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Abstract. There are major advances which have been made to understand the

epidemiology of infectious diseases. However, more than 2 million children in the

developing countries still die from pneumonia each year. The efforts to promptly

detect, effectively treat and control the spread of pneumonia is possible if its dynam-

ics is understood. In this paper, we develop a mathematical model for pneumonia

among children under five years of age. The model is analyzed using the theory

of ordinary differential equations and dynamical systems. We derive the basic re-

production number, R0, analyze the stability of equilibrium points and bifurcation

analysis. The results of the analysis shows that there exist a locally stable disease

free equilibrium point, Ef when R0 < 1 and a unique endemic equilibrium, Ee when

R0 > 1.The analysis also shows that there is a possibility of a forward bifurcation.

Keywords: Pneumonia Model, Basic reproduction number, forward bi-
furcation, Stability, Carriers

1 Introduction

Pneumonia is a high-incidence respiratory disease characterized by an inflam-
matory condition of the lungs and is caused by micro-organisms namely: bac-
teria, fungi, parasites and viruses. Among the four micro-organisms potential

1Corresponding author’s email: ongalajacob@gmail.com
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in causing pneumonia, bacteria is reported to be the leading cause[27],[18] es-
pecially Streptococcus Pneumoniae [9],[21],[23]. The bacteria enter the lungs,
and settle in the alveoli and passages of the lung where they rapidly grow and
multiply in number. The area of the lung that is invaded then becomes filled
with fluid and pus as the body attempts to fight off the infection [24]. This
makes breathing difficult, painful and limits the intake of oxygen.

Most cases of pneumonia are as a result of inhaling small droplets of coughs
or sneezes containing the bacteria. These droplets gets into the air when an
infected person coughs or sneezes [24],[27]. The bacteria can also be carried
in the mouth or flora of nasopharynx of a healthy person without causing any
harm [21],[24],[27]. Such people are referred to as carriers. For carriers, the
bacteria can find its way to the lungs and invade to cause the infection [4],[24].
This is possible when the immunity of the individual is lowered.

There is limited information on the transmission patterns of the pneu-
mococcal disease in the developing world [9], however, it is pointed out that
the risk factors associated with the spread of the disease includes: malnutri-
tion, lack of exclusive breastfeeding, indoor pollution, antecedent viral infection
amongst others [9],[23].

Despite the increasing focus on the Millennium Development Goal 4 of
United Nation-MDG [28] “to reduce child mortality”, almost 1.9 million chil-
dren still die from pneumonia each year in the developing countries, accounting
for 20 % of deaths globally [1]. In Kenya, pneumonia contributes up to 16 %
of child mortality [3]. It is evident that the management of the disease is chal-
lenging due to overlap of its symptoms with that of malaria hence a possibility
of mistreatment with antimalarial drugs [12]. Deaths due to pneumonia can
occur within three days of illness and any delays in proper treatment may not
save life [17].

Therefore to realize the Millennium Development Goal 4 (MDG 4), research
should be done to promptly diagnose, effectively treat and deduce other pre-
vention strategies for pneumonia. For this to be achieved, accurate projections
on possibility of epidemic or endemic and strategies to put up control mea-
sures is required. Mathematical models integrated in epidemiological research
are powerful tools in studying the dynamics of diseases and to find threshold
parameters necessary for controlling the disease. In this paper, we therefore de-
velop and analyze a mathematical models for pneumonia dynamics in children.

2 Derivation of the Model

The transmission dynamics of pneumonia in the population under study is
considered between four compartments based on the disease status, that is:
Susceptible, Carriers, Infectious and Recovered. At time t , the total popula-
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tion size (N ) is divided into: susceptible (S), infected (I ), carriers (C ) and
recovered (R) such that:

N = S + C + I +R (1)

