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Abstract

In this paper, we characterize the scalar operators by using the semi-

group theory and the corresponding generators of (α, α+ 1) type R op-

erators. In particular, we show that if a densely defined operator H

generates a contraction semigroup, then both H and H∗ are scalar op-

erators and if H admits a U(Algebra of smooth functions) functional

calculus of scalar type, then H∗ also admits a U functional calculus of

scalar type.
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1 Introduction

A fundamental problem in spectral theory involves finding a criteria for an

operator to be of scalar type. Many approaches have been used so far, for
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example Kantorovitz [3], established this using the boundedness of operators

with real spectrum acting on a reflexive Banach space. Let X be a Banach

space and X∗ denote its dual. By a linear operator A on X, with D(A)(Domain

of A), we mean a function A : D(A) → X that is C linear. We say A is

densely defined if D(A) is dense subset of X with respect to norm topology.

The algebra of bounded linear operators will be denoted by L(X).

We suppose that H is a closed densely defined operator on a Banach space X

with σ(H) ⊆ R. We suppose also that the resolvent ‖ (z −H)−1 ‖ is defined

and bounded for all z 6∈ R and satisfy the hypothesis below

‖ (z −H)−1 ‖≤ c | Iz |−1

(
〈z〉
| Iz |

)α
(1)

for some α ≥ 0 and c > 0 then H is of (α, α + 1) type R.

Here 〈z〉 := (1+ | z |2)
1
2 and Iz is the imaginary part of z. The hypothesis

above appears in [1] which we can state is important in application of func-

tional Calculus of (α, α + 1) type R [2]. Note that if T is a linear operator

in X with real spectrum, then RT (t) = (I − itT )−1, t ∈ R is well defined

L(X)-valued map [5].

Consider a linear operator A on a Banach space X that generates a uniformly

bounded holomorphic semigroup {e−λA}Re(λ)≥0. This implies that in an equiv-

alent norm; A, iA and (−iA) generates a one parameter contraction group

which is true if and only if A is closed and densely defined and its spectrum

contained in [0,∞) [4]. The richest functional calculus occurs in the well known

setting of self adjoint operators on a Hilbert space, which admits a functional

calculus for any Borel measurable function on the spectrum of the operator via

spectral theorem. Note that a spectral operator of scalar type on an arbitrary

Banach space admits this functional calculus. We therefore wish to character-

ize the scalar operators by using the semi-group theory and the corresponding

generators of (α, α+ 1) type R operators. We shall also show that if H satisfy

(1) and admits U functional calculus defined in [2], and it is of scalar type,

then H∗ also admits the same functional calculus and it is of scalar type for

every f ∈ Cc(R) ⊆ U(Algebra of smooth functions).

2 Definitions and theorems

Definition 2.1 Let A ∈ L(X), then there exist a constant C ≥ 1 and γ ≥ 0

such that

‖ etA ‖≤ Cetγ (2)
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for all t ≥ 0.

Theorem 2.2 Let H be a bounded operator with σ(H) ⊆ R and Tt = eiHt

such that

‖ Tt ‖≤ C(1+ | t |)α (3)

where α is non-negative integer. Then H is of (α, α + 1)-type R
Proof: See[6]

The following are the immediate corollaries arising from the above theorem.

Corollary 2.3 If α ≥ 0 is the minimal constant such that inequality (3) holds,

then {Tt} is α contractive

Corollary 2.4 If {Tt} is 0 contractive and C = 1, then H is of (0, 1)-type R
and (3) reduces to a contraction semi-group and (0,∞) ⊆ ρ(H)

Theorem 2.5 (Hille Yosida) A closed densely defined linear operator A on

a Banach space X is the infinitesimal generator of a semigroup {Tt} if and

only if there exist a constant C and γ such that for every λ > γ, (λI − A) is

invertible with

‖ (λI − A)−m ‖≤ C(λ− γ)−m (4)

∀m ∈ N
Corollary 2.6 If m = 1 (4) reduces to

‖ (λI − A)−1 ‖≤ C(λ− γ)−1 (5)

Theorem 2.7 (Stones theorem) Every one parameter group of unitary

transformation is of the form eiHt with H self adjoint.

Theorem 2.8 A densely defined linear operator H acting on a reflexive Ba-

nach space X is scalar if it is of (0, 1) type R and ‖ f(H) ‖≤‖ f ‖∞ for each

f ∈ U .

Proof: See[1]

Theorem 2.9 (Green’s theorem) If Γ is a smooth positive Jordan system

with G := insΓ, f ∈ C(G) ∩ C1(G) and ∂f
∂z

is integrable over G then∫
Γ

f(z)dz = 2i

∫
G

∂f

∂z
dxdy (6)

Corollary 2.10 Let H be an operator on X with G ⊂ ρ(H) and

g(z) := f(z)(z−H)−1 is such that g ∈ C(G)∩C1(G) and ∂g
∂z

is integrable over

G then ∫
G

∂

∂z
f(z)(z −H)−1dxdy =

1

2i

∫
Γ

f(z)(z −H)−1dz (7)
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Proof: See[2]

Theorem 2.11 Let H be an operator of (α, α + 1) type R for some α ≥ 0.

