] which is a generalisation of the Weyl-Titchmarsh m-function and relates the asymptotics of the eigenfunc-
tions of higher order difference equations to the spectrum of their selfadjoint realisations [28]. The M -matrix is
the Borel transform of the spectral measure and the latter can be recovered from the M-matrix [23].

The paper is divided into five sections, namely; 1. Introduction, 2. Hamiltonian systems and Subspaces, 3.
Bounded coefficients, 4. Unbounded coefficients and 5. g1 — oo as t — oc.

2 Hamiltonian systems and subspaces

Discrete Hamiltonian systems originated from the discretisation of continuous Hamiltonian systems and from the
discrete processes acting in accordance with the Hamiltonian principle such as discrete physical problems and
discrete control problems. Thus like in the differential case, the coefficients will be assumed to be real-valued
functions and will be allowed to be unbounded and satisfy the following conditions:

2
AQf, (Af> Ggl, HGEQ, Af:O(l),

! ! ! 2.1
f:pkan7 k:071727 j:1,2
For the highest order coefficient p» and the weight function w, we assume
p2, w > 0. (2.2)

In order to define the discrete Hamiltonian system for (1.1), one introduces quasi-difference, see [7], [8], [28],
z1(t) =gt —1), zy=Ag(t—2),
u(t) = p (A= 1) = Ap2(H A% (t - 2))
+i{A()AY( - 1)) + @)A1t - 2)} —iq (H)j(),
us(t) = pa(A%(t = 2) —iga (H AG(E — 1).

2.3)
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Now define the vector valued functions x(t), u(t) and y(t) by

o(t) = (@1 (1), 22())",  u(t) = (ur(t),u2 ()", y(t) = (x(t), u(t)"”

and the partial shift operator Ry(t) by Ry(t) = (z(t + 1), u(t))"", where ¢r denotes the vector transpose. Then
(1.1) can be written in its discrete linear Hamiltonian form, see [28],

JAyY(t) = [zW(t) + P(t)|Ry(t), (2.4)

where W (t) and P(t) are 4 x 4 complex Hermitian matrices, W (t) = diag(w(t),0,0,0), x(t),u(t) € C?, Jis
a canonical symplectic matrix, that is,

(2 ) - () 40)

The nonzero elements of the 2 x 2 matrices A, B and C' are given by

iQQ _
Arp=1, Aso=—, Bys=p, h
P2
%
Cii=py, Cia=1iq, Co1=—iqi, Cho=p1— b
2

Let 2 (I) be a Hilbert space with weight function w and define this Hilbert space using the vector valued
functions x(t), u(t) and y(¢) by

(1) = {y ty = {y()}Zy € Cand Y (Ry")(OW()(Ry)(1) < 00} :

t=0

Then the scalar product for the vector valued functions of the system is [28]

D ovit+ Dwby(t+1) = (v, yiu1 € 6,0,
t=0

The system (2.4) will be assumed to satisfy some regularity conditions. There exists ¢y such that for all non-
trivial solutions y(., z) of (2.4) and for all z € C

> (Ry(s,2)"W(t)Ry(s,2) >0, s>t 2.5)

S Ztl)

I, — A(t) is invertible and this ensures the existence and uniqueness of the solutions of any initial value problem
for (1.1). In particular, this will only be required for the first half components of elements in 2 (I).
It is well known that if definiteness conditions corresponding to

Jy'(t) = (P(t) + 2W (0)y(t), t€[0,00),

is satisfied, then the minimal operator generated by this continuous system is densely defined and the maximal
operator is well defined [2], [20], [21]. In this case the defect index of the minimal operator is equal to the number
of linearly independent square integrable solutions [20], [21]. But if this corresponding definiteness condition is
not satisfied, the minimal operator may not be densely defined and the maximal operator may be multivalued [2],
[20], [21]. However, in the case of the discrete systems, the minimal operator may fail to be densely defined even
if the condition (2.5) is satisfied and this is an important difference between differential and difference equations.
Due to these technical difficulties, the spectral properties for difference equations have not been studied that much
compared to differential equations.

Since the minimal operator generated by (1.1) may be neither densely defined nor single valued, its maximal
operator may not be well defined and thus the selfadjoint extension operator for minimal operator cannot be
discussed by application of von Neumann theory for densely defined Hermitian operators. This therefore requires
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the theory of Hermitian subspaces where the von Neumann theory has been extended in order to discuss the
selfadjoint extension of the minimal Hermitian subspaces and for more details see [25], [26], [27], [29] and the
references cited therein.

Let M be a linear subspace or a linear relation in ¢2 (I) x ¢2 (I), where the domain, range and kernel of M
are defined by

DM)={ye(I) : (y,9) €M forsome g€ 2(I)},
R(M) = {96&2‘,(1) : (y,9) € M for some yEEi,(I)},
KM)={yeli(I) : (y,0) e M}

and finally define

M=zl ={(y,9—2y) : (y,9) € M}

and
M ={(y,9) € ,(1) x ,(I): (y,f)={g.x), Y(z,f) € M}

so that M C £2 (I) x £2 (I) is called a Hermitian subspace if M C M?*. Now define dim(R(M — zI))~ as the
defect index of M and z. But since R(M — 2I)+ = K(M* — zI) the defect indices of M and its closure with
respect to the same z are equal. We will denote

def M = dimy (M) = dimy; (M) = (N, N)

as positive and negative defect indices of M.
Now define two semidefinite scalar product spaces

1) ={y: y={yt)};2, cC'}
and
Ly (I) = {y €lI): Y R (yHWHRyY)() < 00}
tel

with the semidefinite scalar product

(y1,92) = Z R (y2) ()W () R(y1)(1).