The per capita recruitment rate into the susceptible population is denoted ν.
We assume that the infected immigrants are not included because they are
not able to travel. New infection can be due to effective contact with either a
carriers or a symptomatically infected individual, where the force of infection
of susceptibles is denoted by λ. A newly infected individuals joins carrier class
with a probability of ρ or symptomatically infected class with a probability
of (1 − ρ). Carriers can change their status to show symptoms (infected)
[16] at the rate π. Infected individuals recovers at the rate η. A proportion
q of the recovered individuals clear all the bacteria from the body and gain
temporal immunity while (1− q) of them will still carry the bacteria[19],[25].
The carriers can also recover to gain temporal immunity at the rate β. In
this model, the temporal immunity is a result of all possible ways that may
lead to recovery from the disease. Studies in [22],[8],[7], show that there is a
possibility of reinfection at the rate δ. There is a natural death rate of µ and
a disease induced death rate of α. We define the force of infection as:

λ = ψ
(
I + εC

N

)
: ψ = κP (2)

Where κ is the rate of contact and P be the probability that a contact is
efficient to cause infection. Combining all the definitions and assumptions, the
model for the transmission dynamics of pneumonia is given by the following
system of differential equations:

dS(t)
dt

= ν + δR(t)− (λ+ µ)S(t)
dI(t)
dt

= (1− ρ)λS(t) + πC(t)− (µ+ α + η)I(t)
dC(t)
dt

= ρ(λ)S(t) + (1− q)ηI(t)− (µ+ π + β)C(t)
dR(t)
dt

= qηI(t) + βC(t)− (µ+ δ)R(t)

 (3)

3 Positivity and boundedness of solutions

We can show from Model (3) that the state variables are non-negative and
the solutions remain positive for all time t ≥ 0. Here the parameters in the
model are assumed to be positive. We also show that the feasible solutions are
bounded in a region: Φ = {(S, I, C,R) ∈ R4

+ : N(t) ≤ ν
µ
}

Lemma 3.1 Let the initial values of the parameters be {S(0) ≥ 0, I(0) ≥
0, C(0) ≥ 0, R(0) = 0 and N(0) ≥ 0} ∈ Φ, then solution set {S(t), I(t), C(t), R(t), N(t)}
is positive for all t ≥ 0
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Proof First, consider the first equation in (3)

dS
dt

= ν + δR− λS − µS

We have that;

dS
dt
≥ −(λ+ µ)S∫ 1

S
dS ≥

∫
−(λ+ µ)dt

S ≥ S0e
−(λ+µ)t ≥ 0

Hence, S ≥ 0

Next, we consider the second equation in (3)

dI
dt

= (1− ρ)λS + πC − (µ+ α + η)I
dI
dt
≥ −(µ+ α + η)I∫ 1

I
dI ≥

∫
−(µ+ α + η)dt

I ≥ I0e
−(µ+α+η)t

Hence, I ≥ 0

We can proceed in a similar way to prove the positivity of C, R and N .

Lemma 3.2 The solutions for the System 1 are contained and remain in
the region Φ for all time t ≥ 0

Proof Consider Equation (1). Taking the derivatives with respect to time t
of (1) and substituting onto it the set of equations in (3), we have,

dN(t)
dt

= ν − αI − µN
⇒ dN

dt
≤ ν − µN

⇒ N ≤ ν
µ

+ (N0 − ν
µ
)e−µt)

Where N0 = is initial population size.
Thus,

lim
t→∞

N(t) ≤ ν

µ

Using this result together with Lemma 3.1 and equation 1, we have that 0 ≤
N(t) ≤ ν

µ
which implies that N and all other variable (S,I,C and R) is bounded

and all the solutions starting in Φ approach, enter or stay in Φ.

4 Analysis of the Model

We analyze the model for pneumonia transmission based on the following sub
sections to determine the basic reproduction number and other threshold pa-
rameters for pneumonia dynamics.
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4.1 Stability analysis of the disease-free equilibrium (DFE).

The DFE of model (3) is obtained by equating the right-hand sides of the
equations in the model to zero and it describes the model in absence of disease
or infection. Here we define carrier and infected classes as diseased classes,
DFE denoted by (Ef = (Sf , If , Cf , Rf ) is then given by; Ef =

(
ν
µ
, 0, 0, 0

)
Theorem 4.1 There is a unique DFE (Ef ) for the model represented by

the system of equations in (3)

Proof This lemma is proven by substituting the Ef into the system of Equa-
tions (3). The results shows all derivatives equal to zero, hence DFE is an
equilibrium point.

