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Abstract

In this paper, we investigate the importance of structural viscoelasticity in the me-
chanical response of deformable porous media with incompressible constituents
under sudden changes in the external applied quasi-static loads using mathematical
analysis. Here, the applied load is characterized by a step pulse or a trapezoidal
pulse. Mathematical models of non-divergence free deformable porous media are
often used to characterize the behaviour of biological tissues such as cartilages,
engineered tissue scaffolds, and bones which are viscoelastic and incompressible
in nature, and viscoelasticity may change with age, disease or by design. The
problem is formulated as a mixed boundary value problem of the theory of poro-
viscoelasticity, in which an explicit solution is obtained in one-dimension. Further,
dimensional analysis is utilized to identify dimensionless parameters that can aid the
design of structural properties so as to ensure that the fluid velocity past the porous
medium remains bounded below a given threshold to prevent potential damage.
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Our investigation shows that the fluid dynamics within the medium could abruptly
be altered if the applied load encounters a sudden change in time and structural
viscoelasticity is too small. This explains the confined compression experiment
clarifying the cause of micro-structural damages in biological tissues associated
with loss of tissue viscoelastic property, which leads to the cause of diseases like
Glaucoma.
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Nomenclature

o -Effective stress in one dimension (Pa)

o.-Elastic stress contribution in one dimension (Pa)

o,- Viscoelastic stress contribution in one dimension(Pa)
¢-Volumetric fraction of fluid component or porosity (—)
¢ -Variation of fluid content per unit volume of porous media (N m2)
y-Discharge velocity (m.s~1)

u-Solid displacement (m)

B-Body force per unit of volume (N m=3)

Q-Net volumetric fluid production rate (m3 ST 1)
K-Permeability tensor (m?)

p-Darcy fluid pressure (Pa)

02-Boundary of the domain 2 (—)

‘P-Fluid power density (W.m™3)

L-Length of material (m)

8-Viscoelastic effects for the solid components (—)

e & Ao-Lame elastic parameters

Wy & Ay-viscoelastic parameters

An-Eigenvalues (m_z)

Vu-Volumetric dialation (—)

p-Fluid mass density (kgm —3)

T-Time (s)

I-Identity tensor (—)

1. Introduction

Fluid flow in deformable porous media has many applications in biology, medicine and
bioengineering. For examples, blood flow through tissues in the human body [21, 9, 13,
30], and fluid flow through cartilages, bones and engineered tissue scaffolds which exhibit
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both elastic and viscoelastic behaviours resulting from the combined action of various
components, including elastin, collagen, and extracellular [22], and from mathematical
viewpoints, the study of fluid flow through deformable porous structures requires the
coupling of poro-elasticity with structural viscoelasticity, leading to Poro-Viscoelastic
Models. Interestingly, clinical evidence has shown that the loss of viscoelastic biological
tissues properties which leads to their damages has been linked to various diseases
conditions such as atherosclerosis, Alzheimer’s disease and gluocoma. This triggered
the interests of scientists to investigate the cause of the micro-structural damages in the
tissues.

The theoretical study of fluid flow through deformable porous media has attracted
a lot of attentions since the beginning of the last century. The development of the field
started with the work of [27]. But, it was [5] who set up the framework and ignited the
mathematical development for fluid flow through poro-elastic media. Biot pioneered
the development of an elastodynamics theory for a saturated elastic porous medium.
This theory has had wide applications in the geophysics for analysing wave propagation
characteristics under cyclic load. To date, several books and articles have been devoted
to the mathematical analysis and numerical investigation of poro-elastic models, such as
[7], with applications ranging from engineering and geophysics to medicine and biology.
[17] devised a theoretical and numerical framework to investigate poro-elastic and poro-
viscoelastic models. The study showed that structural viscoelasticity plays an important
role in determining the regularity requirements for volumetric and boundary forcing
terms, as well as for the corresponding solutions. More so, the solutions of fluid-solid
mixture (elastic displacement, fluid pressure, and Darcy velocity) are more sensitive to
the boundary traction in the elastic case than in the viscoelastic scenario [3].

Further, the study in [17] has provided numerical clues that sudden changes in body
forces and/ or stress boundary conditions may lead to uncontrollable fluid-dynamical
responses within the medium in the absence of structural viscoelasticity. The causes of
the damage in biological tissues, namely that sudden time variations in stress conditions
coupled with lack of structural viscoelasticity could lead to microstructural damage due
to local fluid-dynamical alterations [28].

In this paper, we consider a non-linear system of partial differential equations that
are often encountered when modeling fluid flow through deformable porous media. The
non-linearity in the system is as a result of the medium permeability.