Then it follows that ||y|| = ((y,y))? for y € L2, (I). Since W (t) may be singular in I, ||.|| is semi-norm. One
thus defines a quotient space

Liy (I) = Liy (D /{y € Liy (1) = |yl = 0}.

It is therefore true that L3, (1) is a Hilbert space with an inner product (., .). For a function y which is a solution
of (1.1) and is summable, denote by § the corresponding class in L, (I) and for any § € L%, (I) by y € L3, (I)
denote a representative of g. It is evident that (3, 42) = (y1, yo) for any 4, 9o € L3, (I). Now let 7 be a natural
quotient map such that

- 5124/'(1) - L%’V I, y—14.

Then 7 is surjective and not injective in general. One defines the natural difference operator corresponding to
(1.1) by

L(y)(t) = JAy(t) — P(t)R(y)(1). (2.6)
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Further, we define

L3o(I)={y € Ly (I): there exists two integers s,k € I
with s <k suchthat y(t) =0 fort < sand t>k+1}

and

H={(§,§) € L}, (I) x L}, (I) : there exists y € L3, (I)
such that Ly(t) = W(t)R(g)(t), t€ I},
Hoo = {(.9) € H : thereexists y € § suchthat y € L3 ((I)
and Ly(t) =W(t)R(g)(t), tel}.

Then H and Hy are both linear subspaces in L2, (I) x L, (I). H and Hy are called maximal and preminimal
subspaces corresponding to £, the natural difference operator generated by (1.1), respectively. Hy = Hyy is the
minimal subspace corresponding to £ in L%, (I) x L3, (I).

It follows that Hoy C H C H, and consequently Hy is a Hermitian subspace in L3, (I) x L%, (I). It has
been proved in [26] that the adjoint of preminimal subspace is the maximal subspace and thus Hj, = Hj = H.

In order to discuss the selfadjoint extension subspace for Hj, one needs that the system (2.4) satisfies definite-
ness condition. This will be stated as follows:

[A]: There exists a finite subinterval I; C I such that for any z € C and for any non-trivial solution y(¢) of
(1.1) the following always holds:

> Ry) (W (HR(y)(t) > 0.

tel;

We need to point out here that this assumption has slight variation from that stated in (2.5). The definiteness
condition A together with the fact that [, — A(¢) is invertible now guarantees the existence of a unique solution
for (2.4). If z € C\R, G. Ren and Y. Shi [26] have shown that the dimension of the defect space of H and also
of Hy are equal to the number of linearly independent square summable solutions of (1.1) or (2.4). Assume that
the defect index of H, are equal, that is, def Hy = (n,n), where 2 < n < 4, then H, has selfadjoint extension
subspace in L}, (I) x L, (I) denoted by H if there exists matrices o, vy € C**? such that

rank(ap, an) =2, a1 @ af = a1 a3,

with ®, = ((y1,92)(a — 1))ax2 and P defined in a similar way though with the boundary condition fixed
at limiting point, that is, as ¢ — oo. These are called the selfadjoint boundary conditions. ¥; and y» are square
summable solutions of (1.1). Then H is defined by

D P (@ y1)(a—1) (@ y1)(00) | _
H= {(y,g) €cH: o < (G.m)a— 1) > + ap < (G, y2)(00) > = 0} . 2.7
For more details see [29, Theorem 5.9] and Section 5 of the same reference in general.

It has been shown in [26] that def H| is independent of the half-planes if z is nonreal. In that case, H has a
selfadjoint extension subspace H defined by (2.7). Moreover, if a closed Hermitian subspace has equal finite de-
fect indices, then all its selfadjoint extension subspaces have the same essential spectrum [26]. For point spectrum
of these subspaces, every isolated point of the spectrum of selfadjoint subspace is an eigenvalue of the subspace
and therefore constitutes the point spectrum. Only those eigenfunctions that lose their square summability as
Imz — O contribute to absolutely continuous spectrum.

The following theorem which is from [27, Thm. 4.1] gives a relationship between the spectral properties of a
selfadjoint extension subspace to those of the corresponding selfadjoint extension operator if the minimal operator
generated by (1.1) is densely defined and the maximal operator is single-valued. It is therefore considered bridging
result between the spectral results of subspace theory to those of selfadjoint extension operators and its proof can
be obtained from the same reference.
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Theorem 2.1 If H is a selfadjoint extension subspace in L}, (I) x L}, (I) and Hy is the selfadjoint operator
defined in the subspace H, then

Up(H) = Up(Hs)a Uac(H) = Uac(Hs)7 Jess(H) = Uess(Hs)-

Therefore to determine the number of solutions of (1.1) that are square summable, we use asymptotic summa-
tion and that requires (2.4) to be converted into its first order system. In this case, the first order system is of the
form

o 5 . 2.8)
— <C‘E I_AMFOEB)(U(’?))'