To establish the linear stability of Ef , we use the next-generation operator
approach [29] on the system (3) to compute the basic reproduction number
(R0). Using the notation of the matrices F and V as in [29], we have,

F =

 (1− ρ)ψ (1− ρ)ψε

ρψ ρψε

 and V =

 h1 −π

−(1− q)η h2


where, h1 = µ + α + η and h2 = µ + π + β The eigenvalues for the matrix
FV −1 are

0, ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)

Thus from Theorem 2 of [29] we have

R0 = ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)
(4)

Lemma 4.2 The the disease-free equilibrium (Ef) of (3) is locally asymp-
totically stable whenever R0 < 1 and unstable when ( R0 > 1.

Proof Consider the jacobian matrix for the Model (3)at Ef is given as

J (Ef ) =


−µ −ψ −ψε δ
0 −h1 π 0
0 (1− q)η −h2 0
0 qη β −(µ+ δ)

 and

Trace
[
J (Ef )

]
= −(2µ+ δ + h1 + h2) < 0

Det
[
J (Ef )

]
= µ(δ + µ)[h1h2 − (1− q)πη] > 0

 (5)
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Since the parameters µ, δ, h1 and h2 are all positive, then−(2µ+δ+h1+h2) < 0.

Therefore Trace
[
J (Ef )

]
< 0. On the other handR0 can never be negative and

numerator {ρ[εh1+π]+(1−ρ)[h2+(1−q)εη]} is positive, the denominator must

also be positive i.e. h1h2− (1− q)πη > 0. Thin implies that Det
[
J (Ef )

]
> 0,

since µ(δ + µ) > 0 and [h1h2 − (1− q)πη] > 0.
Thus

R0 = ψ

(
ρ[εh1 + π] + (1− ρ)[h2 + (1− q)εη]

h1h2 − (1− q)πη

)
< 1

The solutions in (5) implies that E0 is locally asymptotically stable when-
ever R0 < 1

4.2 Stability of the Endemic equilibrium (EE) and Bi-
furcation analysis)

The endemic equilibrium is denoted by Ee and defined as a steady state so-
lutions for the Model (3). This can occur when there is a persistence of the
disease. Hence Ee = {Se, Ie, Ce, Re} can be expressed as shown below.

Se = N
R0

Ce =
(µ+ δ) ((1− ρ) (1− q) η + h1ρ) (R0 − 1) ν

R0 ((µ+ δ) (h2h1 − (1− q)π η)− δ (ρ (η π q + h1β) + (1− ρ) (η qh2 + (1− q) η β)))

Ie =
(δ + µ) (π ρ+ (1− ρ)h2) (R0 − 1) ν

R0 ((δ + µ) (h2h1 − (1− q) π η)− δ (ρ (π qη + h1β) + (1− ρ) (η qh2 + (1− q) η β)))

Re =
(ρ (η π q + h1β) + (−ρ+ 1) (h2qη + (1− q) η β)) (R0 − 1) ν

R0 ((δ + µ) (h2h1 − (1− q)π η)− δ (ρ (π qη + h1β) + (1− ρ) (η qh2 + (1− q) η β)))

Lemma 4.3 For R0 > 1 a unique endemic equilibrium point Ee exist and
no endemic equilibrium otherwise.

Proof For the disease to be endemic, then dI
dt
> 0 and dC

dt
> 0, that is,

(1− ρ)ψ S
N

(I + εC) + πC − h1I > 0
ρψ S

N
(I + εC) + (1− q)ηI − h2C > 0

(6)

From the first inequality of 6 we have

h1I < (1− ρ)ψ S
N

(I + εC) + πC

using the fact S
N
≤ 1

I <
(1− ρ)ψI + (1− ρ)ψεC + πC

h1
(7)

and from the first inequality of 6 we have

C <
ρψI + (1− q)ηI

h2 − ρψε
(8)
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substituting 8 into 7, we have

I <

(1− ρ)ψI + [(1− ρ)ψε+ π]

[
ρψI + (1− q)ηI

h2 − ρψε

]
h1

1 <
(1− ρ)ψI + [(1− ρ)ψε+ π][ρψI + (1− q)ηI]

h1h2 − h1ρψε
h1h2 − h1ρψε < (1− ρ)ψh2 + ρψπ + (1− ρ)ψε(1− q)η + (1− q)ηπ

1 <
ψ[ρ(h1ε+ π) + (1− ρ)(h2 + (1− q)εη)]

h1h2 − (1− q)ηπ = R0

(9)

Thus a unique endemic equilibrium exist when R0 > 1 .

