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Abstract: Let G be a finite group and cd(G) denote the character degree
set for G. The prime graph ∆(G) is a simple graph whose vertex set consists
of prime divisors of elements in cd(G), denoted ρ(G). Two primes p, q ∈
ρ(G) are adjacent in ∆(G) if and only if pq|a for some a ∈ cd(G). We
determine which simple 4-regular graphs occur as prime graphs for some
finite nonsolvable group.
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1 Introduction

The graphs arising from character degrees of finite groups have been studied
extensively over the last few years. It was determined that the prime graphs
of any finite group have diameter not exceeding 3 (see [18, 11, 12]). In [29], D.
White summarised the graph structure for the prime graphs of finite simple
groups. These were classified on the basis of classification of finite simple
groups. In that we are able to determine that most simple groups have a
complete prime graph.

In [26], H. P. Tong-Viet studied the 3-regular simple graphs that occur
as prime graphs for some finite group. He proved that the complete cubic
graph is the only 3-regular graph that occurs as a prime graph of some
finite group G. C. P. M. Zuccari [32] obtained that the only noncomplete
regular prime graphs for finite solvable groups with n vertices can only be
the (n − 2)-regular, when n is even. In particular, When n is odd then no
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regular noncomplete graph occurs as a prime graph for some finite solvable
group. However, the case for the regular graphs for nonsolvable groups has
not been determined yet. In this paper, we seek to prove the following:

Let Γ be a simple graph and let x, y be two vertices of Γ. We write x ∼ y
if x is adjacent to y in Γ. All simple groups considered are nonabelian.

Theorem 1.1. Let G be a nonsolvable group and ∆(G) be a prime graph for
G. If ∆(G) is 4-regular, then ∆(G) is complete with 5 vertices.

2 Simple groups

An and Sn denoted the alternating and symmetric groups respectively.

Lemma 2.1. [29] Let S be a simple group such that ∆(S) is connected. Then
∆(S) is complete except:

1. S ∼= J1,M11,M23

2. S ∼= An, n ∈ {5, 6, 8}

3. S ∼= 2B2(q2), q2 = 22m+1, m ≥ 1

4. S ∼= PSL3(q), q a power of prime p and q − 1 6= 2i3j , for some i ≥
1, j ≥ 0.

5. S ∼= PSU3(q
2), q is a power of prime p and q+1 6= 2i3j for some i, j ≥ 0

Lemma 2.2. Let S be a finite simple group such that ∆(S) is k-regular.
Then ∆(S) is complete or k = 0.

Proof. If ∆(S) is disconnected, then by [26, Lemma 2.6] k = 0.
Thus we may assume that ∆(G) is connected. By ATLAS [3], S cannot

be one of the groups in (1) or (2).
If S is one of the groups in (3), then by [31, Theorem 3.3], π(S) =

{2}∪π(q2 −1)∪π(q4 +1) and the subgraph of ∆(S) induced by π(S)\{2} is
complete and two is adjacent to precisely the primes in π(q2 −1). There is no
possibility of ∆(S) being regular since the primes in π(q2 − 1) are complete
in ∆(S).

If S is one of the groups in (4), It follows by [30, Theorem 3.2] that if
q 6= 4, then π(S) = {p} ∪ π((q − 1)(q + 1)(q2 + q + 1)) and the subgraph
induced by π((q− 1)(q+ 1)(q2 + q+ 1)) is complete and p is adjacent to the
primes dividing q + 1 or q2 + q + 1. So again ∆(S) has complete vertices. If
q = 4, by ATLAS [3], ∆(S) is not regular.
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If S is as in (5), then by [30, Theorem 3.4], π(S) = {p} ∪ π((q − 1)(q +
1)(q2 − q + 1)) and the subgraph induced by π((q − 1)(q + 1)(q2 − q + 1))
is complete and p is adjacent to the primes dividing q − 1 or q2 − q + 1. So
again ∆(S) has complete vertices.

Lemma 2.3. Let S be a nonabelian simple group with |π(S)| = 5 and ∆(S)
a subgraph of the house or the butterfly. Then ∆(S) is isomorphic to graphs
in Figure 2 and S ∼= PSL2(2f), f ≥ 3 or PSL2(q), q a power of an odd prime
p.

Figure 1: The house and the butterfly

(a) (b) (c)

Figure 2: The prime graphs of PSL2(26), PSL2(5
3) and PSL2(28)

Proof. Clearly ∆(S) is either a house, a butterfly or is obtained by deleting
at least one edge. Also, we note that every subgraph of the house or the
butterfly is K4-free. Suppose that ∆(S) is connected. By [3], if S is as in
Lemma 2.1 (1) or (2), then |π(S)| 6= 5.

If S is as in (3), then by [31, Theorem 3.4], S ∼= 2B2(q2), q2 = 22m+1. By
[31, Theorem 3.3] we have that ∆(S) has a subgraph isomorphic to K4 and
a vertex connected to some but not all primes in V (K4).

Suppose that S is as in (4) or (5). If S ∼= PSLℓ+1(q) or S ∼= PSUℓ+1(q
2), ℓ ≥

2, q > 2 a power of a prime p, then ∆(S) is a K5 or contains a K4 by [30,
Theorem 3.2]. Thus ∆(S) is disconnected.

Now, assume that ∆(S) has two connected components. Then by [30,
Theorem 3.1], S ∼= PSL2(q), q > 5 a power of an odd prime p. Then the
two connected components are {p} and π((q − 1)(q + 1)). The component
π((q − 1)(q + 1)) is complete if and only if q − 1 or q + 1 is a power of 2,
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otherwise ∆(S) is as part 2(b) of [30, Theorem 3.1]. In this case, ∆(S) is
disconnected with 2 connected components. We consider any subgraph of
the two graphs with five vertices and two connected components (of course
must have an isolated vertex). By [30, Theorem 3.1], ∆(S) will have an
isolated vertex and a four-vertex component with a complete vertex since 2
is a complete vertex in the subgraph with vertices π(q2 − 1). This is as in
Figure 2(b). For example,

cd(PSL2(5
3)) = {1, 53 − 1, 53 + 1, 53, (53 + 1)/2}.

Observe that ∆(PSL2(5
3)) is isomorphic to the graph in Figure 2(b).

Now we may suppose that ∆(S) has three connected components. Then
S ∼= PSL2(2

f), f ≥ 3 so that ∆(S) has three connected components with
at least one isolated vertex. The remaining component(s) is (are) complete.
The only possibilities are as in Figure 2(a) and (c). An example for graph
(a) is when q = 26. By [3] we have that

cd(PSL2(2
6)) = {1, 26, 26 − 1, 26 + 1} = {1, 26, 5 · 13, 32 · 7}.

In this case we obtain the graph in Figure 2(a).

The following results will be used throughout this paper.

Lemma 2.4. [27, Lemma 4.2] Let N be a normal subgroup of a group G such
that G/N ∼= S, where S is a nonabelian simple group. Let θ ∈ Irr(N). Then
either ψ(1)/θ(1) is divisible by two distinct in π(S) for some ψ ∈ Irr(G|θ) or
θ extends to a θ0 ∈ Irr(G) and S ∼= A5 or PSL2(8).

The following result will be referred to as the Gallagher’s Theorem.

Theorem 2.5. [8, Corollary 6.17][Gallagher’s Theorem] Let N be a normal
subgroup of a group G and let θ be an irreducible character of N . If θ is
extendible to G, then the character θψ for ψ ∈ Irr(G/N) are irreducible,
distinct for distinct ψ and are all of the irreducible constituents of θG.

Theorem 2.6. [8, Theorem 11.7] Let G be a group and NEG. Let θ ∈ Irr(N)
be invariant in G. If the Schur multiplier of G/N is trivial, then θ extends
to G.

In [7], Huppert determined all the simple groups whose orders are divisible
by four primes. The results were summarized in Table 2 and Table 3 of [7].
The groups that were not featured in the tables then will be one of the groups
listed in the Lemma below:
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Lemma 2.7. Let S be a finite nonabelian simple group with |π(S)| = 4 and
π(S) 6= π(G), where G is a group in [7, Table 2,3], then exactly one of the
following occurs:

(i) S ∼= PSL2(r) where r = max(π(S))

(ii) S ∼= PSL2(2
s) for some prime s such that 2s − 1 = max(π(S)) is a

Mersenne prime;

(iii) S ∼= PSL2(3t) for some prime t ≥ 5 such that π(S) = {2, 3, p, q}

Let S be one of the groups in Lemma 2.7 above. Since the outer auto-
morphism of S ∼= PSL2(p

f ), (p a prime and f ≥ 1 an integer) is of order
(2, p− 1) · f . With this in mind, we deduce that |π(Out(S)) \ π(S)| ≤ 1.

3 Nonsolvable groups

Lemma 3.1. Let G and H be groups and D := ρ(G) ∩ ρ(H). Suppose
that ρ(H) \D spans a complete subgraph of ∆(H). Then ∆(H) is a complete
subgraph of ∆(G×H). Moreover, ∆(G×H) contains at least |ρ(H)| complete
vertices.

Proof. Clearly D spans a complete subgraph of ∆ := ∆(G × H). It suffices
to show that ρ(H) − D is adjacent to every prime in D. Since D ⊆ ρ(G),
we must have λi(1) ∈ cd(G) for i = 1, 2, . . . , |D|, not necessarily distinct
such that pi|λi(1) for each i, all pi’s in D. Also, for each qi ∈ ρ(H) \ D

there is a θj ∈ Irr(H) such that qj |θj(1), j = 1, 2, . . . , |ρ(H) \ D|. Since
cd(G × H) = {η(1)ϑ(1)|η(1) ∈ cd(G), ϑ(1) ∈ cd(H)}, we must have that
θj(1)λi(1) ∈ cd(G × H) for each i and each j. In fact we can observe that
the primes in D are complete vertices of ∆(G×H).

To see the second part, Let p ∈ ρ(H) \D. We show that it is adjacent to
every other prime in ρ(G). Let p|λ(1) for some λ ∈ Irr(H), then θ(1)λ(1) ∈
cd(G×H) for every θ ∈ Irr(G).

Lemma 3.2. Let G be a nonsolvable group and ∆(G) be 4-regular with more
than 5 vertices. Then every nonsolvable chief factor of G is simple.

Proof. Suppose that ∆(G) contains a subgraph isomorphic to K5. Then
since ∆(G) is 4-regular, we must have that ∆(G) is isomorphic to K5 or is
a disjoint union of K5’s. This contradicts [26, Lemma 2.6]. We may assume
that ∆(G) is K5-free. Let M/N = S1 × · · · × Sk, where Si

∼= S a nonabelian
simple group, be a chief factor of G and C/N = CG/N(M/N). Then G/C
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contains a minimal subgroup isomorphic to Sk. We show that k = 1. By
a way of contradiction, assume that k ≥ 2. Let L ≤ MC be such that
L/C ∼= S. Since G/C has no nontrivial abelian normal subgroups we have
that π(G/C) = ρ(G/C). By [13, Main Theorem] we have that ∆(G/C) is
complete if k ≥ 2 hence |π(G/C)| ≤ 4. We must have that ρ(G/C) = {pi}

n
i=1

where n = 3, 4.