The relevance of the combination between structural mechanics and fluid dynamics
in the damage of deformable porous media has been the focus of many authors [18, 24].
In this paper, we investigate a particular aspect of this combination and we focus at
characterising and quantifying the role of structural viscoelasticity on the biomechani-
cal response to abrupt changes in stress conditions. Using the fact that biomechanical
applications are characterised based on tissues having the same mass density as water,
we consider in this paper the situation whereby deformable porous media are composed
of incompressible solid and fluid components. In this case, it follows from Biot’s theory
of poro-elasticity (in R”, n = 1,2,3) that increment of fluid content ¢ is given by;

¢ = be() + sep, (1.1)
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where b is the Biot Willi’s constant, u is the solid displacement, €(iz) is the volumetric
strain, s is storage coefficient of medium and p is the fluid pressure. For incompressible
constituents of porous medium, b = 1, s = 0 [8]. Thus (1.1) reduces to

¢ =€) (1.2)
The volumetric strain € (i) = A—VV is known as Dilatation which is given by:
ew)=V -u,
and as such, the fluid content increment in (1.2) becomes
(=V-u (1.3)

Now, on the contrast to standard elasticity theory, incompressibility of each components
of the deformable porous medium doesn’t mean that both solid displacement and fluid
velocity are divergence-free. This follows from the fact that the medium undergoes
deformation (infinitesimal) under the applied external loads[2, 15]. But the volumetric
strain of solid constituents lead to the variations of the fluid content of the porous medium.
We use the convention V - i positive to mean extension implying “gain” of fluid in the
medium [29].

Following the theoretical and numerical results in [17], we developed a one di-
mensional problem of deformable porous medium with incompressible constituents, for
which we utilize the analytic solution to demonstrate that the fluid velocity and power
density approach infinity if the stress boundary conditions is not smooth enough in time,
and no viscoelasticity is present in the solid component. Then we utilize dimensional
analysis to identify parameters that affect the discharge velocity blow-up, and hence
providing the direction for sensitivity analysis on the system, which can help in the
experimental design in Tissue engineering. The rest of the paper is presented in the
following sequence. A brief description of poro-viscoelastic model for flow through
deformable porous media under boundary traction is carried out in section 2. In section
3, the one-dimensional case of the model, for which an explicit solution is obtained and
a summary on well-posedness of the solution is presented. Section 4 focuses on the di-
mensionless form of the one-dimensional problem. Results of the effect of two different
cases of boundary tractions, namely step pulse (discontinuous in time) and trapezoidal
pulse (no time discontinuity) in the presence or absence of viscoelasticity on the fluid
dynamics are presents in section 5 and section 6 respectively. Finally, we end this paper
by drawing general conclusions and by presenting some future development.

2. General Poro-viscoelastic Model Formulation and Description

Consider a deformable porous medium as a continuum and let @ C R", n = 1,2,3 be
a bounded open and connected domain with a Lipschitz continuous boundary 9€2, and a
unit outward normal 7 occupied by the medium. Let

u:Q2x[0,7T] — R”
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be the displacement of the porous medium, and E(zz) be the infinitesimal strain tensor
for each time ¢+ € [0,7] with T > 0. Assuming that there is infinitesimal (small)
deformation, full saturation of the mixture, incompressible mixture constituents, and
quasi-static loading (negligible inertia), then the motion and mechanical response of
the deformable porous medium under quasi-static loading are described by two set of
equations, namely the balanced and constitutive equations.

2.1. Balance equations

These involve the balance of mass equation for the fluid content in the medium and
the balance of linear momentum for the fluid-solid mixture of the medium. Here we
consider the set of balance equations often ecountered in modeling fluid flow through
porous media. Let Vy(X,7) and Vf()_c’,t) be the volumes occupied by the solid and
fluid constituents at (x,7) € Q x (0,T) respectively. In every volume V(X,?) of a
porous medium centred at X € Q at time 7, the volumetric fraction, ¢(x, t) of the fluid
constituents given by

B Vi(X,1)
P(x,1) = Ve (2.1)

is called the Porosity of the medium. If V,(x, r) is the pore volume of the medium, under
full saturation condition, we have

Vo(X,1) = Vi(X, 1),
and the volumetric fraction of the solid component of the medium is given by:
1 — ¢(x,1). (2.2)

Following the assumptions, the motion of the poro-viscoelastic material is governed by
the following balance of mass equation for the fluid component:

%§+VJ=QuﬁmmeJj (2.3)

and the balance of linear momentum equation for the fluid-solid mixture under Quasi-
static loading:

V- T+B=0inQx (0,7). (2.4)
where, T is the stress tensor of the mixture (also called total stress), v is the discharge

velocity, B is the body force per unit volume (source term of linear momentum), Q is
the net volumetric fluid production rate (source term for fluid mass).
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2.2. Constitutive equations

These include equations that quantify the total stress, discharge velocity and fluid contents
respectively. For the purpose of our analysis, we consider the following constitutive
equations