4.2.1 Local Stability analysis of the Endemic Equilibrium

We study the local stability of the endemic equilibrium by applying the Routh-
Hurwitz criterion [15].

Theorem 4.4 If R0 > 1 then the endemic equilibrium Ee of system 3 is
locally asymptotically stable in G

Proof Consider the Jacobian matrix at endemic equilibrium denoted by JEe

JEe =


−λ− µ 0 0 δ

(1− ρ)λ −h1 π 0

ρλ (1− q) η −h2 0

0 qη β −µ− δ


Where λ is defined as the force of infection at endemic equilibrium. We obtain
a characteristic equation P (λ) = |λI − JEe| where I is a 4× 4 unit matrix. So
that the characteristic equation becomes, P (λ) = λ4 + a1λ

3 + a2λ
2 + a3λ+ a4

Hence from Routh-Hurwitz criterion, we have the matrix

1 a2 a4 λ4

a1 a3 0 λ3

a2 − a3
a1

a4 0 λ2

a3 − a1a4(
a2−

a3
a1

) 0 0 λ

a4 0 0 1


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Where,
a1 = 2µ+ δ + h2 + h1 + λ
a2 = 2h2µ+ 2h1µ+ µλ+ µ2 + h2δ + h1δ + δ λ+ δ µ− η π + η π q + h2h1 + h2λ+ h1λ

a3 = (µ+ δ) (h1 + h2)
(
µ+ λ

)
+ (h2h1 − (1− q) η π)

(
λ+ δ + 2µ

)
− λδ ((1− ρ) qη + β ρ)

a4 = (1− ρ) (qπ − h2q − (1− q) β) η λδ −
(
µ+ λ

)
(µ+ δ) (η π − h2h1)

−β ρ λδ h1 + η π µ q
(
µ+ λ+ δ

)
According the the Routh-Hurwitz criterion, For R0 > 0, the endemic equilib-
rium (Ee) is locally asymptotically stable if a1 > 0, a2− a3

a1
> 0, a3− a1a4(

a2−
a3
a1

) > 0

and a4 > 0.

4.2.2 Bifurcation analysis

A bifurcation is a qualitative change in the nature of the solution trajectories
due to a parameter change. The point at which this change take place is called
a bifurcation point. At the bifurcation point, a number of equilibrium points,
or their stability properties, or both, change. When R0 < 1, the infectious
disease will not invade the population unless otherwise. We prove using Center
Manifold theorem the possibility of bifurcation at R0 = 1.

Let S = x1, I = x2, C = x3 and R = x4, so that N = x1 + x2 + x3 + x4,
then using (2) and (3) is re-written in the form:

dx1
dt

= f1 = ν + δx4 − ψ x2
x1+x2+x3+x4

x1 − ψε x3
x1+x2+x3+x4

x1 − µx1
dx2
dt

= f2 = (1− ρ)ψ x2
x1+x2+x3+x4

x1 + (1− ρ)ψε x3
x1+x2+x3+x4

x1 + πx3 − h1x2
dx3
dt

= f3 = ρψ x2
x1+x2+x3+x4

x1 + ρψε x3
x1+x2+x3+x4

x1 + (1− q)ηx2 − h2x3
dx4
dt

= f4 = qηx2 + βx3 − (µ+ δ)x4


(10)

Suppose that we choose ψc as a bifurcation parameter. Then by using (4), we
solve ψc at R0 = 1 as:

ψc =
µ2 + µα + µ η + Πµ+ Πα + β µ+ β α + β η + η qΠ

ρ ε µ+ ρ ε α + µ+ Π + β + ε η − ε η q − ρ µ− ρ β + ρ ε η q
(11)

The liberalization matrix of (10) at a disease free Equilibrium (Ef ) corre-
sponding to ψ = ψc is given by:

J (Ef ) |ψ=ψc= Jψc =


−µ −ψc −ψcε δ
0 −h1 π 0
0 (1− q)η −h2 0
0 qη β −(µ+ δ)


Zero is a simple eigenvalue of Jψc if h1 = ηπ(1−q)

h2
. A right eigenvector (w) of Jψc

associated with the zero eigenvalues is given by w = (w1, w2, w3, w4)
T where
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w1 = w3(η δ (qh2+(1−q)β)−ψ (µ+δ)(h2+(1−q)ε η))
η (1−q)(µ+δ)µ

w2 = w3h2
η (1−q)

w3 = w3

w4 = w3(qh2+(1−q)β)
(1−q)(µ+δ)

and a left eigenvector (v) of Jψc corresponding to the zero eigenvalues is given
by v = (v1, v2, v3, v4)

T where

v1 = 0
v2 = v3h2

π

v3 = v3
v4 = 0

We now reproduce the theorem stated by Castillo-Chavez and Song [2] .

Theorem 4.5 [2]. Consider the following general system of ordinary dif-
ferential equations with parameter φ

dx
dt

= f(x, φ), f : Rn ×R and f ∈ C2(Rn ×R)

where 0 is an equilibrium point of the system ( that is f(0, φ) ≡ 0 for all
φ) and assume:

1. A = Dxf(0, 0)= ( ∂fi
∂xj

(0; 0)) is the linearization matrix of the system

around the equilibrium point 0 with φ evaluated at 0;

2. Zero is a simple eigenvalue of A and all other eigenvalues of A have
negative real parts

3. Matrix A has a right eigenvector w and a left eigenvector v corresponding
to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=0

vkwiwj
∂2fk
∂xi∂xj

(0, 0) (12)

b =
n∑

k,i=0

vkwi
∂2fk
∂xi∂φ

(0, 0) (13)

Then the local dynamics of system 1 around the x=0 are totally determined
by a and b. Particularly,

1. a > 0, b > 0, when φ < 0 with ||φ|| � 1, (0,0) is locally asymptotically
stable and there exists a positive unstable equilibrium; when 0 < φ � 1,
(0; 0) is unstable and there exists a negative and locally asymptotically
stable equilibrium.
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2. a < 0, b < 0, when φ < 0 with ||φ|| � 1, (0,0) is unstable; when 0 < φ�
1, (0; 0) is locally asymptotically stable and there exists exists a positive
unstable equilibrium.

3. a > 0, b < 0, when φ < 0 with ||φ|| � 1, (0,0) is unstable and there
exists locally asymptotically stable equilibrium; when 0 < φ � 1, (0; 0)
stable and positive unstable equilibrium appears.

4. a < 0, b > 0, when φ changes from negative to positive, x=0 changes
its stability from stable to unstable. Correspondingly, a negative unstable
equilibrium becomes locally asymptotically stable

The algebraic calculation from theorem 4.5 are shown in the working below.

∂2f2
∂x2∂x2

= −2 (1−ρ)ψ
x1

, ∂2f3
∂x2∂x2

= −2 ρψ
x1

∂2f2
∂x2∂x3

= (1− ρ)ψ x1
(
− 1
x12
− ε

x12

)
, ∂2f3
∂x2∂x3

= ρψ x1
(
− 1
x12
− ε

x12

)
∂2f2
∂x2∂x3

= − (1−ρ)ψ
x1

, ∂2f3
∂x2∂x3

= −ρψ
x1

∂2f2
∂x3∂x3

= −2 (1−ρ)ψ ε
x1

, ∂2f3
∂x3∂x3

= −2 ρψ ε
x1

∂2f2
∂x3∂x4

= − (1−ρ)ψ ε
x1

∂2f3
∂x3∂x4

= −ρψ ε
x1

∂2f2
∂x2ψc

= 1− ρ, ∂2f3
∂x2ψc

= ρ

∂2f2
∂x3ψc

= (1− ρ)ε, ∂2f3
∂x3ψc

= ρε

Note: ∂2fk
∂xi∂xj

= ∂2fk
∂xj∂xi

The rest of the second derivatives that are in (12) and (13) are all zero. Hence,

a =
(
−2 v3w3

2ψ
π x1

)
(ρ π + (1− p)h2)