Case 1: |ρ(G/C)| = 4
Suppose that x ∈ ρ(G) \ ρ(G/C) =: ρ. It follows that x ∈ ρ(C). Then

there exists θ ∈ Irr(C) such that x ∈ π(θ(1)). By Lemma 2.4, either θ
extends to θ0 ∈ Irr(L) or ψ(1)/θ(1) is divisible by two distinct primes in
π(L/C) for some ψ ∈ Irr(L|θ). We consider the two cases separately:

Subcase 1: θ extends to L

If this holds then all the primes in ρ(S) are adjacent to x. Thus if |ρ(S)| =
4, then ∆(G) will contain a K5, thus we must have that |ρ(S)| = 3. Since
|ρ(G)| ≥ 6, there is a prime x 6= y ∈ ρ. So we have that y is adjacent to all
primes in π(S) or y is adjacent to two primes in π(S). If the former occurs
then the primes in π(S) will have degree ≥ 5. Assume that the latter occurs.
Then y is adjacent to two primes in π(S). This two primes will have degree
≥ 5.

Subcase 2: x adjacent to two primes in ρ(S)

If this occurs then x is adjacent to two primes in π(L/C), say p1, p2

which implies that {x, p1, p2} forms a triangle. Since |ρ(G)| ≥ 6, there is
another prime x 6= y ∈ ρ such that y is adjacent to all primes in π(S) or y
is adjacent to two primes in π(S). If the former occurs, then we have two
primes with degree greater than or equal to 5. Thus we may assume that
the latter occurs. In this case we must have that |ρ(G)| ≤ 6 or else we can
find a different prime in ρ and obtain a contradiction. If |ρ(G)| = 6, then
we require that the neighbours of y be different from those of x. In this case
we have a graph with 6 vertices and contains a K4. This graph cannot be
4-regular.

Case 2: |ρ(G/C)| = 3

Define δ := ρ(G) \ π(S) and observe that if |ρ(G)| ≥ 7, then |δ| ≥ 4.
Using the arguments used above. Each prime in δ is either adjacent to all
primes in π(S) or is adjacent to 2 primes in π(S). Either way, we observe
that there is at least one prime in π(S) with degree ≥ 5. The proof is now
complete.

Suppose that |ρ(G)| = 6 such that δ = {x, y, z} and π(S) = {pi}
3
i=1.
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Notice that δ ∈ ρ(C). If C is solvable then δ must span at least an edge, say
x ∼ y. Let ϑ ∈ Irr(C) be such that xy|ϑ(1). By Lemma 2.4 we have that
ϑ extends to ϑ0 ∈ Irr(L) or ψ(1)/ϑ(1) is divisible by two distinct primes in
π(S). In either way we obtain a contradiction. So, we may assume that C
is nonsolvable. If δ spans at least an edge, then by previous argument we
obtain a contradiction. Suppose that it doesn’t span an edge, it follows by
[10, Theorem 4.1] that C ∼= PSL2(2

f) × A for some f ≥ 2 and A abelian.
This implies that |ρ(C)| = |π(PSL2(2f))| > 3 since 2 ∈ π(S) ∩ π(PSL2(2

f)).
Since 2 is an isolated vertex for ∆(PSL2(2

f )), it implies either ∆(C) has
4 disconnected components, or δ spans at least an edge, contradicting our
assumption. This final contradiction implies that k = 1.

Lemma 3.3. Let G satisfy the hypothesis of Lemma 3.2, with 6 ≤ |ρ(G)| ≤ 9.
Let N EG be the solvable radical for G. If M/N is a chief factor of G, then
G/N is almost simple with socle M/N .

Proof. Let C/N = CG/N (M/N). Then G/C is almost simple with socle
MC/C ∼= M/N . By Lemma 3.2, M/N ∼= S is simple nonabelian and thus
C ∩ M = N . It suffices to show that C = N . By a way of contradiction
suppose that C 6= N . Let L ≤ C be such that L/N is a minimal normal
subgroup of G/N . Then we have that L/N is a nonabelian simple group.
Observe that π(L/N) ⊆ π(C/N) and CM/N ∼= C/N×M/N , Which implies
that the primes in ρ(C/N) ∩ ρ(M/N) are complete vertices in the subgraph
induced by ρ(C/N) ∪ ρ(M/N). Observe that since 2 ∈ ρ(C/N) ∩ ρ(M/N),
we must have that |ρ(C/N) ∪ ρ(M/N)| ≤ 5. Otherwise deg(2) ≥ 5. We
deduce that 3 ≤ |ρ(C/N) ∪ ρ(M/N)| ≤ 5. Write F := ρ(C/N) ∪ ρ(M/N).

Case 1: |F| = 5

Let E = ρ(C/N) ∩ ρ(M/N). By the structure of the graphs in Figures 3-
6, any five vertices chosen in any of the graphs contains at most 2 complete
vertices. Then this forces |E| ≤ 2. We observe that if |ρ(C/N)| > |ρ(L/N)|,
then |ρ(C/N)| ≥ 4. In this case we must have that |π(M/N)| = 3, since
otherwise we would have that |E| ≥ 3 contradicting the structure of the
graphs in consideration.

If we suppose that |ρ(C/N)| ≥ 4 and |π(M/N)| = 3, then we must
have that |E| = 2. By invoking Lemma 3.1, we observe that F spans a
subgraph with 3 complete vertices. This again contradicts the stucture of
the graphs in consideration. Thus the only cases we need to consider are
when both ρ(C/N) and π(M/N) have 3 vertices and so it suffices to assume
that |ρ(C/N)| = |π(L/N)|.
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Assume first that ∆(G) is K4-free. By [2, Theorem B], |ρ(G)| ≤ 7.
There are two 4-regular graphs of order 7 shown in Figure 3 and 4 and one
with 6 vertices. Observe that for any 5 vertices chosen in Figure 3, 4 and
8, we have that |ρ(C/N) ∩ ρ(M/N)| ≤ 1, |ρ(C/N) ∩ ρ(M/N)| ≤ 2 and
|ρ(C/N) ∩ ρ(M/N)| ≤ 1 respectively.

We need to find simple groups T and S with |π(S)| = |π(T )| = 3, |π(S)∩
π(T )| = 1 and |π(S)∪π(T )| = 5. By [7], the only simple groups whose orders
are divisible by 3 primes only are

PSU3(3) ∼= PSp4(2),PSL2(7),PSL2(8),PSL2(17),PSL3(3),A5,A6.

Each of these groups have order divisible by both 2 and 3. This contradicts
the fact that |ρ(S) ∩ ρ(T )| = 1. If |E| = 2 the we obtain that |F| = 4, a
contradiction.

p3

p2

p1

q1

q2 q3

q4

Figure 3: 4-regular graph of order 7 with 7 triangles

p3

p2

p1

q1

q2 q3

q4

Figure 4: 4-regular graph of order 7 with 6 triangles

We may now assume that ∆(G) contains a K4. So |ρ(G)| ≥ 8. First
suppose |ρ(G)| = 8. We have only one 4-regular graph of order 8 with a K4

as a subgraph. Consider Figure 5 below, any choice of 5 vertices will induce a
subgraph with only one complete vertex. This implies that π(S)∩π(T ) = {1}.
Again if |π(S)| = |π(T )| = 3, we obtain a contradiction as above.
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p4 q4

p2

p3

p1

q2

q3

q1

Figure 5: 4-regular graph with a K4

Lastly we consider the case when ∆(G) has 9 vertices. We have only two
4-regular graphs which contains at least one K4. The graphs are shown in
Figure 6.

However, any subgraph of order 5 chosen from the graph in Figure 6(b)
has only one complete vertex. This obtains a contradiction by previous
arguments.

(a)

p1

p2

p3 l

(b)

Figure 6: 4-regular graphs of order 9 with K4

Now, consider the graph in Figure 6(a). We can choose a subgraph with
5 vertices and 2 complete vertices. We obtain a subgraph isomorphic to the
graph in Figure 7.

Figure 7: Subgraph with 2 complete vertices

We seek to obtain simple groups S and T such that ∆(S×T ) is isomorphic
to graph in Figure 7. Since |π(S) ∩ π(T )| = 2, one of the simple groups has
order divisible by 4 primes. We have shown that this cannot occur.
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Case 2: |F| = 4

It follows that 2 ≤ |π(M/N)∩π(C/N)| ≤ 4. Since 3 ≤ |π(M/N)|, π(C/N)| ≤
4, it will suffice to assume that |ρ(C/N)| = 4 and |π(M/N)| = 4 and
|π(M/N) ∩ π(C/N)| = 4. We may also assume that |π(G/C)| ≥ |π(M/N)|
and |π(C/N)| ≥ |π(L/N)| so that we have that |ρ(G/N)| ≤ 5 by [7, 25].
By Lemma 3.1, the subgraph induced by F is a complete cubic graph no
matter the choice of the number of primes in each of the two cases. Now,
the 4-regular graphs with six and seven vertices are K4-free and thus there
is nothing to prove. We may assume that |ρ(G)| ≥ 8.

If ∆(G) is the 4-regular graph in Figure 5, without loss of generality, let
{pi}

4
i=1 ∪ {qk} = ρ(G/N) for some fixed k ∈ {1, 2, 3, 4}, say k = 1. Let

qj /∈ ρ(G/N), j ∈ {2, 3, 4}, then we must have qj |θ(1) for some θ ∈ Irr(N).
By Lemma 2.4, θ extends to L (or M) or ψ(1)/θ(1) is divisible by two primes
in π(M/N) for some ψ ∈ Irr(M |θ). This implies that each qj is adjacent to
at least 2 distinct primes in F. This is not the case for the graph in Figure 5.
A similar argument obtains a contradiction for the graphs in Figure 6(a) and
(b).

f
e

d

c

b

a

Figure 8: The 4-regular graph with 6 vertices

Case 3: |F| = 3

By [7], M/N is a simple group with π(|Out(M/N)|) ⊂ π(M/N) and
it follows by [3] that π(G/C) = π(MC/C) = π(M/N). Also π(C/N) =
π(L/N) and thus ρ(G/N) = F. The subgraph induced by F is a triangle.
Consider the graphs in Figures 3 - 6. Choose any two prime q ∈ ρ(G) \ F.
We obtain by previous arguments that q is adjacent to at least two primes
in F. This condition is not satisfied by all vertices q ∈ ρ(G) \ F in any of
the graphs chosen apart from one with 6 vertices. Now suppose that ∆(G)
is isomorphic to Figure 8. If we choose any triangle in the graph, we obtain
that the remaining primes are all connected. Let r, l ∈ ρ(G) − F. Then
r, l ∈ ρ(N). Let γ ∈ Irr(N) be such that rl|γ(1). By Lemma 2.4, we have
that ϕ(1)/γ(1) is divisible by two distinct primes in π(M/N) or γ extends to
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M . Suppose that the former occurs, then we obtain a subgraph isomorphic
to K4, a contradiction so we may assume that the latter occurs. In this case
we obtain that ∆(G) contains a subgraph with 5 vertices and two complete
vertices. This does not occur as a subgraph of Figure 8. We obtain the final
contradiction and thus C = N .

Hypothesis 3.4. Let G be nonsolvable group whose prime graph ∆(G) is
4-regular with 7 ≤ |ρ(G)| ≤ 9. Let N EG be the solvable radical of G such
that G/N is almost simple with socle M/N ∼= S a nonabelian simple group.

Lemma 3.5. Let N EG be groups so that G/N ∼= J1. Let p ∈ ρ(G) be such
that p /∈ π(G/N). Then p is connected to all primes in π(J1) or is connected
to either 2 or 19.