Here, E = (I, — A)~!, C' = C — zdiag(w, 0) and

_ 1 1 -
1 1— 12 0 P2 —iq2
P2
_ 1 1
0 _iay 0 P2 —iq2
P2
S(t, Z) = Py — 2w Ppo—2Zw+1iqi 1 Po —zw.+7ﬁq1
1—-L2 P2 —iq2
P2
pu—iqu—ﬁ - pn—iql—i
—3 P2 -1 1 192 S P2
v 17’:7_22 + P2 + P2 —iq2

The aim of this paper is the analysis of the absolutely continuous spectrum of the subspace H, o,.(H ), and
its multiplicity. For this, we will determine the absolutely continuous spectrum via the M -function. This in turn
requires the asymptotics of the solutions of (1.1). Since it has been shown in [23] that the absolutely continuous
spectrum and its spectral multiplicity are independent of the boundary conditions and the left regular endpoints,
we will pay little attention to the left regular endpoints.

In order to do the analysis of the solutions of (1.1), we will need to solve the first order system (2.8). There
are other ways of expressing (1.1) into its first order system and (2.8) is just but one of them. To determine the
eigenfunctions of (1.1) respectively (2.8), we need to calculate the eigenvalues of S(¢, z). This demands that
we calculate the associated characteristic polynomial of S(t, z). From P(¢, A, z) = det(S(¢t,z) — A\.Iy) = 0,

multiplying both sides by (ps —iga )A~2 and factorising the resulting polynomial so that if ) is a root then X_l is
also a root, one obtains

. 2
wm, Az =Y pe(1= N1 - A
=0 2.9)

2
+3 =2 =AT) T A+ @A) — 2w,
j=1

(2.9) is a polynomial of degree four. Though there exists a closed form for determining the roots of (2.9),
because the coefficients p;, and ¢; are permitted to be unbounded, a use of this closed form formula will lead to a
lengthy computation with alot of approximation. We there opt to use some approximation techniques by imposing
some conditions on the coefficients as done in [15, Sect. 3.3] in order to obtain the roots. The existence of such
roots will be discussed later but they usually follow from an iteration procedure and the convergence of these
iterates by simply applying Banach fix point theorem. In order to make the above polynomial a real polynomial,
we apply a fractional linear approximation or Mobius transformation which transform the interior of a unit disc
onto the left-hand plane while the unit circle on to the imaginary axis with the exterior of the unit disc onto the
right hand plane. Therefore let

1s+1

_ 2.1
A= T (2.10)
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and substitute this in (2.9) to obtain the Fourier transformed polynomial of the form

Q4(s,2) = (po — zw)(s2 + 1)2 +4q (52 + 1)5 + 4py (32 + 1) + 16g2s + 16ps. 2.11)

Thus (2.11) will be used to solve for the roots s respectively A of Q.
Once the roots are determined, the system (2.8) needs to be transformed into Levinson-Benzaid-Lutz form or
LBL-form [11]

y(t+1,2) = (A(t, 2) + R(t, 2))y(t, 2), (2.12)

where A(t, z) = diag(\;(t,2)), i = 1,...,4,and \; (¢, 2)R;;(t,2) € ¢'. In order to achieve LBL-form and
because of our assumptions in (2.1), we will need two diagonalisations and some (I + Q) -transformations to
reduce the remainder term R(t, z) in (2.12) into summable terms. For more details on these transformations, see
[4], [8]. In consideration of the resultant polynomial Q4 (s, z) and its discriminant d; Q4 (s, z), one can show that
there are only finitely many spectral values z for which Q4 (s, z) has multiple roots, for more details, see [3]. Let
w) < we < -+ < wy denote all the real spectral values z leading to multiple roots. Following [3], the analysis
will be restricted to small complex neighbourhoods of zy € (w;,w;+1), 4 = 0,...,k, where wy = —oo and
wy+1 = oo. For a given z € (w;,w; 1), one can choose € > 0 and a > 0 such that Q4 (s, z) = 0 has no multiple
or double roots for any

z€Ke(z0) ={z] |z — 20| <€, Im(z) >0} =K,

and ¢ > 0. This is possible because for any z € K N R the roots s of Q4(s,z) depend analytically on the
coefficients py, q; and the spectral parameter z. Throughout the study, it may be necessary to adjust a and €
repeatedly. This will be done without mentioning.

Since Q4(s, z) has 4 distinct s roots, P(t, A, z) also has four distinct A roots and therefore one can determine
the corresponding eigenvectors. In the ideal situation, a time shift corresponds to a multiplication by A. Somewhat,
more generally, one has

A—A=1), gt+k) — I\ keczZ
Here — means “replace by” or “corresponds to”. With this and (2.3), one obtains

zi=A-1)""A"" i=1,2,
2

w =Yy (=)A= ()
=1

—i> (DA =D @A + @) — i, (2.13)

=2
uy = po(A = 1)°A7% —ige(A — DA™,

as the components of the eigenvectors vy = (x1, xa, U1, uQ)”’, where {r means vector transpose. It is well known
that the matrix 7T'(¢) formed with the eigenvectors as columns will diagonalise S(¢, z). One thus transforms the
system by

y(tv Z) = T(t7 Z)U(ta Z)
This results into a system of the form

v(t+1,2) =Tt +1,2)S(t,2)T(t, 2)v(t, 2)
= (A + R)(¢, 2)v(t, 2), (2.14)

where R(t,z) = =T~ (t + 1, 2) AT (t, 2)A(t, 2).
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The expression R(t, z) consists of £ terms and can be diagonalised again. Using the results of [4, Sect. 2.3],
one diagonalises (2.14) using the matrix [I + B(t)], B(t) = o(1), formed with the eigenvectors of [A + R|(t).
Here, one has

Bij =\ —XN)"'Ry,i#j, and B; =0.