(
(h2+(1−q)ε η)(h2η q+(1−q)η β+(µ+δ)(h2+(1−q)η))

η2(−1+q)2(µ+δ)

)
a < 0

(14)

b = v3h2
2w3(1−ρ)

π η (1−q) + v3h2w3((1−ρ)ε)
π

+ v3w3h2ρ
(1−q)η + v3w3 (ρ ε)

b > 0
(15)

Using the results in Theorem 4.5, the results in (14) and (15) indicates that
there is a forward bifurcation at ψ = ψc and there exist at least one stable
endemic equilibrium when R0. > 1
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5 Numerical Simulation

To observe the dynamics of pneumonia model over time, numerical simulations
are done using MAPLE 14.0. The parameters in table 1 that will be used in
simulation is based on the data of children under five year of age. Some values
assigned to the parameters have been derived from epidemiological literature
and WHO database while other parameters have been allowed to vary within
the possible intervals.

Using the parameter values, the numerical simulations show that a tran-
scritical (forward) bifurcation is likely to occur at ψ = ψc = 0.47,(R0 = 1)
where there is only one stable equilibrium point if R0 < 1 (disease-free equi-
librium) and a low endemicity when R0 is slightly above one (See Figure 1
(a) and (b)). This is important to conclude that there can only be one sta-
ble endemic equilibrium when R0 > 1. In models with multi-group infectious
classes, forward bifurcation commonly exist [6]. This could be the reason for
the existence of forwards bifurcation for pneumonia transmission dynamic.

The mathematical techniques involved in determining the global stability
of the endemic equilibrium is quite complicated and therefore in this paper
we determine the global stability of the endemic equilibrium using numerical
simulation (See Figure 2). We observe from Figure 2 that starting with any
number of infected individuals with the initial population N0 = 100, the num-
ber of the Susceptible and the infected will always converge to a stable value
(Se = 24.41243257, Ie = 4.549013989 × 10−2). Assuming that we reduce the
transfer rates between the Carriers and the Infected with the aim or reducing
R0, the infected population also reduce.

Using MALPLE 14, data for the infected population in both the cases (dot-
ted line and continuous line in Figure 3) was generated and analyzed to check
if their is any significant difference in the two populations. Table 2 shows the
results of the statistical analysis. Since the P-value=2.1344 × 10−15 for the
t-test for mean difference is less than 0.01, we conclude that there is a strong
significant effect of reducing the rates of transfer between the carriers and the
infected on reducing the infected populations. We also Simulate the effect of
different proportion of carriers on transmission by considering different initial
proportion of carriers and different rate of transfer leading to increase in carrier
proportion in the population.

6 Interpretation of the model and Biological

Implication

The results from the analysis of the model indicate that possible disease control
strategy will be to reduce the number of new secondary infections (i.e. reducing
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the value of the Basic reproduction number, R0). Rewriting (4) into,

R0 = κP
(
ρ[ε(µ+α+η)+π]+(1−ρ)[µ+β+π+(1−q)εη]

(µ+α+η)(µ+β+π)−(1−q)πη

)
It is evident that R0 is directly proportional to the contact rate κ and to the
mean time spent in the diseased classes. 1

(µ+α+η)(µ+β+π)−(1−q)πη . The implica-
tion of reducing the contact rate κ → 0 and mean time spent in the diseased
classes ensures that R0 → 0. It is possible to reduce mean time spent in the
diseased classes when the transfer rates between the Carrier and the Infected
classes are reduced (i.e. π → 0 and q → 1) and when the transfer rate out
from the diseased classes are increased (i.e. α, β → ∞). This indicates that
quarantine (where possible), prompt and effective diagnosis and treatment of
the carriers and the infected individuals may lead to possible reduction of the
new infections to zero. A justification of controlling pneumonia by reducing
the R0 is indicated by the forward bifurcation results in the analysis. In the
presence of a forward bifurcation implies that, a disease can be cleared from
the population by just reducing the R0.