Proof. Let χ ∈ Irr(G) be such that p|χ(1). Let θ be an irreducible constituent
for χN . Let T = IG(θ), and let ψ ∈ Irr(T ) be the Clifford correspondent lying
between θ and χ. If T = G, then θ extends to G since the Schur multiplier
of J1 is trivial by [8, Theorem 11.7]. By Gallagher’s Theorem we have that
θ(1)ϑ(1) ∈ cd(G) for every ϑ ∈ Irr(G/N). It follows that p is connected to
all the primes in π(J1). We may assume that T < G. Then it follows that
T ≤ H for some maximal subgroup H of G. It is easy to see that H/N is a
maximal subgroup of G/N ∼= J1. According to the Atlas [3], the possibilities
for |G : H| are 266, 1045, 1463, 1540, 1596, 2926, and 4180. We have that
|G : T |ψ(1) ∈ cd(G). Observer that |G : H| divides |G : T |. Each of the
possibility of |G : H| contains a 2 or a 19 as a prime divisor.

Lemma 3.6. Assume Hypothesis 3.4. If |π(S)| = 3, then G does not exist.

Proof. It suffices to show that |ρ(G)| ≤ 6. By [7, 3] we easily deduce that
π(G/N) = π(S). Let B = ρ(G) \ π(S). Suppose on the contrary that
|ρ(G)| ≥ 7. It follows that |B| ≥ 4. By Pálfy’s condition, we must have
that B spans atleast two edges, say r ∼ l, x ∼ y, where {r, l, x, y} ⊆ B.
We can show that the two edges assumed are disjoint. It is easy to see that
if r ∼ l, l ∼ x are the edges, then deg(l) ≥ 5 or ∆(G) contains a K5 by
Lemma 2.4. It follows that there is a λ1, λ2 ∈ Irr(N) such that rl|λ1(1)
and xy|λ2(1). By Lemma 2.4, each pair (x, y) and (r, l) are contained in
some nondisjoint K4’s, a vertex of degree more than five, or ∆(G) contains
subgraph isomorphic to Figure 4 in which case S ∼= PSL2(8) or A5. The first
two conclusions cannot occur so we may assume that the latter occurs. In fact
since π(S) should not have an edge, we must have that G/N ∼= S. Also since
no other edge should arise, we must have that ∆(N) is disconnected with two
components each with two vertices or two vertices and a triangle. The former
case cannot occur due to a Theorem by Palfy which states that N ≥ 2n − 1,
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where N and n are the number of vertices of the two components. So the
latter occurs. Without loss of generality, assume that π(S) = {q1, p2, q4} and
ρ(N) = {p1, p3, q2, q3, q1}. Let ϕ ∈ Irr(N) be such that q1q3|ϕ(1). Then by
Lemma 2.4, we must have that ϑ(1)/ϕ(1) is divisible by a prime in π(S) for
some ϑ ∈ Irr(G|ϕ) or ϕ extends to a ϕ0 ∈ Irr(G). Either way we observe that
q1 is adjacent to a prime in π(S) different from itself, a contradiction.

Lemma 3.7. Assume Hypothesis 3.4 and let |π(S)| = 4. If the subgraph of
∆(G) on π(M/N) is a complete cubic, then G does not exist.

Proof. If ∆(G) has 7 vertices then ∆(G) does not contain a K4 and thus
there is nothing to prove in this case. Thus we may assume that |ρ(G)| ≥ 8.
It follows that 4 ≤ |π(G/N)| ≤ 5 by [7, 3, 25], which implies that C = ρ(G)−
π(G/N) contains at least three primes. Since C ⊆ ρ(N) and N is solvable, we
may use Pálfy’s condition which provides that C must span at least an edge,
say r ∼ l. Let θ(1) ∈ cd(N) be such that rl|θ(1). By Lemma 2.4 we must have
that ψ(1)/θ(1) divides two distinct primes in π(M/N) for some ψ ∈ Irr(M |θ)
or θ extends to M and M/N ∼= A5 or PSL2(8). It follows immediately
that the former must occur. This implies that {r, l, p, q} forms a complete
cubic for some q, p ∈ π(M/N). This implies that deg(q), deg(p) ≥ 5, a
contradiction.

For the case when |ρ(G)| ≥ 7, we will not consider simple groups whose
prime graphs have three vertices [Lemma 3.6] or are complete with at least
4 vertices by Lemma 3.7.

Lemma 3.8. Assume Hypothesis 3.4. Then |ρ(G)| ≤ 7 when S ∼= J1 and
|ρ(G)| ≤ 6 when S ∼= M11.

Proof. By [3], we deduce that G/N = S. We use the arguments in the proof
of Lemma 3.5 above. Let S ∼= M11. By [3], we observe that in ∆(S),

deg(2) = deg(11) = 2, deg(5) = 3 and deg(3) = 1.

The maximal subgoups of M11 are divisible by either 2 and 3 or 11. It is not
difficulty to see that every prime in ρ(G) \ π(S) is adjacent to either 2 and
3 or to 11. Therefore we can have at most one vertex neighboring 2 and 3
which will make deg(2) = 4 since 2 6∼ 3 in ∆(S). Also there can only be
atmost two neighbours of 11 outside of π(S). Thus there should be at most
three vertices in ρ(G) \ π(S).

Now let C = ρ(G) − π(S). Suppose that |C| = 3. Since C ⊆ ρ(N) and N
is simple, we must have that C spans at least an edge. Let r, l ∈ C be such
that r ∼ l. Suppose that α ∈ Irr(N) be such that rl|α(1). By Lemma 2.4,
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β(1)/α(1) is divisible by 2 disntinct primes of π(S) for some β ∈ Irr(G|α).
This implies that β(1) is divisible by 4 distinct primes implying that ∆(G)
contains at least eight vertices. Contradicts the previous paragraph. Thus
|ρ(G)| ≤ 6.

Now Let S ∼= J1. By [3], we observe that

deg(2) = 4, deg(7) = deg(19) = 3, deg(3) = deg(5) = deg(11) = 2.

Let ρ(G) − π(S) = C. Then by Lemma 3.5, each prime in C is adjacent to
either 2 or 19. Since deg(2) = 4, two cannot have any more neighbor and
thus any prime in C must be adjacent to 19. However, 19 can only have one
more neighbour since deg(19) = 3.

Lemma 3.9. Assume Hypothesis 3.4. Let S 6∼= PSL2(q), q a power of some
prime number p. Then G does not exist.

Proof. Assume that M/N ∼= J1. Then it follows that G/N = M/N and thus
we have that π(G/N) = π(M/N) with |π(M/N)| = 6. Since |ρ(G)| ≥ 7,
the set C = ρ(G) \ π(G/N) is nonempty. Let x ∈ C. Let θ(1) ∈ cd(N) be
such that x|θ(1). Suppose that θ is G-invariant. Since the Schur multiplier
of J1 is trivial, it follows that θ extends to G by Theorem 2.6. This implies
that deg(x) = 6 in ∆(G), a contradiction. Hence, T = IG(θ) < G. Thus
T/N is a subgroup of some maximal subgroup K/N of J1. By [3], we obtain
that |G : K| is divisible by at least 3 primes in π(M/N). Thus ∆(G) must
contain a K4 as a subgraph. This implies that |ρ(G)| ≥ 8. This contradicts
Lemma 3.8.

Suppose that M/N ∼= 2B2(8). Then we have that M/N ∼= G/N since
otherwise by G/N ∼= 2B2(8) · 3. By [3], we have that {3, 5, 7, 13} form a
complete subgraph of ∆(G). Implying that ∆(G) has at least eight vertices.
Thus |C| ≥ 3 and by Pálfys condition, there is r, l ∈ C such that r ∼ l. Let
θ ∈ Irr(N) be such that rl|θ(1). By Lemma 2.4, θ extends to M or ψ(1)/θ(1)
is divisible by two distinct primes in π(M/N). This would result to one of
the primes in {5, 7, 13} having degree at least 5, a contradiction. Let G/N ∼=
M/N ∼= 2B2(8). Then again we have that |C| ≥ 3. By Pálfys condition there
is r, l ∈ C such that r ∼ l. Let θ ∈ Irr(N) be such that rl|θ(1) and let
T = IG(θ). Suppose that θ is not G-invariant. Then |G : K| divides |G : T |
for some maximal subgroup K/N of 2B2(8). By [3], the possibilities of π(G :
K) are {{5, 13}, {2, 5, 7}, {2, 7, 13}, {2, 5, 13}}. By Clifford’s correspondence
theorem, |G : K|θ(1) divides some degree in cd(G|θ). We must have that
|G : K| = {5, 13} since otherwise we would have a K5. Now let t 6= r, l be in
C and let φ ∈ Irr(N) be such that t|φ(1). Let Gφ be the stabilizer of φ in G.
Then we must have that Gφ = G since otherwise we have that either deg(5)
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or deg(13) is greater than or equal to 5. Also, φ does not extend to G, and
thus we may use the projective degrees as in [3]. In this case we have that
cd(G|φ) = {φ(1)a|a ∈ {40, 56, 64, 104}}. Since 40φ(1) is in cd(G|φ), we must
have that deg(5) ≥ 5 in ∆(G), a contradiction. Thus we must have that
T = G. If θ extends to G we have that ∆(G) contains a K5 as a subgraph.
Thus we must have that θ does not extend to G. Hence we use the projective
degrees provided in [3], we have that cd(G|θ) = {θ(1)a|a ∈ {40, 56, 64, 104}}.
Since 104θ(1) ∈ cd(G|θ) we have that {2, 13, r, l} form a complete cubic which
implies that deg(13) ≥ 5, a contradiction.

Let M/N ∼= 2B2(32). Then π(G/N) = π(M/N) and thus |C| ≥ 3.
By previous arguments, let rl|θ(1) for some r, l ∈ C and θ ∈ Irr(N). By
Lemma 2.4, χ(1)/θ(1) is divisible by two distinct primes in π(M/N) for
some χ ∈ Irr(M |θ). We now have that ∆(G) contains a complete cubic.
This implies that |ρ(G)| ≥ 8, which implies that |C| ≥ 4. By Pálfy’s con-
dition, C spans at least two edges. Thus it suffices to assume that there is
{x, y} different from {r, l} such that x ∼ y. By previous arguments we obtain
that at least one vertex in π(M/N) has degree at least 5, a contradiction.
A similar argument applies to any M/N ∈ {PSL4(q),PSU3(q2)} where q a
power of a prime p with |π(M/N)| = 4 such that π(M/N) does not span a
complete cubic.

Suppose that π(M/N)| ≥ 5 and ∆(M/N) is not complete. Then M/N ∼=
PSL3(q) or PSU3(q

2) with q a power of p and q − 1 6= 2i3j , i ≥ 1, j ≥ 0 or
q + 1 6= 2i3j , i, j ≥ 0 respectively. In this case ∆(G) contains a subgraph
isomorphic to Figure 7. This implies that |ρ(G)| = 9 and ∆(G) is isomorphic
to Figure 6(a) and C is contained in one of the complete cubic subgraphs while
four primes of π(M/N) form the other complete subgraph. But then by using
Lemma 2.4, we should have that two primes in C form a complete subgraph
with two primes in π(M/N), this is not achieved, a contradiction.

The following results or facts will be used to prove subsequent results.

Remark 3.10. [1, Remark 2] Let M/N ∼= PSL2(q) where q 6= 9 and θ ∈
Irr(N). If θ is M-invariant, then there are irreducible characters in Irr(M |θ)
such that their degrees are divisible by θ(1)(q ± 1).