If w ∈ C \ R and rw(x) := (w − x)−1 for all x ∈ R then rw ∈ U and

rw(H) = (w −H)−1.

Proof: See[2]

3 Main Results

Theorem 2.12: A closed densely defined operator H ∈ L(X) is a scalar

operator if the following two conditions are satisfied.

(i) If H generates a contraction semigroup then H is self adjoint operator

(ii) If If H is self adjoint then its contraction semigroup generates a scalar

operator.

Proof : Let H be a closed densely defined operator on L(X) satisfying (4),

and σ(H) ⊆ R. Then H generates a strongly continuous semi group given by

(3). It follows from (4) that ‖ (λI − iH)−m ‖≤ C(λ − γ)−m for all m ∈ N
Since {Tt = eiHt} is 0 contractive, it follows that ‖ (λI − iH)−1 ‖≤ λ−1. This

implies that iH is the generator of the contraction semigroup. It follows from

Stones theorem that H is self adjoint.

Now for λ > 0 and x ∈ X one has;

(λI − iH)−1x =

∫ ∞
0

e−λtTtxdt (8)

Using standard properties of Laplace transform and semigroup property we’ve;

‖ Rm
λ x ‖= 1

(m−1)!

∫∞
0
tm−1e−λt ‖ Ttx ‖ dt where m = 1, 2, 3...

=
1

(m− 1)!

∫ ∞
0

tm−1e−λt ‖ eiHtx ‖ dt

≤‖ x ‖ C

(m− 1)!

∫ ∞
0

tm−1e−λt(1+ | t |)αdt

≤ C

(m− 1)!

∫ ∞
0

tm−1e(α−λ)t(1+ | t |)αdt with ‖ x ‖= 1 By Partial integration

Applying corollary (2.4) and taking m = 1, we have;

‖ Rλ ‖≤
∫ ∞

0

e−λtdt ≤ 1

λ
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This implies that iH generates a contraction semi group. Since each Tt is self

adjoint, it implies that the resolvent set (λI − iH)−1 is also self adjoint and

so (λI − iH) is also self adjoint. If (λI − iH) is self adjoint then H is also self

adjoint and so it is of (0, 1)-type R and hence by theorem (2.8) it is a scalar

operator. Now since eiHt is a scalar operator with bounded resolution of the

identity, then it follows that the generator iH of Tt is also a scalar operator

with the same bounded resolution of the identity E such that

iH =

∫
C

(iλ)E(dλ)

and Tt =
∫
C
eitλE(dλ) for all t ∈ R It follows from spectral theorem that a

unique projection valued measure E(.) from the Borel σ-field on R exist such

that

f(H) =

∫ ∞
−∞

f(λ)dE(λ)

and this completes our proof.

We next state our second result via the following theorem.

Theorem 2.13:

If H is A Hilbert space and H is a bounded scalar type operator on H, then

H∗ is also a scalar type operator and it admits U functional calculus.

Proof. Let H be a scalar type operator and U denote algebra of smooth

functions. Also let Cc(R) be the subalgebra of U generated by {gµ : gµ(λ) =

(µ−λ)−1, µ 6∈ R}. It follows from theorem (2.11) that gµ(λ) ∈ U and gµ(H) =

(µ−H)−1.

For f ∈ Cc(R), and for all z 6∈ R, Helffer and Sjostrand integral functional

calculus [8] yields;

f(H) :=

∫
G

∂

∂z
f̃(z)(z −H)−1dxdy =

1

2i

∫
Γ

f̃(z)(z −H)−1dz.

It follows from theorem (2.8) that ‖ f(H) ‖ is bounded for each f ∈ Cc(R).

Since Cc(R) is dense in U , hence the homomorphism f → f(H) extends to a

continuous homomorphism h : Cc(R)→ L(X).

It follows that h(gµ) = (µ−H)−1 for µ 6∈ R and Its dual

h(gµ)∗ = [(µ−H)−1]∗ = [(µ−H∗)]−1 (9)

Now;

f(H) :=

∫
G

∂

∂z
f̃(z)(z −H)−1dxdy
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=
1

2i

∫
Γ

f(z)[(z −H)−1]dz

=
1

2i

∫
Γ

f(z)[(z −H)−1]∗dz =
1

2i

∫
Γ

f(z)[(z −H)∗]−1dz

and so

(f(H))∗ =
1

2i

∫
Γ

f(z)[(z −H)∗]−1dz ∀f ∈ U

Since D(H) is densed. By [7], there exist a spectral measure G of class X∗

defined on the Borel sets with values in L(X∗) such that

(f(H))∗ =

∫
f(λ)G(dλ) ∀f ∈ U

Hence H∗ is a scalar operator and this completes our proof.
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[8] B. Helffer and J. Sjöstrand, Equation de Schrödinger Operator avec champ

magnetique et equation de Harper, Chapter in Schrödinger Operators,

Lecture Notes in Physics, vol. 345, Spriner Verlag, Berline, 1989, 118-197.

http://dx.doi.org/10.1007/3-540-51783-9 19

Received: October 29, 2015; Published: July 19, 2016