T=T,+ 4T, — pl
T, = 3o(V - )1 + 21, EGi)
ou ou
}p v. 8\ L, g (2 2.5)
' ( at) oy (at>
¢ =
\7=—KVp,

where p is the Darcy fluid pressure, I is the identity tensor, E(x) is the infinitesimal strain
tensor which is given by

which is the same as the symmetric part of the gradient of the displacement vector field
U, Ao, and . are the Lame elastic parameters, A, and ., are assumed to be viscoelastic
parameters, T,, and T, are the elastic and viscoelastic stress contributions respectively,
the parameter 6 > 0 indicates the extent to which the model includes viscoelastic effect
for the solid component, with § = 0, corresponds to the purely elastic case, and V is
the fluid discharge velocity vector. The system of equations (2.3) to (2.5), with § > 0
characterise the motion of a poro-viscoelastic medium under Quasi-static loading in
R", n = 1,2,3. Further, the parameter K is the porous medium permeability tensor
which may depend on space and dilation, that’s

K=K,V -u)

[4, 11]. In addition to the system of partial differential equations (2.3) to (2.5), the
following Dirichlet-Neumann boundary and initial conditions are considered:
2.2.1 Boundary conditions

Suppose that the boundary 92 of Q2 can be decomposed as 92 = I'y U I'p, with
I'p=Tp,Ulp,,and possibly I'p N I", = ¥ then

Tn=t;,v-n=0onTy x(0,T)
nu=0,p=0o0 onl'p, x (0,T) (2.6)
u=0,v-n=vonlp, x(0,7T)

Here the subscripts N and D indicates boundary conditions imposed on stress and dis-
placement, whereas the subscripts p and v indicate conditions imposed on Darcy pressure
and velocity, 7; is the force per unit area (surface traction), and v is a prescribed function
of space and time.
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2.2.2 Initial conditions

For the initial conditions, it is important to differentiate between two cases, namely vis-
coelastic case (6 > 0) and purely elastic case (6 = 0).

When § > 0, the balance of mass and linear momentum equations contain time deriva-
tives, thus requiring an initial conditions on the whole displacement field u. That’s

u=ugatt =0in Q 2.7)

and when § = 0, only the increment in fluid content in the mass balance equation
undergoes time derivative, and as such we have

V-u=c¢patt =0in Q, (2.8)

where ug, and €( are prescribed initial data. Therefore equations (2.3) to (2.8) is known
an Initial Boundary Value problem(IBVP) and the requirements (like elliptic regularity)
for existence of solution for the case when § = 0 has been investigated in [17]. We
found that most of the available theoretical studies based their investigation on poro-
elastic case with no account for structural viscoelasticity. More so, for constant medium
permeability, the resulting coupling between elastic equations and fluid subproblem is
linear and the existence, uniqueness and regularity of solutions have been studied by
many authors [20, 25].

In the following section, we present a one dimensional poro-viscoelastic model, for
which we can obtain an explicit solution and study the effect of structural viscoelasticity
on the poromechanical response of the deformable porous medium to sudden changes
in time-dependent mechanical load.

3. One-dimensional poro-viscoelastic problem formulation

Let the domain €2 be given as the open and bounded interval (0, L) C R, withO < L < oo
and assuming in addition that there is no chemical reactions and no body force per unit
volume, then Q = B = 0 [6, 28]. Let o, 0., 0y, u, v and K be the one-dimensional
version of T, T, T,, u, v and K respectively. In this case, the balance of mass and
linear momentum equations in (2.3) to (2.4) become

0%u 4 %
dtdx  ox
0
— =0in(0,L) x (0,T) 3.2)
X

=0in(0,L) x (0,T), 3.1

and the constitutive equations in (2.5) yields

o =0,+80,—p (3.3)
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where,
N ou 42 ou
o, = _
e e 9x ,uea
ou
= aa—, (where @ = A, + 2te) (3.4)
X
5 s (o 92u ) 02u
o, =
v "\oxor ) T oxor
0%u
=p , (Where B = 8(Ay + 2uy)) (3.5)
oxot
and
_ dJu
0x
0
y=—K2Z (3.6)
0x

in (0, L) x (0, T) respectively with 0 < 6 < 1.
Substituting (3.3), (3.4), and (3.5) into (3.2) we get

8%u 3u ap

ox2 TP "oy - 0@ L xO.1) G-7)
Now suppose that the deformable porous media with incompressible constituents under

o

boundary traction is as shown in Figure (1).

permeable pistol

T o= ), p=0
s oy o

rigid wall L rigid wall
Deformable
Porous
Medium rigid impermeable

boundary
u=20 v=20

Figure 1: Representation of the one-dimensional poro-viscoelastic problem. The forcing

term F(t) may have discontinuities in time.

Then we apply to the system of equations in (3.1) to (3.6), the following set of
boundary and initial conditions which follows from (2.6)

u,t1) =v(0,1) =0vV0 <t <T (3.8)
p(L,t)=0;0(L,t)==-F@®)VO0<t<T (3.9
(3.10)

ux,)=0v0<x < L
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where F'(t) is the boundary forcing term(traction force).