Lemma 3.11. [19, Lemma 3.7] Let G be a group and let N E G be such
that G/N ∼= PSL2(q), q = pf for some prime p and some positive integer f .
Let θ ∈ Irr(N) and T be the stabilizer of θ in G with |G : T | = t. Suppose
that T/N ∼= PSL2(pk) or PGL2(p

k) with 7 ≤ pk < q = pf . Then π(t) has
nontrivial intersection with each of the three sets p, π(q − 1), and π(q + 1)
where q > 5. Moreover, at least one of the following holds:
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(a) There are degrees ψ1(1), ψ2(1) ∈ cd(G|θ) so that p(q− 1) divides ψ1(1)
and p(q + 1) divides ψ2(1).

(b) T/N is isomorphic to one of PSL2(9) or PGL2(9) and both 6tθ(1) and
15tθ(1) divide degrees in cd(G|θ).

Lemma 3.12. [19, Lemmas 3.2-3.7] Assume Hypothesis 3.4. Let S ∼= PSL2(2f),
f ≥ 3. Let θ ∈ Irr(N) and T = IM(θ). Then

(A) |M : T | is divisible by all primes in two of the three sets {2}, π(2f − 1),
and π(2f + 1).

(B) |M : T | is divisible by all primes in ρ(M/N) \ {2, 3} and some degree
in cd(M |α) is divisible by one of 2|M : T |α(1) or 3|M : T |α(1).

(C) Lemma 3.11 applies.

(D) |M : T | is divisible by all primes in π(M/N) \ {2, 3, 5}, the integer
q > 5, and either 3|M : T |θ(1), 4|M : T |θ(1), and 5|M : T |θ(1) divide
degrees in cd(G|θ), or 6|M : T |θ(1) divides a degree in cd(G|θ).

Lemma 3.13. Assume Hypothesis 3.4. Let S ∼= PSL2(q) where q is a power
of some prime p 6= 2. Then G does not exist.

Proof. By Lemma 3.6, we have that |π(S)| ≥ 4.
Case 1: |π(S)| ≥ 6
If |π(S)| ≥ 7, then by [30, Theorem 3.1] we have that |π((q−1)(q+1))| = 6

with (in no particular order)

{|π(q − 1)|, |π(q + 1)|} = {3, 4} or {2, 5}.

In both cases we have that deg(2) = 5 in ∆(S). So it suffices to consider that
case when |π(S)| = 6. In this case we must have that |π((q− 1)(q+ 1))| = 5
with

{|π(q − 1)|, |π(q + 1)|} = {3, 3} or {2, 4}.

We claim that |π(G/N)| = |π(S)|. Suppose that t ∈ (G/N) \ π(S). By [28,
Theorem A], we have that t ∼ r for all r ∈ π(q2 − 1). But deg(t) becomes
five, a contradiction. Thus C = ρ(G) − π(G/N) is nonempty. Let r ∈ C and
let θ ∈ Irr(N) be such that r|θ(1). Suppose that θ is M-invariant, then by
Remark 3.10 we have that both {r} ∪ π(q ± 1) form complete subgraphs of
∆(G). In either case we obtain that deg(2) ≥ 5, a contradiction. Thus we
may assume that Mθ = IM(θ) < M . In this case we have that |M : Mθ|θ(1)
divides the degrees of all members of Irr(M |θ). We must have that Mθ/N ≤
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K/N for some maximal subgroup K/N of S. This therefore implies that
|M : K| divides |M : Mθ| and thus |M : K|θ(1) divides the degrees of all
irreducible characters in Irr(M |θ). By [6, Hauptsatz II.8.27], the indices of
all maximal subgroups of M/N is divisible by at least three distinct primes.
In this case we obtain that some degree in π(q ± 1) has degree at least 5, a
contradiction.

Case 2: |π(S)| = 5
By [27, Theorem B], we have that ∆(S) contains a triangle. We claim

that 2 ≤ |π(q ± 1)| ≤ 3. Suppose on the contrary that ∆(S) contains a
K4 and an isolated vertex. In this case we have that |ρ(G)| ≥ 8. Also, we
can see that if t ∈ π(G/N) − π(S), then ∆(G/N) contains a K5. So we
must have that |π(S)| = |π(G/N)|. Now we must have that |C| ≥ 3 and
by Pálfy’s condition, C spans atleast an edge. Let r, l ∈ C be such that
rl|α(1) for some α ∈ Irr(N). Then by Lemma 2.4, we obtain that ∆(G)
contains two K4’s whose intersection is nonempty, a contradiction. So we
may assume that 2 ≤ |π(q ± 1)| ≤ 3. Suppose that |π(G/N)| > |π(S)| and
let t ∈ π(G/N) \ π(S). Again, we have that t(q ± 1) divides some degree of
cd(G/N). This implies that ∆(G/N) would contain a subgraph isomophic
to Figure 7. This implies that |ρ(G)| = 9. Which implies that |C| ≥ 3 and
suppose that r ∼ l in ∆(N) with r, l ∈ C. Let θ ∈ Irr(N) be such that rl|θ(1).
By Lemma 2.4, {r, l, u, v} form a complete cubic for some primes u, v ∈ π(S).
In this case we obtain that ∆(G) must contain two complete cubic subgraphs
whose intersection is non-empty, a contradiction. Thus |π(S)| = |π(G/N)|.
Let r, l ∈ C be such that r 6∼ l. Let θ1, θ2 ∈ Irr(N) be such that r|θ1(1)
and l|θ2(1). Suppose that θi is M-invariant for some i ∈ {1, 2}. Then it
follows by Remark 3.10 that θi(1)(q ± 1) divide some degrees of irreducible
charactes in Irr(M |θi). This implies that ∆(G) admits a subgraph isomorphic
to Figure 7, which in turn implies that |ρ(G)| = 9. In particular, ∆(G) is
isomorphic to Figure 6(a). In this case we must have that |C| = 4 and
by Pálfy’s condition, we have that C spans at least two edges. This inturn
(by Lemma 2.4) implies that ∆(G) has two complete cubic subgraphs and
r, l are not contained in the same K4. It will suffice to let x, y ∈ C with
{r, l} ∩ {x, y} = ∅ and let α, β ∈ Irr(N) be such that xr|α(1) and ly|β(1).
Then it is not hard to see that IM(α), IM(β) < M by Remark 3.10. We
see that IM(α)/N and IM(β)/N are some subgroups of PSL2(q) listed in [6,
Hauptsatz II.8.27]. Observe that their indices in M/N will be divisible by
either p or 2. It is then not hard to see that the two K4’s intersection is
non-empty or deg(2) ≥ 5, a contradiction. It follows that both θ1, θ2 are
not M-invariant. Let Mθi

be the stabilizer of the character θi in M for each
i ∈ {1, 2}. We observe that H = Mθ1

/N is one of subgroups of PSL(2, q)
listed in [6, Hauptsatz II.8.27]. Suppose that H is the elementary abelian
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p-group. Then we have that {r} ∪π(q2 −1) form a K5, a contradiction. Now

suppose that H is the cyclic group of order z where z
∣

∣

∣

q±1
(q−1,2)

. In this case

we have that {r, p} ∪ π(q± 1) forms a complete subgraph. This obtains that
deg(2) ≥ 5, contradiction. Now suppose that H ∼= Dz with z as above. Let

C/N ∼= Cz ≤ Dz. Then θ1 extends to C by [8, Corollary 11.22]. Let θ̂1 be

an extension of θ1 in Irr(C). If θ̂1 is Mθ1
invariant, then θ̂1 extends to Mθ1

and thus 2θ1 ∈ cd(Mθ1
|θ1) by Gallagher’s Theorem. Otherwise IMθ1

(θ̂1) = C
and by Clifford’s theorem, we have that 2θ1(1) ∈ cd(Mθ1

|θ1). This therefore
implies that 2|M : Mθ1

|θ1(1) is a degree in cd(M). Since p is a divisor of
|M : Mθ1

| we must have that {r, p, 2} form a triangle. This would imply that
deg(2) ≥ 5, a contradiction. Suppose that H ∼= A4.

claim: p 6= 3 and 22 is the highest power of 2 that divides |S|. In
particular, we claim that A4 is a Hall {2,3}-subgroup of S. Suppose that
p = 3. Then f > 3 and thus 3 divides |M : Mθ1

|. Since |M : Mθ1
|θ1(1)

divides some degree in cd(M |θ1), we have that |π(S)| = π(M : Mθ1
) or

2 /∈ π(M : Mθ1
). If 2 ∈ π(M : Mθ1

), then ∆(G) contains a K6 as a sub-
graph, a contradiction. Also, since 3 divides |M : Mθ1

|, then we have that
|π(M : Mθ1

)| = 4. In this case we also have that ∆(G) must contain a K5

with vertices {r} ∪ π(M : Mθ1
).

Suppose that θ1 extends to Mθ, then by Gallagher’s theorem, 2θ1(1) or
3θ1(1) divides some degree in cd(Mθ1

|θ1), in which case we obtain that ∆(G)
contains a K5 as a subgraph. So we may suppose that θ1 does not extend to
Mθ1

. By [8, Corollary 11.29], there is a ψ ∈ Irr(Mθ1
|θ1) which is divisible by

either 2 or 3. This as well leads to ∆(G) admitting K5 as a subgraph.
Suppose that H is a semidirect product of an elementary abelian group of

order pm with a cyclic group of order t, where t|(pm −1) and t|(pf −1). H is a
Frobenius group with Frobenius Kernel K/N , an elementary abelian p-group.
This implies that 2 divides |M : Mθ1

|. If θ1 does not extend to K, then the
degrees in cd(M |θ1) are divisible by p. Thus we must have that {p, 2, r} form
a tringle, in which case deg(2) ≥ 5, contradiction. Thus we may assume that
θ1 does not extend to K. Let Q/N be the Sylow q-subgroup for some prime
q|t. Then Q/N is cyclic and so θ1 extends to Q. By [8, Corollary 11.31], we
have θ1 extends to Mθ1

. By Gallagher’s theorem, |Mθ1
: K|θ1(1) ∈ cd(Mθ1

|θ1)
and by Clifford’s theorem we must have |M : Mθ1

||Mθ1
: K|θ1(1) ∈ cd(M |θ1).

This implies that {r} ∪ π(p2f − 1) forms a complete K5, a contradiction.
Suppose that Mθ/N ∼= A5. We claim that p ∈ π(M : Mθ1

). Suppose the
contrary that p /∈ π(M : Mθ1

). Then it implies that p ∈ π(A5) \ {2}. In
particular, p = 3 or 5 Suppose that p = 3, then since PSL2(3) is solvable.
Then it is easy to see that f 6= 1 in this case. Also, π(PSL2(5)) contains
only 3 primes and so in this case f 6= 1 as well. Thus p ∈ π(M : Mθ). Now,
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by the projective degrees in [3], we see that 2|M : Mθi
|θ1(1) divides some

degree in cd(M |θ1). This implies that {r, p, 2} forms a triangle in which case
deg(2) ≥ 5, a contradiction.

Finally, suppose that H ∼= PSL2(pm) or PGL2(pm). By Lemma 3.11, we
must have that π(M : Mθ1

) has nontrivial intersection with each of the three
sets {p}, π(q± 1) and |π(M : Mθ1

)|p(q− 1)θ(1) and |π(M : Mθ1
)|p(q+ 1)θ(1)

divides some degrees in cd(M |θ) or 6|M : Mθ|θ(1) divides some degree in
cd(M |θ). In both cases deg(2) will exceed 5.