Any remainder terms that are non-summable can be reduced to summable terms using (I + Q))-transformations
[51, [7]. By application of Levinson-Benzaid-Lutz Theorem [11], the solutions of (1.1) respectively (2.4) are in
the form

t—1
yilt,z) = (e +1ii(t,2) [T Ml 2), ria(tz) el i=1....4,

=ty

where e; is the normalised eigenvector. The term 7; (¢, 2) is the perturbing term from the remainder matrix
R(t, z).

Just like in the differential equations [6, Sect. 3], one can also employ the method of the M -matrix to obtain
the result on the spectrum of H even in bounded and unbounded coefficients case. In [23], Remling has proposed
two methods to determine Im M (2). It is only the first one which is based on [23, (8)] that will be useful in our
case and is given by

(F(,2),F(,2")z—2")=M:(z) — M,(%). (2.15)
Here F'(., z) is the 2 by 4 system of square integrable solutions satisfying the boundary conditions (2.7) at 0 and
the (4, j) matrix element is formed with the i-th and j-th vector. The method of proof shows that it is valid for
discrete systems as well. Indeed, the discrete analogue is Theorem 6.3 in [28]. The second method is stated in [24]
and has been used extensively in [6]. Nonetheless (2.15) is preferable, since it yields InM (2) for 2 = 2z, € R
directly as

ImM(zy) = lim ImM(zy +in) = lir(r)l+ n(F(.,z0 +1in), F(., 20 +in)). (2.16)
n%

n—0+

If the boundary condition (2.7) does not give rise to a bound state, the limit on the right hand side exists boundedly
and defines a continuous function of z.

3 Bounded coefficients

As in [3], define the coefficients p;, and g;, k = 0, 1,2, j = 1, 2, to be almost constant if there exists constants cy,
and d; such that

PE — Ck, qj—djeél, as t — oo.

One now has the following results:

Theorem 3.1 Let p;, and q;, k = 0,1,2, j = 1,2, be bounded and assume that (2.1), (2.2) as well as
condition A are satisfied. Then

() If @ =g =0andp? < 4pa(po — 2w), def Hy = (2,2) and o(H) is pure discrete.
(i) Ifw — oo ast — oo, then o(H) is pure discrete.

(iii) Assume all the coefficients py, and q; are almost constant and moreover, assume the limiting characteristic
polynomial Py (A, z) of (2.9) has 2l zeroes of absolute value one (0 < | < 2), then the selfadjoint
extension subspace H has no singular continuous spectrum and the absolutely continuous spectrum
04 (H) agrees with that of the constant coefficient limiting subspace with a spectral multiplicity of 1.
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Proof.

(i) Assume that ¢; = ¢o = 0 then the polynomial (2.11) is a well-known biquadratic polynomial which can
be solved explicitly. If p? < 4ps(py — zw), then the discriminant D(Q,(s, z)) < 0 implying that one
has two pairs of roots which are in complex conjugate pairs. Assume the s roots are o, +i3,, r=1,2,
then the roots o, + i3, § > 0, will lead to A roots with absolute values less than 1 which eventually
will lead to eigensolutions y(t, z) which are square summable while those s-roots of the form «, —
i3, B > 0, will eventually lead to non-square summable solutions. Thus the deficiency indices of the
minimal subspace Hy is (2, 2), the minimal subspace is limit point at infinity and the eigenfunctions that
are square summable are z-uniformly square summable. No eigenfunction in this case loses its square
summability as Imz — 0% in order to contribute to absolutely continuous spectrum. It follows that
absolutely continuous spectrum is absent and since by assumption singular continuous spectrum is absent,
this leads only to discrete spectrum.

(i) On the other hand, if all the coefficients are bounded and w — oo as t — oo, then we have a compact
resolvent. This can be shown by analysis of the corresponding Jacobi matrices since the Hamiltonian
system will have a dominant diagonal.

(iii) Now consider P(t, A, z) in (2.9) and assume that the coefficients are almost constant. If A is a root, then

X s also a root. By results of [8], those roots A such that |A\| > 1, |X71| < 1 lead to non-square
summable and square summable solutions regardless of the dichotomy condition. Thus only those roots

such that [A| = ’X_l‘ = 1 lead to eigenfunctions of which half of them lose their square summability
as Imz \, 0. It is these eigenfunctions that lose their square summability that contribute to absolutely
continuous spectrum. The number of the eigenfunctions with such behaviour will correspond to the rank
of the M -matrix and is therefore equal to the spectral multiplicity. For more details, see [8]. O

Corollary 3.2 Assume that the minimal operator generated by (1.1) is densely defined and its corresponding
maximal operator is not multivalued. Moreover, assume that all the conditions in Theorem 3.1 are satisfied, then
the minimal difference operator L generated by (1.1) has selfadjoint extension Hg with spectral results as given
in Theorem 3.1.

The result of the above corollary are now similar to those in [8] for the case of n = 2. Its proof follow at once
from Theorem 2.1 and Theorem 3.1.