If B = 0O (absent of viscoelasticity) with the medium permeability K, and the boundary
forcing term F'(¢) are given constants, then the system (3.1) to (3.10) degenerates to
the purely poro-elastic model studied experimentally and analytically in [26]. Besides,
the boundary and initial conditions (3.8) to (3.10) considered correspond to the creep
experimental test performed in confined compression test. Further, we rewrite the system
of equations (3.1) to (3.10) in terms of the derivatives of the solid displacement u as
follows:

First, by integrating both sides of (3.1), with respect to x we obtain

du(x,t)
ot

+v(x,t) = n(), 3.11)

where 7(¢) is an arbitrary function of t. It follows from (3.8) that () = 0, and thus (3.4)
becomes

du(x,t) v =0
v(x,t) =
dt
du(x,t)
— v(x,t) = — (3.12)
ot
Substituting (3.12) into (3.6) yields
0 0
Yk (3.13)
ot 0x
so that (3.7) becomes
ou P 9%u Kp 93u (3.14)
—_— a— —_— = .
ot dx2 9tox2
Now using (3.2) and (3.3), it follows from (3.9) that
du(L,t)  d%u(L,t)
o + B = —F(). (3.15)

0x 0xot

Therefore, the system (3.1) to (3.10) reduces to the following non-linear initial boundary
value problem which characterises a poro-viscoelastic medium in one-dimension:

ou 9%u 93u
— —Ka— — K =0 in (0,L) x (0, T 3.16
o~ RKega —KPas in (0,2)>O.1) (3.16)
du(L, 1) 02u(L, 1)
o = —F(@) 0<t<T (3.17)
0x dxot
u(0,7) = v(0,1) =0 0<t<T (3.18)

ux,00=0 O<x <L (3.19)
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In addition to the system (3.2) — (3.10), we consider an important quantity associated
with fluid-solid mixture called the fluid power density P(¢) which is the time rate of
energy transfer per unit volume of fluid. In our case, P(¥) is given by:

L
P(t) = % /O v(x,1)%dx, (3.20)

where K is the medium permeability and v(x, ) is the discharge velocity.

3.1. Formal solution

First, assume that medium permeability is a non-zero positive constant Ky, that’s

9
K:=K (x, —”) = Ko > 0. (3.21)
ax

So that the system (3.19) to (3.19) becomes a Linear Initial Non-homogeneous Boundary
Value Problem. We obtain a formal solution u(x, ¢) to the resulting linear system using
Fourier series expansion techniques as follows:

First, we homogenize the boundary conditions by setting

p(x,1) = u(x,1) + G(x,1), (3.22)
and suppose that for an auxilliary function ()

_ ut)

Gx,t) = X, (3.23)
o
which at x = L satisfies
dG(L,t)  3*°G(L,1)
= F(1). 3.24
“or TP v ® (3:24)
Using (3.23), then (3.24) yields
du(t) « o
—u(t) = =F(1), 3.25
= + ﬂu( ) 5 (1) (3.25)
and by integrating factor techniques we get
(1) a/tep( tp ))F()d aep( at)@F(t) (3.26)
u() = — xp|l —=@G —s s)ds = —exp| —— , .
B Jo p p p

where ® represents convolution. Hence, (3.22) becomes

00, 1) = u(x, 1) + %exp (-%z) ® F(1), (3.27)
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which is the choice of function to homogenize the non-homogeneous problem. Therefore
¢(x, t) satisfies the problem

dp 32p Fe o

— K — K =—u(t 0,L 0, T 3.28
o Koam oﬂataz M() in (0,L) x (0, T) (3.28)

do(L, ¢t 9%2¢(L,t
g2 | g0l ) O<t<T (3.29)
0x dxdt

00,1) =0 O<tr<T (3.30)
o(x,0)=0 O<x <L, (3.31)

where prime denotes the derivative of w(¢) with respect to . Hence, the system (3.28)
to (3.31) is a Linear Initial Homogeneous Boundary Value Problem and the associated
eigenvalue problem is of the form:

y" 4+ 1y =0, y(0) = y'(L) = 0. (3.32)
Findy=y(x)0<x <L, (3.33)

where the eigenvalues 1, and the eigenvectors y,(x) are respectively given by

_ (n— 1?2 2n —1

412

, and y,(x) = sin < > wx, Vn € N. (3.34)

To the system of equations (3.28) to (3.31), we obtain a solution of the form

o0

0(x,1) = an(t)yn(x), (3.35)

n=1

where a,(t) is the series’ coefficients to be determined. For f(x) = x, 0 < x < L, the
Fourier series expansion is

( _ 1)n 1
f) = Z — () (3.36)

n=1

Substituting (3.35), and (3.36) into (3.28), we obtain

_1yn—1
Z a,(1)yn(x) — Ko Z an(t)y, (x) — Ko Z a, ()y, (x) = Z Sl A0

n—= A‘n
(3.37)
0 2(_ )n 1
— Zynoc) [(1 + KoBan)ay (1) + aKornan(t)] = Z—Aynu)u .
n=1 n=1