Case 3: |π(S)| = 4.
Subcase 1: |π(q + ǫ)| = 1 and |π(q − ǫ)| = 3, ǫ ∈ {−1, 1}
We claim that |π(S)| = |π(G/N)|. Suppose on the contrary that t ∈

π(G/N) \ π(S). It follows that both t ∼ w for each w ∈ (q2 − 1). This
results into a K4. Thus we have that ∆(G) has at least eight vertices. This
implies that C contains not less than three primes. Thus we can find r, l ∈ C
such that r ∼ l in ∆(N). Let θ ∈ Irr(N) be such that rl|θ(1). Then by
Lemma 2.4, r, l together with two primes in π(S) form a K4. So we have two
K4’s whose intersection in not empty, a contradiction. Now we have that
|π(S)| = |π(G/N)|. So that C contains at least three primes and by Pálfy’s
condition, there is x, y ∈ C such that x ∼ y. Let α ∈ Irr(N) be such that
xy|α(1) and observe that by Lemma 2.4 {x, y, u, v} form a complete subgraph
for some primes u, v ∈ π(S). It follows immediately that |ρ(G)| ≥ 8 and thus
C contains at least four primes and thus must contain atleast two edges. It
suffices to assume that r, l ∈ C are distinct from x and y and r ∼ l. Letting
γ ∈ Irr(N). It is not hard to see that r, l will be contained in a K4 and the
intersection of two K4’s is nonempty or p is contained in one of the K4’s and
so there will be a prime w ∈ π(S) with deg(w) ≥ 5, a contradiction.

Subcase 2: |π(q ± 1)| = 2
We claim that |π(S)| = |π(G/N)|. Suppose on the contrary that t ∈

π(G/N) \ π(S). It follows that both t ∼ w for each w ∈ (q2 − 1) form
complete triangles which results into deg(2) = 3. Since C contains at least
two primes, let r, l ∈ C ⊆ ρ(N). If we let θ1, θ2 ∈ Irr(N) be such that r|θ1(1)
and l|θ2(1), then whether θ1 and θ2 extend to M or not, we obtain that r
and l are both adjacent to 2 which implies that deg(2) ≥ 5, a contradiction.

Since |π(G/N)| = |π(S)| = 4, we have that |C| ≥ 3. Let r, l ∈ C be
such that r ∼ l and let θ ∈ Irr(N) be such that rl|θ(1). If θ is M-invariant,
then by Remark 3.10, we must have that θ(1)(q ± 1) divide some degrees
in cd(M |θ). This results into a subgraph with 5 vertices and 3 complete
vertices. This does not occur as a subgraph of any graph in consideration, a
contradiction. We must thus assume that θ is not M-invariant. Again, we
must have that Mθ/N = IM(θ)/N is one of the subgroups discussed above.
If Mθ/N is one of the abelian subgroups of S, then |M : Mθ| is divisible by
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at least three primes of π(S). This implies that ∆(G) contains a K5. So we
must have that Mθ/N is nonabelian.

Let Mθ/N be a Frobenius group. We obtained that |M : K|θ(1) ∈
cd(M |θ) with |M : K| divisible by all primes in π(q2 − 1). This also implies
that ∆(G) will contain a K5, a contradiction.

Let Mθ/N ∼= A4 or S4. This implies that π(M : Mθ) ≥ 2. By previous
argument we obtain that 2|M : Mθ|θ(1) or 3|M : Mθ|θ(1) divides some
degrees in cd(M |θ) and hence some degree in cd(G|θ). This will imply that
∆(G) contains a K5.

Suppose that Mθ/N ∼= A5. By the projective degrees in [3], we must
have that 2θ(1) divides some degree in cd(Mθ|θ), whether θ extends to Mθ

or not. By arguments in [14, Proof of Theorem 3.3], we obtain that 2pθ(1)
divide some degree in cd(M |θ). This however implies that deg(2) ≥ 5, a
contradiction.

Finally, if Mθ/N ∼= PSL2(2, pm) or PGL2(p
m). By Lemma 3.11, we must

have that |M : Mθ| is divisible by at least three primes in π(S). In this case,
we obtain that {r, l} ∪ π(M : Mθ) form a K5, a contradiction.

Lemma 3.14. Assume Hypothesis 3.4. Let S ∼= PSL2(2
f) be such that

|π(S)| = 4. Then G does not exist.

Proof. We consider cases when |π(G/N)| = |π(S)| and |π(G/N)| 6= |π(S)|
differently.

Case 1: |π(S)| = |π(G/N)|
We have that |C| ≥ 3. Since C ⊆ cd(N) and N is solvable, we can use

Pálfy’s condition and assume that there is a r, l ∈ C such that r ∼ l in
∆(N). Let θ ∈ Irr(N) be such that rl|θ(1). If θ is G-invariant, then since
the Schur multiplier of S is trivial, we have that θ extends to G. Therefore,
by Gallagher’s Theorem, θ(1)(2f ±1), 2fθ(1) ∈ cd(G). In this case, we obtain
deg(r) and deg(l) is at least 5, a contradiction. Thus we may assume that θ
is not G-invariant.

Let T = IM(θ). Then T/N is one of the Dickson’s list of subgroups of
PSL2(q) in [6, Hauptsatz II.8.27]. Suppose that T/N is an elementary abelian
2-group, then we have that |π(M : T )| ≥ 3, which would result in a K5 as a
subgraph of ∆(G). Now, suppose that T/N is a cyclic group or a Frobenius
group. Then by Lemma 3.12, |M : T | is divisible by all primes in two of
the sets {2}, π(2f − 1), and π(2f + 1). So we may assume that |G : T | is
divisible {2} and π(2f + ǫ), ǫ ∈ {1,−1} in which |π(2f + ǫ)| = 1. In this case
we obtain that ∆(G) contains a K4 and thus |ρ(G)| ≥ 8. This also implies
that |C| ≥ 4 and hence must span at least 2 edges by Pálfy’s condition. Let
u, v ∈ C be different from r, l. and let α ∈ Irr(N) be such that uv|α(1). Let
T = IM(α) = M . Then we must have that α extends to M , in which case
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we obtain that ∆(G) contains two K4’s whose intersection is nonempty. We
may thus assume that T < G. Then by Lemma 3.12, we observe that in all
the cases, we must have some prime in π(S) with at least degree 5.

Case 2: |π(S)| < |π(G/N)|
By [7], we have that f = 5, 7. In particular 2f − 1 is a Merssene prime s

and 2f + 1 is a product of powers of two primes x and y. By [3], we observe
that deg(x) = deg(y) = 2 and deg(s) = 1 in ∆(G/N). We have that |C| ≥ 2.

Claim: |C| ≤ 2.

To show this, suppose that |C| ≥ 3 and let r, l, a ∈ C such that r ∼ l.
Let θ, φ ∈ Irr(N) be, respectively, irreducible constituents of χN , ϑN where
rl|χ(1), a|ϑ(1). Then rl|θ(1) and a|φ(1). Let Mθ and Mφ be the stabilizers
of θ and φ in M respectively. Suppose that Mθ = M , Then we obtain
deg(r), deg(l) ≥ 5, a contradiction.

s

2

x

y 5/7

Figure 9: ∆(Aut(PSL2(2f))), f = 5, 7
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Figure 10: Impossible subgraphs

Thus we may assume that Mθ < M . Since |π(M : Mθ)| ≥ 3 implies
that ∆(G) contains a K5, we must have that Mθ ∈ {D2xy, 2

f · s} by [14]
and Lemma 3.12. We may assume that π(M : Mθ) = {2, s} since otherwise
|π(M : Mθ)| = 3. This makes deg(2) = 3 and deg(s) = 4. Now, we consider
Mφ. If Mφ = M then deg(s) = 5, a contradiction so we must have that
Mφ < M and by Lemma 3.12, we have |π(M : Mφ)| = 3 or π(M : Mφ) =
{2, s} as argued above. Either way we obtain deg(b) ≥ 5 for some b ∈ {2, s},
a contradiction.
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Now we show that G with this property does not exist. Since |ρ(G)| = 7,
then we need to show that ∆(G) does not contain a K4. Let r, l ∈ C be
such that r 6∼ l and let θ, φ ∈ Irr(N) be such that r|θ(1) and l|φ(1). Let
Mθ,Mφ be the stabilizers of θ, φ in M respectively. Then we observe that
π(M : Mθ) = π(M : Mφ) = {2, s} by Lemma 3.12, otherwise ∆(G) contains
a K4 or an impossible subgraph when one of φ, θ is M-invariant. In this case
we obtain a subgraph isomorphic to Figure 10.

Figure 10 is a subgraph of both 4-regular graphs with 7 vertices. Consider
Figure 3. Observe that the graph is vertex transitive so we need to consider
only one possibility. We may suppose that, (in that order),

(p1, p2, p3, q1, q2, q3, q4) = (h, l, s, y, x, r, 2), h = 5 or 7

Observe that 2 ∼ x. Let χ ∈ Irr(G) be such that 2x|χ(1). And let θ ∈ Irr(N)
be the be such that [χN , θ] 6= 0. Since 2 6∼ x in ∆(G/N), it is evident that
θ(1) 6= 1N . Let Mθ = IM(θ) = M . Then θ extends to M and by Gallagher’s
theorem, we have that

χ(1) ∈ {θ(1), 2fθ(1), (2f − 1)θ(1), (2f + 1)θ(1)}

Observe that if χ(1) = θ(1), or 2fθ(1), we have that x|θ(1) in both cases.
But then by (2f − 1)θ(1), (2f + 1)θ(1) we must have that x ∼ s which is not
the case. Thus we may assume that Mθ < M . By Lemma 3.12, we have that
|π(M : Mθ)| ≥ 2 with

π(M : Mθ) ∈ {{x, y, s}, {x, y, 2}, {s, 2}}.

But 2, x do not share any of the above possible neighbors.

Lemma 3.15. Assume Hypothesis 3.4. Let M/N = PSL2(2
f) for some

f ≥ 6. Then if π(G/N) 6= π(M/N), then |π(S)| = 5, and ∆(S) is not
isomorphic to Figure 2(a).

Proof. By Lemma 3.6 and Lemma 3.14, we have |π(M/N)| ≥ 5. Since
π(G/N) 6= π(M/N), it follows that G/N = M/N〈α〉 for some field auto-
morphism α of M/N of order t with π(t) 6⊆ π(M/N). Let x ∈ π(t). It
follows by [28, Theorem A] that x is adjacent to every prime in π(22f − 1).
But we know that |π(22f − 1)| ≥ 5 when |π(S)| ≥ 6, a contradiction. Thus
|π(S)| = 5. Now suppose that ∆(S) is isomorphic to Figure 2(a). Then
it follows that x together with π(22f − 1) forms a butterfly. Thus we must
have that ∆(G) has either 7 or 9 vertices. Suppose that ∆(G) has seven
vertices. Then we have that |C| = 1. Let r ∈ C and let θ ∈ Irr(N) be such
that r|θ(1). Then θ cannot be M-invariant since that would imply that θ
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extends to M which implies that r is adjacent to all the primes in π(S), a
contradiction. Let Mθ be the stabilizer of θ in M . Then by Lemma 3.12,
we must have that |M : Mθ| is divisible by three primes which implies that
{r, 2} ∪ π(2f + ǫ), ǫ ∈ {−1, 1} forms a complete cubic. This contradicts the
fact that ∆(G) does not contain a K4. So we may assume that |ρ(G)| = 9.
In this case we have that |C| = 3 which in turn implies that there is r, l ∈ C
with r ∼ l. If we let θ(1) ∈ cd(N) be the degree affording the edge, then
we see that θ cannot extend to M . Thus we obtain that Mθ < M and by
Lemma 3.12, π(M : Mθ) ∪ {r, l} form a K5, a contradiction.