4 Unbounded coefficients

In this section and the next section, Section 5, unless stated otherwise we will write py to mean py — zw. This is
only to simplify the notations. As such we absorb zw into py. Now simplify (2.11) as follows

Q(s,z) = post + 41 s° + (2py + 4py)s*

4.1)
+ (4q1 + 16¢2)s + (po + 4p1 + 16pz) = 0,

and allow the coefficients to be unbounded. For us to approximate the s-roots of (4.1) we make the following
assumptions on the coefficients

wzla DPo,P2,41,492 :O(pl) and ‘pl ‘/‘ 00, as t/‘OO,
and

po + 4p1 + 16p2
4p1 + 2po

2 4
‘ Po + 4p1 42)

Po

Then apply the approach used in Eastham [15, Sect. 3.3] and [9]. For the regularity and smoothness condition,
we will need that the coefficients are thrice differentiable with

FHAUY. fApTY) € 2 fA% (prY), (FA(prY) e 0,

Az(f)_)o as t—>OO, f:w7p07p17p27q17q2u' (43)
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Because of the assumptions in (4.2), the s-roots can be put in different clusters or groups depending on their
magnitudes. In this case, {po, 4q1, 2py + 4p1 } and {2py + 4p1,4q1 + 16¢2, po + 4p1 + 16ps } will form the two
cluster coefficients that will determine two clusters of eigenvalues with different magnitudes. For this kind of
clustering to make sense, we will assume throughout this section that

Po, 2po +4p1 and pg +4p; + 16ps

are nowhere zero in the discretised interval [0, co) “4.4)

and hence form pivotal coefficients of the polynomial Q4 (s, z) in (4.1).

Lemma 4.1 Assume (4.2) and (4.4), then the polynomial (4.1) can be written in terms of two polynomials

2 4
Qols,2) = 2+ albs BRI () 4.5)
Po Po
and
» (41 +16¢2)  (po +4p1 + 16ps)
S,2) =58" + s + Ry (s), 4.6)

Q) (2po + 4p1) (2po + 4p1) 1(s)
where

Ry(s) = py ' (4q1 4+ 16g2)s ™" +py ' (po + 4p1 + 16ps)s
and

Ri(s) = pos" (2po +4p1) " +4qis® (2po +4p1) "
Ri(s) = O(S?i), 1 = 1,2, and are very small in the absolute value sense.

Proof. In order to prove this result, it suffices to show that R;(s) = o(s?i), i = 1,2. Thus by assuming
(4.2) to hold, write

Ri(s) = |posi<(2p0 + 4p1) ™" + 4q1 85 (2po + 4p1) 7|
< Ipol12po + 4p1 |~ s1a|* + [4ar|[2p0 + 4p1 | 1+

Considering the first term on the right-hand side, one has |py||2py + 4p1 |7 [s14|* & |24 2|s14]" ~ o(s?L).
For the second term on the right-hand side, one has

¥ -1 3
*12po +4p1|” |51+

[4q1112p0 + 4p1| " [s1=* ~ |25 + 4p1ipo
~ |po|% |20 + 4p1] 7% 20 + 4p1] 1200 + 4p1 | s14
~ |sox| s
~ O(S%i)

To show that R (s) is small in the absolute value sense, consider

[Ra(s)] = | (po + 4p1 + 16p2)py ‘552 + (41 + 16¢2)pg ' sat |
< |po +4p1 + 16ps|[py || 5o | + |4q1 + 16g2||py ' ||s5t |-
Simplify the first term to the right-hand side as follows
[po + 4p1 + 16p2||P51‘ | po | [2p0 + 4pi| !
= |po + 4p1 + 16p2|[2po + 4p1 |~ 2po + 4p1lpol " - |pol[2p0 + 4p1 |~

~ [s14]* [sax]| |24 ~ 0(s34)
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and rewrite the second term as

(41 + 164/ [po| " [po| * 12p0 + 4p1 |~ *
~ [2p0 + 4p1 F1po| =¥ po + 4py + 16pa| ¥ - |20 + 4p1 | 7F [po| F[2p0 + 4pa| 7
12po + 4p: |7 [po| 7F
~ |so|.|s12 ][50+ ]| Y s04].
It follows that R; (s) = o(s?, ) as claimed. O

Theorem 4.2
(a) To each root s of Q(s, z), there exists a unique root s; of Q;(s,z), j = 1,2, such that | s — s; |< o(1).
(b) sis real if and only if s; is real. Similarly, s is non-real if and only if s; is non-real.

Here, a is choosen so large so that all the eigenvalues of Q(s, z) are distinct and satisfy | s — s; |< o(1).

The proof of this theorem follows immediately from [10, Lemma 3.3] and [22, Thm. 2.2.4]. One can also use
Kantorovic theorem [1] to show the existence of the roots of Q(s, ) near the roots of Q, (s, 2), j = 1,2.
Lemma 4.1 and Theorem 4.2 now implies that the s-roots of (s, z) are approximately given by

1
i) si4 ~ in’(Z—;)Z and

) L . 1 )
(i) spe v (— (RBEBE)) T & 4i(1 4 b)F where b= 08—

which results from an iteration procedure applied on @1 (s,z) and Q2(s, z). In this case, one picks a root s;
of these polynomials which are close enough to an s-root of the polynomial Q(s, z). In that way, one obtains
infinitely many iterates that will eventually converge to the desired root. The uniqueness of this limit point will
follow at once from Banach fix point theorem.