(3.38)
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Using the uniqueness of Fourier series expansion [19], it follows from (3.38) that for any
neN

2 =1 n—1
(1 4+ KoBrn)ay(t) + aKornan(t) = ¥M’(t), (3.39)
aLX,
which is a first order ordinary differential equation in a,,, with initial condition a, (0) = 0.
By integrating factor techniques, we get

=20 ( @ Ron r) ® (1) (3.40)
a = X — ’ .
= LI+ Ko P\ 1+ Kopn ) 1
so that (3.35) becomes
o0
2(— )" lyu(x) ( aKoip ) ,
1) = exp|l ————r | ® ). 3.41
Pl 1) ;aun(l ko TP T T ko, ') E 1 ©41)

Substituting (3.41) into (3.27), we get the solution

2 (=1 ly,
u(x,t) = _EZ%QLU)
n=1 n
Koo,

1 t
(1 + Kofhn) /0 P T KB

Taking (3.25) as identity coupled with integration by parts, we can rewrite (3.42) as
follows:

(t — ) ;L’(s)ds) (3.42)

e¢]

2Ko 3 (— D" ly,(x) exp ( Koohy,

ulx,t) = —

L (14 KoBrn) _mf) ® F(1) (3.43)

n=1

The expression in (3.43) is the formal solution to the problem in (3.16) — (3.19), with
medium permeability given by (3.21), and 8 > 0.

3.2.  Well-posedness of the Solution u(x,t)

Here we provide a summary that the solution u(x, t) obtained for the case B > 0 actually
solves the problemin (3.19) to (3.19) in a well-defined functional space. Let us introduce
some notations. The symbol H k(Q) for @ c R” open and for any integer k > 0 denotes
the usual Sobolev space,

HYQ) = {v € LX) : D'v e L2XQ)V|i| <k}

P2
Wik = [D Diviyg,
lil<k

equipped with the norm
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For real number 1 < p < oo, LP(2) denotes the space of strongly measurable contin-
uous functions f on €2 such that the norm

I fllzr) = (/Q |f|p)p < 00,

and for p = oo the norm is given by
I fll coo) = max f(X)
xe2
[1,31]. For Q2 = (0,L) C R, consider the real Sobolev space H given by
H := H%0,L) = £%0, L),

which is a Hilbert space when equipped with an inner product

L
fog)m = fo fedxVf.g e H. (3.44)

This inner product induces the norm

L 3
Iflla = ( /O fde> =V{f, ous (3.45)

so that (H, |- ) becomes a Banach Space [1].

On the application of Gram-Schmidt Process to the linearly independent set { y,, (x)} 2
o0

2
we obtain the orthonormal sequence C = {\/; Vn (x)} in H [14]. Clearly, it follows

n=1
from the linear independence property of orthonormal sequence that C span the inner

product space H. The space of distributions on (0, L) is denoted by D’(0, L). Using
the basis C for H, it follows from the Convergence Theorem (3.5-2) in [14] that any
v € D'(0, L) belongs to H if and only if

o0

V() = cpyn(x) (3.46)

n=1

(converging in D'(0, L),) with the scalars ¢, satisfying

(o.¢]
Z |cn|2 < 0.
n=0

Further, let

Y ={veH:Vexist, vV € H and v(0) = 0},
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and equip V with the inner product

(f.ehv=1(f.8u. Vf.geV. (3.47)

Clearly, the space (V, (-, -)y) 1s a Hilbert space. By Poincaire Inequality [10], we obtain
the norm ||-||y as

iy = 1V lla, Yv e V. (3.48)

As a consequence of Sobolev’s inequality, v € V implies that v € AC([0, L]), the space
of absolutely continuous function, so that the boundary condition v(0) = 0 is assumed

L),
v € H isin V if the Fourier coefficients of its series expansion in (3.46) satisfies

o0
3 halel? < co.
n=1

Therefore, for any s € R, we define a one-paremeter family of spaces, }* as

o0
2
in the strong sense. The sequence { — (x)} is a Hilbert basis for V, and any
n=1

o0

(0,0
VS = {v eD(,L):3a; €C, vix) = Zakyn(x), provided Z)“}Y<|Ck|2 < oo} .
k=1 k=1

Next, we give the definition of a weak solution for the problem in (3.16) to (3.19) when
B > 0.

Definition 3.1. A function
u:[0,L] x [0, T] — V
(x,t) —> u(x,t) :=u

is a weak solution to problem (3.16) — (3.19) if
0
i) ue Hl([O,L] x [0, T]; V), implies that u, 8_? € Ez([O,L] x [0, T]; V)
i1) Forany v € V, and ¢ € [0, T] pointwise a.e, we have
(a—” vy + K (au—i—ﬂa—u v), = —KoF(t)v(L) (3.49)
gt 1 TR0 gt v TR0 '

ii1) u(x,0)=0.