Lemma 3.16. Assume Hypothesis 3.4. Let |ρ(G)| = 9. Then G does not
exist.

Proof. Case 1: |π(S)| = 8
Let r ∈ C and let θ ∈ Irr(N) be such that r|θ(1). This case is easy to see

that r ∈ C together with four primes in π(S) form a K5 whether θ extends
to M or not, a contradiction.

Case 2: |π(S)| = 7
By Lemma 3.15, we must have that |π(S)| = |π(G/N)|. We have that

|C| = 2. Now, observe that 3 ≤ |π(2f +ǫ)∪{2}| ≤ 5. Let θ, φ ∈ Irr(N) be such
that r|θ(1), l|φ(1) where C = {r, l}. Let Mθ = IM(θ) and Mφ = IM(φ). Since
|π(S)| = 7, θ, φ cannot extend to M so we may assume that Mθ,Mφ < M . By
Lemma 3.12, we have that π(M : Mθ) = π(M : Mφ) and both contain three
elements. This would imply that ∆(G) contains two K4’s which intersect at
vertex 2. This does not form a subgraph of any 4-regular graph with nine
vertices.

Case 3: |π(S)| = 6
In this case we have that |π(G/N)| = |π(S)| by Lemma 3.15. This implies

that |C| = 3 and thus spans an edge. Let {r, l, h} = C such that r ∼ l. Let
θ, φ ∈ Irr(N) be such that rl|θ(1), h|φ(1). Let Mθ = IM(θ) and Mφ = IM(φ).
Since |π(S)| = 6, θ, φ cannot extend to M so we may assume that Mθ,Mφ <
M . Observe that |π(2f +ǫ)∪{2}| ∈ {2, 3, 4, 5}, ǫ ∈ {−1, 1}. By Lemma 3.12,
we have that π(M : Mθ) = π(M : Mφ) and both contain two elements. In
this case we obtain that ∆(G) must be isomorphic to Figure 6(a) since we
obtain two K4’s. Relabel Figure 6(a) as in the Figure below:
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Figure 11: Relabelled graph

Where π(2f − ǫ) = {pi}
4
i=1 and π(2f + ǫ) = {s}. We observe that r ∼ p3

and l ∼ p4. By previous arguments we obtain a contradiction since the pairs
have no common neighbors.

Case 4: |π(S)| = 5
First suppose that |π(G/N)| > |π(S)|. Then by Lemma 3.15, ∆(S) is

isomorphic to Figure 2(c). Let t ∈ π(G/N) \ π(S). Then it follows that t is
adjacent to every member of π(22f −1) which obtains aK4. Now, observe that
|C| = 3. Let r, l, h ∈ C and define θ, φ in Irr(N) and Mθ,Mφ as defined in the
previous case. Let |π(2f −ǫ)| = 3 and |π(2f +ǫ)| = 1, ǫ ∈ {−1, 1}. Neither of
θ, φ extends to M and so we must have |π(M : Mθ)| = 2 = |π(M : Mφ) since
otherwise we would have a K5 or two K4’s whose intersection is nonempty.
This will as well result in either deg(2) or deg(s) having degree at least 5, a
contradiction. Thus we may assume that |π(S)| = |π(G/N)|. Now we have
that |C| = 4 which implies that C must span at least two edges. In this case
we have that ∆(S) is one of the graphs in Figure 2(a) or (c). Both cases
would result in a K5 or two non-disjoint K4’s, a contradiction.

Case 5: |π(S)| = 9
Suppose that |π(S)| = 9. Then ∆(S) must have two K4’s. So it suffices

to consider the case when ∆(G) is isomorphic to Figure 6(a). Considering
Figure 11 above, we may consider an edge r ∼ p3 and obtain a contradiction
as in Case 3 above.

Lemma 3.17. Assume Hypothesis 3.4. Let ∆(G) be isomorphic to Figure 5.
Then π(2f + 1) and π(2f − 1) belong to different K4’s.

Proof. It suffices to show that the case holds for |π(S)| = 5, 6.
Case 1: |π(S)| = 5
First we suppose that |π(G/N)| > |π(S)| and let t ∈ π(G/N) \ π(S).

Then we have that t is adjacent to all primes in π(22f − 1). Since ∆(S) is
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isomorphic to Figure 2(c), we have that π(2f + ǫ) ∪ {t}, ǫ ∈ {−1, 1} form a
K4 where |π(2f + ǫ)| = 3. This implies that π(2f − ǫ) is contained in the
other K4. Now suppose that |π(S)| = |π(G/N)|. Then |C| = 3 and thus
there is r, l ∈ C such that r ∼ l in ∆(N). Let θ ∈ Irr(N) be such that rl|θ(1).
Since |π(S)| = 5, we have that θ does not extend to M . Let Mθ = IM(θ).
By Lemma 3.12, we must have that π(M : Mθ) = π(2f − ǫ) ∪ {2} where
|π(2f − ǫ)| = 1. This implies that {r, l, 2, h}, h = π(2f − ǫ) form a K4. This
implies that π(2f + ǫ) belongs to the other K4 of ∆(G).

Case 2: |π(S)| = 6
In this case we must have that |π(2f + ǫ)| = 3, 4 and |π(2f − ǫ)| = 2, 1

in that order. It suffices to consider the case when |π(2f + ǫ)| = 3 and
|π(2f − ǫ)| = 2. Let r ∈ C and let θ ∈ Irr(N) be such that r|θ(1). Then again
we observe that θ does not extend to M and thus Mθ = IM(θ) < M . By
Lemma 3.12, we must have that π(M : Mθ) = π(2f − ǫ)∪{2} since otherwise
we obtain a K5. Thus we have that {r, 2} ∪ π(2f − ǫ) forms a K4. This
implies that π(2f + ǫ) is in the other K4.

Remark 3.18. In the case |π(S)| = 6, with |π(2f +ǫ)| = 3 and |π(2f −ǫ)| = 2
as described in the proof of Lemma 3.17 above, we can show that this case
does not occur. We have obtained that π(2f −ǫ) and π(2f +ǫ) are in different
K4’s. Moreover, in the proof, we observe that π(2f − ǫ) ∪ {r, 2} forms one
of the K4’s in ∆(G). Which implies that the remaining vertex which is a
prime in C is in the same K4 as π(2f + ǫ). Let l be the remaining vertex
and let α(1) ∈ cd(N) be such that l|α(1). Let Mα = IM(α). Observe that α
cannot extend to M and thus Mα < M . By Lemma 3.12 we must have that
π(M : Mα) ∈ {{π(2f + ǫ) ∪ π(2f − ǫ)}, {π(2f + ǫ) ∪ {2}}}. Either way ∆(G)
will contain a K5.

Lemma 3.19. Assume Hypothesis 3.4. Let ∆(G) be isomorphic to Figure 5.
Then G does not exist.

Proof. Let π(2f −ǫ) = {pi}∀i and let π(2f +ǫ) = {qℓ}∀ℓ. By Lemma 3.17, there
is a pi and a qℓ in ∆(G) such that pi ∼ qℓ and that {pi, qℓ} does not belong to
any triangle in ∆(G). Let χ ∈ Irr(G) be such that piqℓ|χ(1). Let ξ ∈ Irr(N)
be an irreducible constituent of χN . Since pi 6∼ qℓ in ∆(S), we must have
that ξ 6= 1N . We observe that π(χ(1)) = {pi, qℓ}. Let Mξ = IM(ξ). Suppose
that ξ is not M-invariant. Then we must have that |M : Mξ| is divisible by
all primes in two of the sets {2}, π(2f − ǫ), π(2f + ǫ). This will obtain that
π(M : Mξ) contains three primes, or contains 2. Since pi, qℓ are chosen in
such a way that none equals to 2, we obtain a contradiction. Thus we may
assume that Mξ = M . Since the Schur multiplier of M/N is trivial, we have
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that ξ extends to M . By Gallagher’s theorem, we have that

χ(1) ∈ {ξ(1), 2f
ξ(1), (2f − ǫ)ξ(1), (2f + ǫ)ξ(1)}

We deduce that χ(1) = ξ(1) or (2f − ǫ)ξ(1) in which case we obtain that
qℓ|ξ(1). But (2f + ǫ)ξ(1) and (2f − ǫ)ξ(1) which implies that qℓ is connected
to all the primes in both π(2f + ǫ) and π(2f − ǫ), a contradiction.

Lemma 3.20. Assume Hypothesis 3.4. Let ∆(G) be 4-regular with 7 vertices.
Then G does not exist.

Proof. By Lemmas 3.14, 3.13 and Lemma 3.9 we must have that S ∼= PSL2(2f)
and 5 ≤ |π(S)| ≤ 7.

Case 1: |π(G/N)| = 7
Suppose that |π(S)| = π(G/N) = 7 Since ∆(G) does not contain a K4,

we have that ∆(S) is two disconnected triangles and an isolated vertex. We
choose two disconnected triangles in Figure 3. Label them π(2f − 1) =
{p1, p2, p3} and π(2f + 1) = {q1, q2, q3} so that 2 = q4. The graph is vertex
transitive and therefore whichever triangles we pick we obtain the same con-
ditions. Observe that p1 ∼ q1 and this is not the case in ∆(G/N) whether
M/N < G/N or not. In fact if t ∈ π(G : M) then we obtain that deg(t) ≥ 5.
So we may assume that M/N = G/N . Let χ ∈ Irr(G) be such that q1p1|χ(1)
and let ϕ ∈ Irr(N) be such that [χN , ϕ] 6= 0. We observe that ϕ is nontriv-
ial. Suppose that I = IG(ϕ) = G, then we have that ϕ is extendible to a
ϕ0 ∈ Irr(G). In this case we obtain that

χ(1) ∈ {ϕ0(1) = ϕ(1), 2fϕ(1), (2f − 1)ϕ(1), (2f + 1)ϕ(1)} = cd(G|ϕ).

In whichever case we obtain that q1p1|ϕ(1). It is easy to observe from the
degrees in cd(G|ϕ) that this case cannot occur. Therefore we we must have
that I < G. By Lemma 3.11 and Lemma 3.12, we have that |G : I| is
divisible by at least three primes. A case which would result into a K4 as
a subgraph. Whichever two triangles we choose in Figure 4, we obtain the
same conclusion.

Case 2: |π(G/N)| = |π(S)| = 6
In this case we obtain that ∆(S) is diconnected with one triangle, a path

with two vertices and an isolated vertex. Let r ∈ C ⊆ ρ(N) \π(G/N) and let
λ ∈ Irr(N) be such that r|λ(1). Let I = IM(λ). Then it follows that I < M ,
since otherwise λ extends to M and deg(r) = 6. Now, by Lemma 3.11 and
Lemma 3.12, we obtain that ∆(G) contains a K4, a contradiction.

Now we may suppose that |π(S)| = 5 and |π(G/N)| = 7. We skipped
the case when |π(S)| = 6 since it will obtain a K4. So now we have t, w ∈
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π(G/N) \ π(S). By [28, Theorem A], we have that w ∼ t. Since both
w and t are adjacent to all the four primes in π(22f − 1), we obtain that
deg(w), deg(t) ≥ 5, a contradiction.

Case 3: |π(G/N)| = 6 > |π(S)| = 5
By Lemma 3.15, we have that ∆(S) is not isomorphic to Figure 2(a).