In addition to (4.2) and (4.3), assume that the roots are non-degenerate. Using the relation (2.10) one thus
obtains the four A-roots of the polynomial P (¢, A, z) which can be approximated as

1 3
2 2
M ~1+<p“) + 2 By o),

D1 2p, 4p§
1 3
2 2
N~ (m) LB o), 47
D1 o1 gy
p1 |, Do 4py
YO Ry IS VPO T
T dpy Y7 dpy + 2po

Once the approximate values of the roots of (4.1) are known, one uses Levinson-Benzaid-Lutz Theorem [11]
to obtain the eigenfunctions of (2.4) respectively (1.1) by asymptotic summation. In order to do this, one has to
establish that the roots of (4.1) or the eigenvalues of the matrix S(t, z), satisfy the z-uniform dichotomy condition.
The Levinson-Benzaid-Lutz Theorem states that the solutions of a system

y(t+1) = [A(1) + R(H)]y(1), 4.8)

where A(t) is diagonal and invertible, look like the solutions of the unperturbed system y(t + 1) = A(¢)y(t),
if R(t) is sufficiently small and A(t) = diag();(¢)) satisfy a dichotomy condition. In the Levinson-Benzaid-
Lutz Theorem [11], small means absolutely summable, that is, A, 1R(?ﬁ) € (', forall i. The dichotomy in this
case amounts to: for any pair of indices ¢ and j such that ¢ # j, assume there exists 6 with 0 < § < 1 such
that |\;(t)] > 0 for all t > g, then either fi} E?) | > 1or |/)\‘J(<i; | < 1 for large ¢. As in the continuous case,
in the spectral theory of the difference operators, the matrix elements and \; (¢) will generally depend also on
the spectral parameter z. Thus one writes A; = \; (¢, z) for this. In our case, we need Levinson-Benzaid-Lutz
Theorem which is proved uniformly in z. For this version, see [22, Thm. 1.2.2] for more details.
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To simplify the analysis of the uniform dichotomy condition, Behncke [5, Thm. 5.1] has shown that those
roots Ay, such that |A\;| > 1 and |)\k_1 | < 1 lead to non-square summable and square summable eigenfunctions
respectively regardless of the uniform dichotomy condition. It thus suffices to check the uniform dichotomy
condition only for the A- roots of P(¢, A, z) with |A\| = 1.

Lemma 4.3 Let z € K such that Im z > 0 and assume that the A-roots of P(t, A, z) are distinct. Then the
A-roots of P(t, \, z) satisfy the uniform dichotomy condition. Moreover, if the coefficients are almost constant,

ds, ds; _ . . . o .
then assume that ;’Z* =+ ;; and again the uniform dichotomy condition is satisfied.

Proof. Assume the coefficients are unbounded. Then by [5, Thm. 5.1], we only need to check the uniform
dichotomy condition between A; and \s since A3 and A4 will lead to non-square summable and square summable
eigenfunctions respectively regardless of the uniform dichotomy condition. But as ¢ — oo | Ay |=| A2 |~ 1. In
this case we need to check on the effect of the spectral parameter z. Now let z = 2y + i1 where zp € Randn > 0
is small. Then by absorbing —z into py, we can write

1

! ,
(3
PYENS N nl+0(p1_1) and
i (pop1)?
1

By 4ot (4.9)

)\2 ~1—
pf (p()pl ) 2

Here the perturbation term as a result of the spectral parameter has different signs and hence asn — 0, | Ay |> 1
while | A2 |< 1 which is the desired dichotomy condition. If the coefficients are almost constant, then the
dichotomy condition follows at once from the results of [8, Sect. 4]. O

One can now compute the eigenvectors of the transformation matrix 7'(¢) using (2.13). In order to work with
bounded transformation matrix 7°(¢), we normalise the eigenvectors as follows. For the eigenvectors of A1, Ao,
Az, and Ay multiply vector elements by \; (p()pl)’%, — g (popl)*é’, Agpfl, and A\gp; !, respectively so that
1T(t)]| = O((pop )_%). Then a lengthy calculation now gives

det T'(t) = —2(pop1) ¥ (p2 — ig2) + O(pf%)-

Thus for asymptotic summation, we need the following smoothness and decay conditions:

1

MA) = o1), F AU A, AU, (jjj) AU pIAS) € 2. (4.10)

Here, f = po, p1, P2, g1, g2 The reason for rather strict conditions given above is because two eigenvalues A; and
Ay are close together leading to unbounded terms in the remainder matrix R. In particular, R;3 and R»3 elements
are unbounded eventhough all other elements will be bounded. This problem is solved by second diagonalisation
using a transformation matrix of the form I + B(t) as explained in Section 2. One can easily observe that an

L
2

extra factor of (Z—;) is needed for smoothness conditions as a result of computing matrix B(t). At this point,

1
we make an assumption that the difference A(f) will beat (i—;) *. In order to achieve LBL form after the second
diagonalisation, we need the following conditions:

3 1 R _ 2

pipg " FTIAR(L), pipy T AR(S), (FTTA(S) e L (4.11)
One therefore has the following result which is an extension of Theorems 3.2 and 3.6 of [4] to the discrete system
and is therefore the main result of this section.

Theorem 4.4 Consider the fourth order difference equation (1.1) such that the assumption A is satisfied as
well as (2.1)—(2.2), (4.2)—(4.4), (4.10) and (4.11). Then one has the following:
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(a) Assume p, : Py 7 s summable, then def Hy = (3,3) and o(H) is discrete.
11
(b) Ifp, *py ? is not summable and the coefficients are unbounded, then def Hy = (2,2) and 0,.(H,1) = R.

1

(@) prﬂ_%pl_2 is not summable and py is bounded then def Hy = (2,2) and [¢,0) C 04.(H,1) ifp1 > 0
and 0,.(H,1) D (—00,¢] ifp1 <O0.

Here ¢ = lim sup py and ¢ = lim inf py.