7 Discussion

Mathematical models of infectious diseases have been used to successfully ex-
plain the transmission dynamics of many diseases and the use of such models
has grown exponentially from mid 20th century [10]. Our main aim in this
paper was to provide a mathematical explanation of pneumonia transmission
dynamics, taking into consideration the role of carriers and recovery measures
in the transmission. we only considered the bateremic pneumonia since it is
the most common among children who are under five years of age.

The model that we have discussed here is based on the initial model that
was studied by Doura et al.[5]. When studying the transmission dynamics of
infectious diseases with an aim of suggesting control measures, it is natural to
consider the stability of equilibrium points and possibility of bifurcation. In
this paper we have established R0, existence and stability of the equilibrium
points and existence of bifurcation point. Our main results indicates that when
R0 < 1 then the disease free equilibrium is stable and become unstable when
R0 > 1. The Local stability of the endemic equilibrium point Ee changes its
nature to unstable when ψ crosses the critical value ψc via a forward bifurca-
tion. This is a clear indication that the effective control measure for pneumonia
is achieved when R0 is reduced.

Most of the results in this paper are in agreement with those of [5]. How-
ever, We find some interesting results in the numerical simulation that is;
reducing the transfer rates between the carrier and the infected class reduces
prevalence of the disease. This is a control strategy that can be employed for
pneumonia dynamics.
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Appendix

Table 1: Parameter Value
Parameter Value Source

ν µN0 [5]
κ 1-10 per day Estimated
P 0.89 to 0.99 [5]
ψ κP Expressed as in (2)
ε 0.001124 [5]
ρ 0.338 [13, 14]
π 0.00274 to 0.01096 per day [5]
η 0.0238 to 0.0476 per day [26]
q 0.5 to 1 [5]
α 0.33 Estimated
δ 0.2 Estimated
µ 0.0002 per day [20]
β 0.0115 [11]

Table 2: t-Test: Paired Two Sample for Means(testing for the significant dif-
ferent between infected populations when the values of π β and q are varied
respectively)

Statistics Infected Population Infected population
(π =0.005, q=0.75) (π =0, q=0.999)

Mean 2.486300321 2.170599263
Variance 20.90683033 20.72202111
Observations 100 100
Hypothesis Mean Difference=0
df 99
t Statistics 9.408577558
P- Value 2.1344× 10−15

t Critical 1.9842169
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Figure 1: Forward bifurcation diagram in (a) plane I,R0 and in (b) plane
I,ψ The continuous line represent a stable equilibrium. There are two stable
equilibriums (disease free equilibrium for R0 < 1 and an endemic equilibrium
for R0 > 1). The dotted line represent the unstable disease free equilibrium

Figure 2: The phase plane portrait of S vs I for 3. The four curves correspond
to the initial conditions I0= 1, 10, 20 and 30 respectively. They all converge at
Ie = 4.549013989 and Se = 24.41243257 as in (b) when the plot is magnified.
showing global asymptotic stability of the endemic equilibrium
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Figure 3: (a) Dynamics considering carrier-infected interaction rates. The
continuous line is plotted when π = 0.005, and q = 0.75, while the dotted
line is plotted when π = 0 and q = 0.999. (b) Dynamics considering recovery
rate of the infected and carrier-infected transfer rates. The continuous line is
plotted when η = 0.03,π = 0.005 and q = 0.75 while The dotted line is plotted
when η = 0.6, π = 0 and q = 0.999

Figure 4: Simulation of model 3, (a) C(0) = 1, C(0) = 5 and C(0) = 10 and
all other parameters are the same (b) with (β = 0.01156, π = 0.005 q = 0.75)
and (β = 0.0001156, π = 0.00005 q = 0.1)

View publication statsView publication stats

https://www.researchgate.net/publication/278021175