The initial condition (3.19) is satisfied by u(x,#) € V in the pointwise sense according
to condition (iii), since condition (i) implies that u € AC([0, L] x [0, T]; V) [12]. The
Boundary condition in (3.18) is included in the requirement that u € 1/, and the Boundary
condition (3.17) is taking into account by condition (ii) for any test function v € V.

If F(t) € £*0,T) then there exist a unique weak solution u(x,t) according to
Definition (3.1) to problem (3.16) to (3.19) [31, 5, 17, 28].
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4. Dimensionless Form of Problem

In this section, we use dimensional analysis to provide the equivalence of problem
(3.16) — (3.19) in dimensionless form so as to identify the combinations of geometrical
and physical parameters that most influence the solution properties. Dimensional anal-
ysis is a mathematical technique that lean on the choice of a set of characteristic values
that can be used to scale all variables in the problem. Here, we use the hat symbols to
denote scaled (dimensionless) variables, and the square bracket to denote characteristic
values of the variable. Then we obtain

(4.1)

P="r F=" = =

It is crucial to note that there is no trivial selection for the characteristic values, and so
this choice is not unique. In our case, the knowledge of the forcing term and the formal
solution obtained will help us in the selection of these values.

4.1. Choice of characteristic values

Since the system is driving by the Boundary condition on the traction with the given
function F(¢), we put

[F] = Fspec, 4.2)

where Fgpec is a given reference value. Following the expression in (3.34), we choose

1
[x] =L, [A] = 17 (4.3)

From the explicit formula we have obtained for the solution we set

L? K An L? KollF Fspec L
1= By 2 BN 1) L2 KPRl
Ko [Kollel[An] o« Koo [L] o

According to (3.12), and (3.20) we select for

2
= Bt ) LI Kofpee

[7] L [Kol L

4.5)



1136 Micheal Babatunde Oguntola et al.

By chain rule and (4.1), we obtain

du _ du B o _ Lu)vit (4.6)
ot du ot Ot [£] ot

ou Odu du 0ox [u]on

.. Z_=2 4.7)
ax du 0Jx 0x [x]ox
32_”_ﬁ(3_”>_ (“‘]8”) Ll %2 (4.8)
ax2  ox \ox/) [x]0x ) ox [x]2 9x2’ '
Pu () D (Lo o)
ardx 3t \dx) of \[x]9x/) ar  [x][r] 970%’ '
and
Pu 0 82u) 0 (ul 9*a\ of ] 9% “4.10)
ax23r  ar \ox2) — ai \[x120x2) ar ~ [x]2[t] 9020t '

Substituting (4.6) —(4.10) and the scalings in (4.2) —(4.5) into the problem (3.16)—(3.19)
yield the following dimensionless problem

o 0*n . 9

— ———B——=0  in (0,1) x (0, T 4.11

af  0x2 979x2 ©. 1< ©.1) “.11)

on(l,5)  ~0%u(l,f N .

ul, i) | 97l ﬁ:-F 0<i<T 4.12)
0x 0xot

20,9) =0 0<f<T (4.13)

2(%,0) =0 0<i<l, (4.14)

where T = T[t]. Using the scaling system, we get the dimensionless form of the solid
displacement u(x,?) in (3.43) as

— 1) ly, SV
ik, z)——2Z( 11;3; ) p<—1+mnr)®F(ﬂ, (4.15)

n=1

the dimensionless form of discharge velocity in (3.12) as

. dn(x, — )y, G o A N
VD == u(a);ﬂzzz%my()< ”_1+,§ine"p(‘1+,§xnt>®”’))’

=1

and the dimensionless form of the fluid power density in (3.20) as

A A

. An e N -
P = fv(x t)zdx_2Z ﬂ/\ )2( (Z)_1+Bi exp<—1+ﬁint)®F(ﬂ

n
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The characteristic value chosen for velocity in (4.5) is the characteristic velocity induced
by the external load of magnitude Pspec Which is in contrast to what was utilized in [26].
The justification is that we are interested in accessing the influence of an external load
on the poromechanical response of the medium.

5. Dimensionless step pulse load F(@)

Here, we suppose that the forcing term (Boundary traction) F () be the dimensionless
unit step defined by

0,iff <0

A ) 5.1
l,ifr>0 G-

F@)=H(@) = {

At the start of time 7 = 0, there is discontinuity in the dimensionless load F (¢) as shown
in Figure (2).