Suppose that ∆(S) is isomorphic to Figure 2(c), then by [28, Theorem A] we
have that ∆(G/N) contains a K4, a contradiction.

Case 4: |π(G/N)| = |π(S)| = 5
If ∆(S) is isomorphic to Figure 2(c). Let C = {r, l} we may assume that

r 6∼ l since otherwise we obtain a K4, contradiction. Let λ1, λ2 ∈ Irr(N)
be such that r|λ1(1) and l|λ2(1). We must obtain that |M : IM(λ1)| and
|M : IM(λ2)| are both divisible by only two primes {s, 2} where s = (2f − ǫ),
ǫ ∈ {−1, 1}. Othewise ∆(G) would contains a K4. In Figure 4, choose
any two nonadjacent vertices and label them r and l. There is only way
to choose them so that the remaining vertices span a triangle. Let {r, l} =
{p2, q4} and let π(2f + ǫ) = {x, y, z} = {q1, q2, q3}. We must have that
|M : IM(λ1)| = {s, 2} = {p1, p3} = |M : IM(λ2)|. Observe that p2 ∼ q2 in
∆(G). Let χ ∈ Irr(G) be such that p2q2|χ(1) and let ϕ ∈ Irr(N) be such
that [χN , ϕ] 6= 0. Then ϕ 6= 1N . Suppose that ϕ extends to G, then we must
have that

χ(1) ∈ {ϕ(1), 2fϕ(1), (2f − 1)ϕ(1), (2f + 1)ϕ(1)}.

We observe that p2|ϕ(1). This implies that deg(p2) ≥ 5 (2f − 1)ϕ(1), (2f +
1)ϕ(1) ∈ cd(M |ϕ), a contradiction. So we may suppose that I = IM(ϕ) < M .
By Lemmas 3.11 and 3.12, we may assume that |M : I| is divisible by two
primes {2, s} = {p3, p1} which implies that p2q2|ϕ(1) and thus {p2, p1, p3, q2}
form a K4.

Suppose that ∆(G) is isomorphic to Figure 3 and choose vertices r and l
such that they do not span an edge such that the remaining vertices span a
triangle. The graph is vertex transitive so we choose only one combination.
Let π(2f + ǫ) = {x, y, z} = {q1, q2, q3}, π(2f − ǫ) = {s} = {p2} and 2 =
p3, we are left with {r, l} = {p1, q4}. By previous argument we obtain a
contradiction.

Now, we may suppose that ∆(S) is isomorphic to Figure 2(a). We may
assume that M/N < G/N . Let r, l ∈ C. Then we must have that r and
l do not span an edge. Let γ1, γ2 ∈ π(N) be such that r|γ1(1) and l|γ2(1).
Let T1 = IM(γ1) and T2 = IM(γ2). Suppose that T1 = M , then we have
that γ1 is extendible to an irreducible character γ10

∈ Irr(M). This inplies
that r is adjacent to all the primes in π(S) by Gallagher’s Theorem. This
however means that deg(r) ≥ 5, a contradiction. Thus we may assume that
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T1 < M . By Lemmas 3.11 and 3.12, we have that ∆(G) contains a K4, a
contradiction.

Lemma 3.21. [19, Lemma 3.1] Lemma 3.1. Let N E G be groups with
G/N ∼= PSL2(q) for some prime-power q ≥ 5. Suppose the character θ ∈
Irr(N) is G-invariant but does not extend to G. Then, q is odd and one of
the following holds:

(i) cd(G|θ) = (q − 1)θ(1), (q + 1)θ(1), (q − ǫ)/2 where ǫ = (−1)(q−1)/2,

(ii) q = 9 and 6θ(1), 15θ(1) ∈ cd(G|θ).

Hypothesis 3.22. G is a nonsovable group whose prime graph is 4-regular
with 6 vertices. Let N E G be the solvable radical. G/N is almost simple
with socle M/N ∼= S a nonabelian simple group.

Lemma 3.23. Assume Hypothesis 3.22. Let S 6∼= PSL2(2
f), f > 3 and

|π(S)| = 4. Then G does not exist.

Proof. It follows by [10] that ∆(S) is connected or disconnected with two
connected components. Suppose that ∆(S) is disconnected with two con-
nected components. Then S ∼= PSL2(q) where q is a power of an odd prime
p. It follows that |π(q2 − 1)| = 3. ∆(S) contains a triangle if and only if
|π(q+ ǫ)| = 3, for some ǫ ∈ {−1, 1}. Otherwise ∆(S) contains a path and an
isolated vertex. By choice of any subgraph of ∆(G) isomorphic to ∆(S) we
obtain that C contains two adjacent vertices, say r, l. Let χ(1) ∈ cd(G) be
such that rl|χ(1). Let γ ∈ Irr(N) be an irreducible constituent of χN . Then
we have that γ 6= 1N . Since r, l 6∈ π(G/N), we see that rl|γ(1). By Lemma 2.4
ϕ(1)/γ(1) is divisible by two distinct primes in π(S) for some ϕ ∈ Irr(T |γ),
where T = IM(γ) or γ is extendible to M in which case S ∼= PSL2(8) or
A5. The former implies that ∆(G) must contain a K4, a contradiction. The
latter does not occur. Now suppose that |π(S)| < |π(G/N)|, then by [7, 3],
we must have that |π(G/N)| = 5 and ∆(G/N) contains as a subgraph a
square with one diagonal or a K4 in the case where ∆(S) contains a triangle
[28, Theorem A]. We may assume that the former occurs and in this case we
must have that |π(q ± 1)| = 2. Let r ∈ ρ(N) \ π(G/N) and let ϕ ∈ Irr(N)
be such that r|ϕ(1). Let Tϕ = IM(ϕ) < M . By Lemma 3.12 we have that
|M : Tϕ| is divisible by at least three primes or case (D) occurs. In this
case it suffices to assume that {t} = π(M : Tϕ). By conclusion of case (D)
we obtain that {t, r, 2, 3} form a K4 or {t, 3, r}, {t, r, 2} and {t, r, 5} all form
triangles. Which obtains a graph which is not a subgraph of Figure 8. So we
may suppose that Tϕ = M . By Gallagher’s Theorem we obtain that r is ad-
jacent to all the primes in π(S) or to all primes in π(S) but p by Lemma 3.21.
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Suppose that π(q − 1) = {2, b} and π(q + 1) = {2, d}. we obtain that b ∼ p
and d ∼ p in ∆(G). Let χ1, χ2 ∈ Irr(G) be such that bp|χ1(1) and dp|χ2(1).
Since b 6∼ p and d 6∼ p in ∆(G/N), we have that χ1, χ2 6= 1N . Let ϕ1, ϕ2 be
such that [χ1N

, ϕ1] 6= 0 and [χ2N
, ϕ2] 6= 0. Let T1 = IM(ϕ1) and T2 = IM(ϕ2).

Suppose that T1 = M . Then we must have that

χ1(1) = {ϕ1(1), qϕ1(1), (q − 1)ϕ1(1), (q + 1)ϕ, (q + ǫ)ϕ1(1)/2}

or
χ1(1) = {ϕ1(1), (q − 1)ϕ1(1), (q + 1)ϕ, (q − ǫ)ϕ1(1)/2}

where ǫ = (−1)(q−1)/2. In both cases we obtain that b is adjacent to all primes
in π(S). Similarly d is also adjacent to all primes in π(S). This cannot occur.
So we may assume that T1 < M . By Lemma 3.12, we have that |M : T1| is
divisible by atleast three primes of π(S). So we obtain that b is contained in
some triangle with two other primes in π(S). This obtains that the degree
of one of the primes in π(S) is 5, a contradiction.

Suppose that ∆(S) is connected, then by [7, 3, 29], we must have that

S ∈ {A8
∼= PSL4(2),PSL3(4),M11,

2B2(8), 2B2(32)}

It follows by [3], |π(S)| is always equal to |π(G/N)| except the case S ∼=
2B2(8) in which case we must have S = G/N since otherwise ∆(G) would
have a K4. Now, by structure of ∆(S) we will obtain that C contains two
adjacent vertices. By Lemma 2.4, we obtain a contradiction.

Lemma 3.24. Assume Hypothesis 3.22. Let |π(S)| 6= 3. Then G does not
exist.

Proof. Case 1: |π(G/N)| = 4 with |π(S)| = 4
In this case, it suffices to consider the case when S ∼= PSL2(2f) by

Lemma 3.23. It follows that ∆(S) is disconnected with two isolated vertices,
say {2, s} and a path with two vertices, say {x, y} and that C contains two
primes, say {r, l}. We may assume that r 6∼ l since otherwise by Lemma 2.4,
we must have that ∆(G) contains a K4, a contradiction. Let λ1, λ2 ∈ Irr(N)
be such that r|λ1(1) and l|λ2(1). Let T1 = IM(λ1) and T2 = IM(λ2). Sup-
pose that T1 = T2 = M . Then we have that λ1 and λ2 both extend to M by
Theorem 2.6. By Gallagher’s Theorem we obtain that

cd(M |λi) = {ψi(1), 2fψi(1), (2f − 1)ψi(1), (2f + 1)ψi(1)}, i ∈ {1, 2}.

This obtains a graph isomorphic to Figure 12(a).

28



2

l

x

y

r

s

(a)

2

t

x

y

r

s

(b)

Figure 12: Possible subgraphs of 4-regular graph of order 6

We observe that 2 6∼ x in the subgraph above but 2 ∼ x in ∆(G) so we let
γ ∈ Irr(G) be such that 2x|γ(1) and let ζ ∈ Irr(N) be such that [γN , ζ ] 6= 0.
Then we must have that ζ 6= 1N since 2 6∼ x in ∆(G/N). Suppose that ζ is
M-invariant. Then it follows that ζ extends to M , in which case we have

γ(1) ∈ {ζ(1), 2fζ(1), (2f − 1)ζ(1), (2f + 1)ζ(1)}.

In this case we must have that x|ζ(1). By the fact that 2fζ(1), (2f −
1)ζ(1), (2f + 1)ζ(1) ∈ cd(M |ζ), we have that {x, s} and {x, 2} are edges
and thus deg(x) = 5, a contradiction. Thus we may assume that ζ is not M-
invariant. In this case we have by Lemma 3.12 that |M : IM(ζ)| is divisible
by 2 and s or there is a degree in cd(M |ζ) divisible by three primes in π(S),
a contradiction. However, if the former occurs then we obtain that {2, s, x}
is a triangle implying deg(x) = 5, a contradiction. Now we may suppose
that one of T1, T2 is properly contained in M . Without loss of generality, let
T1 < M . Then by Lemma 3.12, we have that |M : T1| is divisible by only
two primes 2 and s, or we obtain a K4. But by assumption we must have
that r ∼ x and r ∼ y. This will not occur so now we may let χ ∈ Irr(G)
such that rx|χ(1). Let θ ∈ Irr(N) be such that [χN , θ] 6= 0. Then we have
that θ is nontrivial. Suppose that IM(θ) = M . Then we have that

χ ∈ {θ(1), 2fθ(1), (2f − 1)θ(1), (2f + 1)θ}.

Either way we obtain that xr|θ(1). This however obtains triangles {r, x, y},
{r, x, s}, {r, x, 2}, a contradiction. Thus we must have that IM(θ) < M . We
may thus use Lemma 3.12 to obtain that ∆(G) contains a K4, a contradiction.