Proof. Here, A3 and \4 lead to z-uniformly non-square and square summable eigenfunctions. Thus, they
only contribute to discrete spectrum and deficiency index (1,1). On the other hand, if one has to do the analysis
for the square summability of the eigenfunctions associated to A\; and \;, we need the correction terms to the
diagonals after the first diagonalisation since the second diagonalisation will only contribute summable terms to
the diagonal and thus can be neglected. These terms are given by

A 7 A 7
= (Popl)f A1, Ry — (pojm)l
2(pop1)? 2(pop1)?

Thus the eigenfunctions associated to these eigenvalues are of the form
t—1 1
_1 A(popr)? (s
Y1/2(t,2) = £(pop1) 2 (1) A1 j2 (€12 + 7r11/22) H 1+ (pop1) (1,) A1/2(8). (4.12)
2(pop1(s))?

Now application of natural logarithms together with Euler summation formula with the fact that | A, 5 (¢) [~ 1
gives

s=tg

51:_‘1[) 2(pop1)§*(s) Q.Zt:u (popl),g(s) 2/% (pop1)§’ 1 (pop )( )

Now substituting this result in (4.12) and evaluating

lya /2 ()] ~ oo (B)pr (D] ~F

shows that the solutions decay slowly for a real spectral parameter z as ¢ — co. But off the real axis, that is, if
z = zp +1in, zo € R, n > 0 then the z-uniform square summability of these two eigenfunctions will depend on

the summability of (pop;)~ 2. Thus if Py 2 py ° is summable, then both the eigenfunctions of A; and A, will be
z-uniformly square summable and hence will contribute (2, 2) to the deficiency index and discrete spectrum at

1
most. If p, * p; * is not summable, then the eigenfunction associated with A; will lose its square summability as
1 — 0 and hence will contribute to absolutely continuous spectrum of multiplicity one. It remains now to show
that Im M (z) is bounded. To see this, it suffices to show that lim,, o n||y2 (¢, 2)||> — 0 as t — oo but this follow

from
Y2 (t, 2) ~ /: (= (pop1)"2 (1)) (/t: (pom)n;(s)ds> dt

if one applies natural logarithm and Euler summation fomula in (4.12) and thus shows that the eigenfunction
decays to zero as t — oo.

If py is unbounded, then the absolutely continuous spectrum is the whole of real line. But if py is bounded,
expressing the eigenvalue as in (4.9) now gives the desired range of the absolutely continuous spectrum. O

o=

Remark 4.5 It should be noted here, however, that one cannot obtain a deficiency index of (4,4) like in

the differential case because by construction if A is a root then X" is also a root and | At A_ |= 1 so that if
| A= |< 1then | A4 |> 1. However, this result confirms the fact that if p; is unbounded and the other coefficients
are bounded such that they are very small in the absolute value sense compared to p;, then they are just bounded
perturbation terms and hence the deficiency index and spectral results are similar to the case where the odd
coefficients are assumed to be zero.

Remark 4.6 If we assume that the minimal operator is densed and well defined as well as the maximal
operator not multivalued, then one obtains similar results in Theorem 4.4 for difference operators.
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5 g@ — +ocast — oo

In this section, we will continue with our spectral analysis of the fourth order difference equation (1.1) with the
assumption that one of the odd coefficients ¢; is unbounded. Besides, we will absorb —zw into py as mentioned
in Section 4. For simplicity, we will assume that

q1 / 0, as t— o0, and also D2, w = 1a DPo,P1,q2 = O(Ql)' (51)

For regularity and smoothness conditions on the coefficients, we will assume that
A2 (p1)7 A2 (p0)7 A2 (q2)7 B 07
S o(1), A(f), aA(g ') e ?, A <f> e, k>2,
Uil il Q1

(5.2)
f=po,p1,.

These conditions are necessary for asymptotic summation. This will enable the first order system to be in
Levinson-Benzaid-Lutz form after two diagonalisations and the elements of the remainder matrix R(t) will be
summable a condition necessary for application of Levinson-Benzaid-Lutz Theorem.

Theorem 5.1 Consider the difference equation (1.1) with A satisfied as well as (2.1)—(2.2), (5.1) and (5.2).
Then:

() Ifq " is summable then def Hy = (3,3), o(H) is discrete and o4.(H) is empty.
(ii) Ifql_1 is not summable then def Hy = (2,2) and 0,.(H,1) =R.

Proof. By application of quasi-differences, one transforms (1.1) into its Hamiltonian system and then to its
corresponding first order system. An approximation of the eigenvalues of the transfer matrix S(t, z) leads to

Q(s,2) = pos’ +4q18° + (2po + 4]91)82
+ (4q1 + 16¢2)s + (po + 4p1 + 16) = 0. (5.3)

The s-roots of this polynomial can then be approxiamted as

716+4p1 + po

= O(g73 ,
NN o g O
41 (po+2p1) (4o +a)po _3
So R ——— + - + O(q .
Do 2q1 4¢3 (a”)

The corresponding eigenvalues can then be determined with (2.10). One gets
A1 = —exp2if(s) with [(s) =arctans; ~ s;, and

A2 & exp(2iy) with -~ = arctan (fo) (54)
q1

This allows us to determine the dependence on Imz. With 2z = 2y + in we get

. 2
)\1 (t, ) + 277) ~ )\1 (t, Z()) exp <_ (16qgji4ql)> and
, 2n
Ao (t, zo + 1n) & Ao (t, z0) exp 1) (5.5)
1

Meanwhile the other two s-roots are given by

(5.6)

S+ 2Pt (o — 2)) i{(2p1 +(po —2))?  (4¢e +q1)}§.