F©

0 t
Figure 2: Diagrammatic representation of F () in (5.1)

Using (5.1), then (4.15), (4.16), and (4.17) respectively become

1yl A 2
Byhh = =23 =2 (1 — exp (— “ t)) .6

1+ B,
(- 1)” 1yn<x> Ao
_2 - AN s 5'3
Pk, 1) Zl p( TN (5.3)
and
~ > 1 An ~\ 2
Pﬁ(ﬂ:2zfex (— — t) . (54)

p
= (14 Brn)? 14 Bhn

Setting B = 0,1in (5.2) to (5.4), we get the diAmensionles§ solutions g, Vo, and Py for the
dimensionless purely elastic problem. For f = 0, and 8 = 1, the space-time behaviour
of u 4> v 4 and 733 is given in Figures (3), (4) and (5) respectively.
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Figure 3: Dimensionless displacement as a
Right diagram: 8 = 1
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Figure 4: Dimensionless discharge velocity v jasa function of X, and 7. Left plot: g =0.
Right plot: g=1

The space time behaviour of ¥ Fi and 755 respectively are provided on a logarithmic

scale to see clearly the presence of a blow-up at x = 1. However, it is not hard to see
that by setting 8 =7 = 0, we have

Po0) =2 1 = +oo, (5.5)
n=1
and
Po(£,0) =2 (= 1" yu(®). (5.6)
n=1

In (5.6), forany n € N,
—1 <@ =<1

and hence (5.6) lack pointwise convergence. From physical view points, the left plot in
Figure (4) can be interpreted as; at the start of time, f = 0, of the load, the discharge
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Figure 5: Dimensionless fluid power density 75& as a function of 7: Left diagram: ﬁ =0.
Right diagram: ﬁ =1

velocity has high-frequency components whose superposition displays the following
behaviours: It approaches infinity as X approaches 1, and hence leading to its blow-up,
it relaxes towards zero as x approaches 0, it has an amorphous structure for 0 < x < 1.
Suppose that viscoelasticity effect is present (see right plot of Figure (4) ) then the
dimensionless discharge velocity at the start of time f = 0 becomes (putting f = 0 in

(5.3))

(— D"y, (@)
0)=2 5.7
P5(%,0) n} 1: AL (5.7)
22(—1)" Ly (2)
= 8L —an+b’ 58)

where a = 4/@712, and b = 4L% + 3712 and using Alternating series test [16], it is not
difficult to see that the series in (5.8) is convergent. Also, it is continuous at f = 0.
We further illustrate these concepts in Figure (6) which gives the spatial distribution of

ﬂ(x f) on logarithmic scale at f = 0 for values of ;3 € [0, 1]. Therefore, at x = 1 and

f = 0, we have the maximum value of 7, iz in our case denoted by vmax(,B) is attained,
and it’s given by

0<x<l1

s 1
Pmax(B) = max D4R, D =05(1,0) =2  ———, (5.9)

which provides further investigation of the blow-up in ¥(%, 7) and its dependence on the
structural viscoelasticity. From Figure (5), the power density is decreasing with increase
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Figure 6: Dimensionless discharge velocity f/ﬁ()ﬁ, 0) as a function x to highlight the

velocity blow-up at £ = 1 when 8 = 0.
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Figure 7: Left diagram: maximum discharge velocity as a function of /§ . Right diagram:
maximum power density as a function of S.

in time and its maximum value, ﬁmax(,BA) is attained at 7 = 0, that’s

o0

A N A 1
Pax(B) = max [Pa()] = V5(1,0) =2 )  —————. (5.10)
7<0 =1+ Brn)?

This gives further investigation of the blow- up in P(f) and its dependence on viscoelas-
ticity. The behaviour of vmax(,B) and Pmax(,B) with respect to ,3 is provided in Figure
().

It is seen that the dimensionless parameter ,3 is the main determinant of the blow-up
in the dimensionless parameters Viax (/§ ) and 75max (/§). On the other hand, it is important
to note from the definition of B does depend uniquely on the viscoelastic coefficients
(see equations (4.1), and (4.4)). That’s small or large value of the medium permeability
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Ko and small or large value of the domain dimension L would have effect on the value
of B.
Using the analysis in (4.1), and (4.5) we get

5 ~ 5 FspecKO ~ 5
Vmax(B) = Vmax(B)[v] = I Vmax(B)
(5.11)
A A A FszpecKO A A
Pmax(B) = Pmax(B)P] = 2 Pmax(B).

From (5.11), it can be seen that larger magnitude of the forcing term Fjp.. will give
larger value of viax and Ppax respectively. But the main factor that is in control of

A K
the blow-up still remains the dimensionless parameters f = L—S B. We further illus-

K
trate this phenomenon in Figure (8), by setting TO = 1Darcy/meter, and Fsp.c €

[10_4, 104]newt0n/meter2.

10

10

(B)

A
,U’NL(L’L‘

logy

o 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
¢ B

Figure 8: Left diagram: Dimensionless maximum discharge velocity as a function of ,3 .
Right diagram: Dimensionless maximum power density as a function of . The arrows

in both diagrams indicate increase in Fype..