Case 2: |π(G/N)| = 5
Suppose that |π(G/N)| = 5 and S ∼= PSL2(2f) with |S| = 5. Assume

further that ∆(S) does not contain a triangle. Then ∆(S) is isomorphic
to Figure 2(a). Let C = {r}. Let ζ ∈ Irr(N) be such that r|ζ(1). Let
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I = IM(ζ). If I = M , then we have that ζ extends to M and hence obtain
that r is adjacent to all primes in π(S). This implies that deg(r) = 5, a
contradiction. Now, suppose that I < M . By Lemma 3.12 and Lemma 3.11,
we have that |M : I| is divisible by at least three primes in π(S) or case (D)
occurs. In all the cases we obtain a K4, a contradiction.

Now assume that ∆(S) is isomorphic to Figure 2(c). and let ζ and I be
as defined. Suppose that I < M . Then again by Lemma 3.12, we must have
that |M : I| is divisible by only two primes 2 and s = 2f +ǫ, ǫ ∈ {−1, 1} (This
conclusion is obtained due to the fact that the Frobenius group is of order
2f (2f −ǫ) and if (2f + ǫ) is composite, then we will have that 2|M : I| divides
some degree in cd(I|ζ) by Ito-Michler’s Theorem). By [6, Hauptsatz II.8.27]
we have that I/N is a Frobenius group, a cyclic group of order (2f − ǫ) or
a dihedral group of order 2(2f − ǫ). But r is connected to two more primes
in π(S). This will imply that the two more vertices adjacent to r are in
ρ(N) and are indeed connected in ∆(N). Let π(2f − ǫ) = {d, b} be the two
primes in π(S) adjacent to r and let λ1, λ2 ∈ Irr(N) be such that rb|λ1(1)
and rd|λ2(1). Let Tλ1

= IM(λ1) and Tλ2
= IM(λ2). Suppose that Tλ1

= M ,
Then by Gallagher’s theorem we have that r is adjacent to all the primes in
π(S) implying that deg(r) = 5. So we must have Tλ1

< M . By Lemma 3.12,
we have that {b, 2, r, s} forms a K4 or r is adjacent to all primes in π(2f − ǫ)
obtaining a K4, a contradiction.

Now suppose that |π(S)| = 4 and |π(G/N)| = 5. By [7, 25], we obtain
that if 2 6= t ∈ π(G/N) \ π(S), then {t, x, y} and {t, x} are the only cliques
in ∆(G/N). This means that 2 is still an isolated vertex. Let r ∈ ρ(N) \
π(G/N) ⊆ ρ(N) and let ν ∈ Irr(N) be such that r|ν(1). Suppose that
IM(ν) = M , then we obtain a subgraph isomorphic to Figure 12(a) and
following the arguments on case 1 we obtain a contradiction. Thus we must
have that IM(ν) < M . In this case we must have that |M : IM(ν)| satisfies
case (A) and thus we must have that π(M : IM(ν)) = {2, s} obtaining a
subgraph isomorphic to Figure 12(b). Like in case 1 we see that r 6∼ x and
as argued we obtain a contradiction.

Suppose that S ∼= PSL2(q), q > 7 a power of an odd prime p, |π(S)| = 5
and |π(S)| = |π(G/N)|. We must have that ∆(S) is disconnected with two
connected components one of which is an isolated vertex and the other is a
4-vertex graph with one triangle. This case we must have that |π(q ± 1)| ∈
{2, 3}. Let r ∈ C = ρ(G) \ π(G/N) ⊆ ρ(N) and let ϕ ∈ Irr(N). Let
T = IM(ϕ) = M . We must have that ϕ extends to M and r is adjacent
to every prime of π(S) or the hypothesis of Lemma 3.21 is satisfied. If the
former occurs, we obtain a contradiction since deg(r) = 5. If the latter
occurs, then by Lemma 3.21, (q − 1)ϕ(1), (q + 1)ϕ(1) ∈ cd(M |θ). Since one
of π(q± 1) is a triangle, we obtain a K4, a contradiction. So we may assume
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that |M : T | > 1. By Lemma 3.12 we must have that |M : T | is divisible by
at least three primes, or case (D) occurs. In both cases, we obtain a K4, a
contradiction. The case when |π(S)| < |π(G/N)| and |π(S)| = 4 has been
handled in Lemma 3.23.

Case 3: |π(G/N)| = 6
In this case we must have that M/N ∼= J1 or PSL2(q), q a power of a

prime p. Suppose that S ∼= J1. Observe that M/N = G/N by [3]. Observe
that 11 ∼ 5 in ∆(G) but 11 6∼ 5 in ∆(G/N). Let χ ∈ Irr(G) be such that
5 · 11|χ(1). Let θ ∈ Irr(N) be an irreducible constituent of χN . We observe
that θ 6= 1N . Let Gθ = IG(θ). Suppose that Gθ = G. Since the Schur
multiplier of J1 is trivial, it follows that θ extends to θ0 in Irr(G). Thus we
have

χ(1) ∈ {θ0(1) = θ(1), 56θ(1), 76θ(1), 77θ(1), 120θ(1), 133θ(1), 209θ(1)}.

In whichever case we obtain that 5 · 11|θ(1). In this case we obtain that
both 5 and 11 are adjacent to all other primes in ρ(G). Thus we must
have that Gθ < G. This implies that Gθ/N is contained in one of the
maximal subgroups H/N of J1. We obtain that |G : H| is divisible in all
cases except when H/N ∼= 23 : 7 : 3 a nonabelian group. We may suppose
that Gθ/N ∼= H/N in this case. Since it is nonabelian, then there is a degree
in cd(Gθ|θ) divisble by either 2θ(1), 3θ(1) or 7θ(1). In either case we obtain
that there is a degree in cd(G|θ) divisible by 5 · 11 · 19 · rθ(1), r ∈ {2, 3, 7}.
This is not however possible since we obtain a K4.

Now suppose that S ∼= PSL2(q) for an odd prime p. Then ∆(S) is dis-
connected with two connected component. Since ∆(G) does not have a K4,
it follows that |π(q ± 1)| = 3. We also see that |G : M | is a power of 2 since
otherwise, we would obtain that the connected component of ∆(S) with 5
vertices contains at least two complete vertices. Which is not possible in
construction of ∆(G). Thus we may assume that ∆(G/N) is isomorphic to
∆(S). Let χ ∈ Irr(G) be such that pt|χ(1) for some t ∈ π(q± 1) \ {2}. Let θ
be an irreducible constituent of χN . Since p 6∼ t in ∆(G/N), it follows that
θ 6= 1N . Let Mθ be the stabilizer of θ in M . Suppose that Mθ < M . By
Lemma 3.12, we have that |M : Mθ| is divisible by all primes in two of the
sets {p}, π(q−1), π(q+1). In either case we obtain that |M : Mθ| is divisible
by at least 3 primes in which case we obtain a K4, a contradiction thus we
must have that Mθ = M . If θ is extendible to some θ0 in Irr(M), then we
have that

χ(1) ∈ {θ0(1) = θ(1), (q − 1)θ(1), (q + 1)θ(1), (q + ǫ)θ(1)/2}

where ǫ = (−1)(q−1)/2.
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If χ(1) = θ(1) or any other we obtain that p|θ(1), t|θ(1) or tp|θ(1). Since
(q − 1)θ(1), (q + 1)θ(1) ∈ cd(M |θ) and we must have that 2 ∼ p or t is
connected to all primes in π(q2 − 1) which would imply that deg(2) ≥ 5 or
∆(G) contains a K4, a contradiction. Thus θ is does not extend to M . By
Lemma 3.21

χ(1) = {θ0(1) = θ(1), (q − 1)θ(1), (q + 1)θ(1), (q − ǫ)θ(1)/2}.

A similar argument obtains a contradiction.
We now suppose that S ∼= PSL2(2

f). Then we have that |π(S)| = 5, 6.
Let |π(S)| = 6. Then we must have that ∆(S) contains a triangle. Let
|π(2f +ǫ)| = 3 and |π(2f −ǫ)| = 2, ǫ ∈ {−1, 1}. Observe that if t ∈ π(G : M),
then t ∈ π(2f + ǫ). Otherwise, we obtain that ∆(G/N) will contain a K4.
Also observe that 2 6∈ π(G : M) since deg(2) ≥ 5 by [28]. So we note that
∆(G/N) has an isolated vertex 2. Then in the construction of ∆(G), we
should not that 2 is adjacent to all but one prime in the set π(22f − 1). Let
l ∈ π(22f − 1) be such that 2 ∼ l. Let χ ∈ Irr(G) be such that 2l|χ(1), and
let ν ∈ Irr(N) be the irreducible constituent of χN . It is not hard to note
that ν 6= 1N . Let I = IM(ν) = M . Then ν is extendible to an irreducible
character ν0 of M . Hence we must have

χ(1) ∈ {ν0(1) = ν(1), 2fν(1), (2f − 1)ν(1), (2f + 1)ν(1)}

If χ(1) = ν(1) or 2fν(1), we have that l|ν(1). If we choose l such that
l ∈ π(2f + ǫ), ǫ ∈ {−1, 1} with |π(2f + ǫ)| = 3, then by π(2f + 1)ν(1) and
π(2f − 1)ν(1) we obtain that deg(l) ≥ 5, a contradiction. We may thus
suppose that I < M . By Lemma 3.12 we obtain that |M : I| is divisible by
at least 3 primes with 2 among them. This however results into a K4, since
we chose l to belong to the triangle in ∆(S), a contradiction.

Now we may suppose that |π(S)| = 5. Let 2 6= t ∈ π(G/N) \ π(S).
Then by [28, Theorem A], we see that ∆(S) cannot contain a triangle and
thus should be isomorphic to Figure 2(1). This implies that ∆(S) has two
connected components (a butterfly and an isolated vertex). Again if we let
ϑ ∈ Irr(G) be such that ts|ϑ(1) for some s ∈ π(2f −1) and t ∈ π(2f +1). Let
ζ ∈ Irr(N) be an irreducible constituent of ϑN . Observe that ζ 6= 1N . Let
I = IM(ζ) = M . By previous argument we obtain that ts are adjacent to all
primes in π(S) which implies that ∆(G) contains a K4. So we may assume
that I < M . In this case we obtain that |M : I| is divisible by all primes
in two of the sets {2}, π(2f ± 1) which implies that ∆(G) contains a K4, a
contradiction.
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Lemma 3.25. Assume Hypothesis 3.22. Let |π(S)| = 3, then G does not
exist.

Proof. By [7, 3], we have that |π(S)| = 3 = |π(G/N)|. By any choice of
three vertices in Figure 8, we have that the remaining vertices span an edge.
Let r, l ∈ C = ρ(G) \ π(S) be such that r ∼ l. Let ϑ ∈ Irr(N) be such that
rl|ϑ(1). Then by Lemma 2.4, ϑ is extendible to M or ψ(1)/ϑ(1) is divisible
by two distinct primes in π(S). If ϑ is extendible to M , then rl are adjacent
to all the primes in π(S). The subgraph obtained is not an induced subgraph
of Figure 8. If ψ(1)/ϑ(1) is divisible by two distinct primes in π(S), then we
obtain a K4.

Lemma 3.26. Let G be a finite nonsolvable group with a 4-regular prime
graph ∆(G) with more than 9 vertices. Then G does not exist.

Proof. Since ∆(G) is 4-regular, then it is clear that it is K5-free. The proof
follows from [1, Theorem A].

Proof of Theorem 1.1. The proof follows from Lemmas 3.16, 3.17, 3.20 and
3.24.
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