4q 1642 g
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In this case, the corresponding A-roots are given by

s+ 1) (FLH2)" 41)

In this case s3 and s, are almost purely imaginary so that | A3 |< 1 and | A4 |> 1 uniformly in ¢. Thus it suffices
to check for the uniform dichotomy condition for A\; versus A. But this will follow at once from Lemma 4.3.

From (2.13), one then computes the corresponding eigenvectors. In this case we would want to work with a
bounded diagonalising matrix 7°(¢). Thus one normalises the eigenvectors by multiplying each component of the
eigenvector by ¢, '\. A lengthy calculation then gives

A3/q =

—2i (- (42 + 1)%)
192 '

It thus follows that 7~ (¢) is unbounded and hence the remainder matrix R(t) = —7 (¢t +1)T(t)A(t) can even
be approximated by —T ! (¢)T'(t)A(t) since at the limit point, 7! (¢ + 1) and T~!(¢) differe only by summable
terms.
The most important contribution to the diagonals are those from R;; and Rsy since A\; and Ao are almost
Alq1)

of absolute value 1. In this case we get —Rj; = Roy = S The off diagonal terms will be of the form

O(fflA(f)) where f = p;.,q;, k = 0,1 and j = 1, 2. Thus after the first diagonalisation, the system will not
yet be in its LBL form and therefore a second diagonalisation will be necessary to convert it into LBL form. The
eigenfunctions will therefore be given by

det T'(t) =

t—1
e (t) = q " Meler + Riw) [ (s, 2))- (5.7
s=tg
Since A3 and \4 lead to z-uniformly square and non-square summable eigenfunctions respectively, they contribute
(1,1) to the deficiency index and discrete spectrum at most.
Just like in Theorem 4.5 above, the eigenfunctions associated to A; and A, are slowly decaying and to see
this one again uses natural logarithms and Euler summation formula. Here, we will assume that A= (1+

%)/\1 where %jll is the correction term to the diagonal after the first diagonalisation. We obtain the following
approximations:
t—1 t—1 t—1
5 1 Alqi(s)) 1 dqi (s) 1
In A(s) = = 7%7/ ~—Ing (t—1).
Uror~3 2500 ~2 ), aw ~2 )
In the limiting sense, it follows that
t—1
— Y _1
lyr (D = g O @) [T Ms)| = la @)=,
s=tg

The same analysis applies for yo(t). As ¢ — 0 the solutions decays slowly to zero. In the case of a spectral
parameter with non-zero imaginary part, the z-uniform square summability of these solutions will depend on
the summability of ¢; '. Thus if ¢; ' is summable then the eigenfunctions associated to A; and Ay will be z-
uniformly square summable contributing (2, 2) to the deficiency index and discrete spectrum only. It follows that
def Hy = (3,3) and 0,.(H) is discrete.

If ¢ ! is not summable, then the eigenfunction associated to \; loses its square summability as 7 — 0 and
hence contributes to absolutely continuous spectrum. In this case def Hy = (2,2). The bounded property of
Im M (z) can be shown in the same way like in Theorem 4.5. O

Remark 5.2 The results for g; \, —co as ¢ — oo can be analysed the same way. Moreover, if the minimal
difference operator generated by (1.1) is densely defined and the maximal difference operator is not multivalued,
then under the same conditions, the results of Theorem 5.1 can be extended to the selfadjoint extension operator
of the minimal operator.
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The following example shows how absolutely continuous spectrum can easily change in the case of a two term
difference equation depending on the p; term. The example shows that if py — 00, as ¢ — o0, that is, dominant
Po, then the spectrum is discrete but if py — 0 as ¢ — oo, then absolutely continuous spectrum is obtained of
multiplicity 1.

Example 5.3 Consider a 4th order difference equation of the form

At —2) + (1) = 2w(t)j(t),

where t € N, w(t) = 1, « is a nonzero real-valued constant and z the spectral parameter. Thus, one obtains a
v-charateristic polynomial from this equation of the form

Ftyv,2)=(2—v)2 +t* — 2,

where v = A\+\~!. By adjusting a and € as mentioned in Section 2 whenever necessary, and choosing z € K. (2p)
appropriately, one can obtain two distinct v-roots of the above polynomial. Note that the absolutely continuous
spectrum can only be obtained for the values of v € [—2, 2].

Thus, by determining the values of z that satisfy the inequality | v |= ‘2 —(z— t“)‘]?f < 2, one obtains
1% < z < 42 4+ t*. Now assume that o > 0, then as ¢t — oo, def Hy = (3,3), the spectrum is discrete and
0qc(H) = (). On the other hand, if o < 0, def Hy = (2,2) and one obtains absolutely continuous spectrum of
multiplicity 1, that is, (0,16] C o4.(H,1). Thus, a dominant p, term, p, — oo as t — oo, leads to discrete
spectrum.

The following example shows how the sign of the coefficient can easily change the composition of the spec-
trum.

Example 5.4 Consider a fourth order difference equation (1.1) with
p=1 p=b’ p=0=¢q, w=1, 0<f<2, j=1,2

Then if b > 0, def Hy = (2,2) and o(H) is discrete, that is, o,.(H) is empty. On the other hand if b < 0, then
def Hy = (2,2) and 0,.(H, 1) = (—00,0].
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