6. Dimensionless trapezoidal pulse load F(f)

Here we consider a forcing term F(f) which is given by a dimensionless trapezoidal
pulse of amplitude a > 0, in which switching on and off of the signal are characterized



1142 Micheal Babatunde Oguntola et al.

by linear ramp functions. Let E, 7 R, be positive, then we take

0, iff <0
i A
a ifo<i<£
A S A A A
P ={a, ifE<i<it+é 6.1)
t+28— 7 . .
a<T+; ) ift4+E<f<t+28
0, iff > 17 +2¢

where & denotes the pulse rise or fall in time and 7 denotes the duration of the pulse as
shown in Figure (9).

7]

0 £ t+& t+2f t

Figure 9: Diagrammatic representation of dimensionless F(7) defined in (6.1). In this
case the signal switch on and off are given by linear ramp functions.

For conviniency, we let f/l’g (%,7) and 752(?) be the dimensionless discharge velocity
and dimensionless fluid power density respectively which result from the application of

the dimensionless trapezoidal-pulse driving term F (7). On the application of Heaviside
function H(7), (6.1) can be expressed as follows:

F(i) = ‘g’(fﬂ@ —(G-HHG -
—(—t-HHE-t-E (-7 -20)H{T -t -28). (6.2

Now to compute f/;g (%, 1), first we make the following observations: Using the expression
in (5.2), we obtain

i 00 n—l (% 22 22 2
A (= D" ynx) [~ 14+BAy 1+ BAy An o
uz(x,s)ds = —2 — |t - = + ~ exp | — t ,
| i > A

0 n=1 1+Bi"

and taking F (f) = tH(f), it follows from the expression in (4.15) that

f
it()?,ﬂ:/ itﬁ(i,s)ds, (6.4)
0
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-

Figure 10: Dimensionless discharge velocity, f/}()?,ﬂ for ,3 = 0.012, é =021,a=1
and7 =1

so that using (3.12) the discharge velocity becomes —i 5 (%, 7). Hence, applying the linear
superposition principle, f)l”é (%,f) is the linear combination of the discharge velocities
corresponding to the several components of the pulse, that’s

V(D) =§( — iR DHG + iR F—EHG - E) +igE.F—t - BHG— 1~ §)
+ip(hf -1 — 26)H( — t —28)). (6.5)

Using (3.20) and (6.5) the dimensionless power density 752(?) is computed as

2

1
P =5 /0 (a5 DH@) = ig(&.7 = OHG =& — iy T =2 —BHG — ¢ = &)
— (5.7 — t = 26)H( — © - 26))d. (6.6)

For ,3 >0,a=1,and é > (, we report a typical space time behaviour of the dimension-
less dischage velocity 92()?, 7) and dimensionless fluid power density 75;(15 in Figures
(10) and (11) respectively. L

In this case, the maximum discharge velocity denoted by vy, .. (8,&) is attained at
f=1,and7 =0.21 = é, and it can be expressed as:

Pnan(B,6) = max $5(E,F) =551, 8) 6.7)
>0
2 1 aE
==y —[1—exp|— 5 -1, (6.8)
| " I+ A8

and at f = & the maximum dimensionless fluid power density, denoted by 75;‘1“(,3 ,€) is
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Figure 11: Dimensionless fluid power density, 73;5(?) for B = 0.012, é =021,a=1

and 7 =1

attained and it can be expressed by

Prvax (B §) = max P(h) = P(&) 6.9)
Ané
4 0 1_eXp(_1+Bin) 2
T2 ( - ) (6.10)

n

*
max

Figure (12) shows the behavior of ¥ = with respect to B and &. It is noted that for any

/§ >0 andé > 0,
Prax(B.€) < lim 9% (B.6), (6.11)

and

0.4
é 0 0 8

Figure 12: Dimensionless discharge velocity vy, .,

as a function of dimensionless pulse
rise or fall in time £ and dimensionless viscoelasticity 8
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where 9max(,3) is givgn by (5.9). This is true since the trapezoidal pulse reduces to a
rectangular pulse as § — 0. Hence, there is no blow-up in the viscoelastic case. Now
forall B > 0and & > 0,

(6.12)
Therefore there is no blow-up also in the purely elastic case.

7. Conclusions and further developments

In this paper, we have utilized the theory of poro-viscoelasticity to model an incompress-
ible deformable porous medium under quasi-static loading conditions in one dimension.
The analytic solution obtained is used to identify a blow-up in the solution of the model
of certain poro-viscoelastic problem often encountered in confined compression exper-
iment. The analysis carried out in this paper gives the main factors that give rise to the
blow-up, namely the absence of structural viscoelasticity and time-discontinuity of the
boundary traction. Our findings showed that a very small viscoelasticity and a continu-
ous time profile of the applied load will prevent blow-up even in the purely elastic case.
The one-dimensional model considered in this paper can be used to generalize the math-
ematical analysis in [26]. More so, the findings of this study agree with the conclusions
in [23] on the extreme sensitivity measure of the microstructural constitution of soft
biological tissues to the active role of structural viscoelasticity. For future research, the
mathematical analysis developed can be used to study confined compression experiment
in tissue engineering, and a deformable porous medium with compressible constituents
can be considered instead.
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