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We determine both the semigroup and spectral properties of a group of weighted composition operators on the little Bloch space.
It turns out that these are strongly continuous groups of invertible isometries on the Bloch space. We then obtain the norm and
spectra of the infinitesimal generator as well as the resulting resolvents which are given as integral operators. As a consequence, we
complete the analysis of the adjoint composition group on the predual of the nonreflexive Bergman space and a group of
isometries associated with a specific automorphism of the upper half-plane.
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1. Introduction

,e (open) unit disc D of the complex plane C is defined as
D � z ∈ C: |z|< 1{ }, while the upper half-plane of C,
denoted by U, is given by U � ω ∈ C: I(ω)> 0{ }, where
I(ω) stands for the imaginary part of ω. ,e Cayley
transform ψ(z) ≔ i(1 + z)/(1 − z) maps the unit disc D

conformally onto the upper half-plane U with inverse
ψ− 1(ω) � (ω − i)/(ω + i). For every α > − 1, we define a
positive Borel measure dmα on D by dmα(z) �

(1 − |z|2)αdA(z), where dA denotes the area measure on D.
For an open subset Ω of C, letH(Ω) denote the Fréchet

space of analytic functions f: Ω⟶ C endowed with the
topology of uniform convergence on compact subsets of Ω.
Let Aut(Ω) ⊂H(Ω) denote the group of biholomorphic
maps f :Ω ⟶ Ω. For 1 ≤ p < ∞, α > − 1, the weighted
Bergman spaces of the unit discD, Lp

a (D, mα), are defined by

L
p
a D, mα( 􏼁 ≔ f ∈H(D): ‖f‖L

p
a D,mα( )􏼚

� 􏽚
D

|f(z)|
pdmα(z)􏼒 􏼓

1/p
<∞􏼩.

(1)

Clearly, L
p
a (D, mα) � Lp(D, mα)∩H(D), where

Lp(D, mα) denotes the classical Lebesgue spaces. For every
f ∈ L

p
a (D, mα), the growth condition is given by

|f(z)|≤
K‖f‖

1 − |z|2􏼐 􏼑
c, (2)

where K is a constant and c � (α + 2)/p, see, for example,
[1], ,eorem 4.14.

,e Bloch space of the unit disc, denoted by B∞(D), is
defined as the space of analytic functions f ∈H(D) such
that the seminorm

‖f‖B∞,1(D) ≔ sup
z∈D

1 − |z|
2

􏼐 􏼑 f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<∞. (3)

Following [1, 2], B∞(D) is a Banach space with respect
to the norm ‖f‖B∞(D) ≔ |f(0)| + ‖f‖B∞,1(D). On the con-
trary, the little Bloch space of the disc, denoted byB∞,0(D),
is defined to be the closed subspace of B∞(D) such that

B∞,0(D) ≔ clB∞C[z], (4)

where clB∞C[z] denotes B∞ closure of the set of analytic
polynomials in z. Equivalently,

B∞,0(D) ≔ f ∈H(D): lim
|z|⟶1− ,z∈D

1 − |z|
2

􏼐 􏼑 f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0􏼨 􏼩,

(5)

and possesses the same norm asB∞(D). SinceB∞,0(D) is a
closed subspace of the Banach space B∞(D), it follows that
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B∞,0(D) is a Banach space as well with respect to the norm
‖·‖B∞(D). Note that every f ∈B∞(D) (or f ∈B∞,0(D))
satisfies the growth condition:

|f(z)|≤ 1 +
1
2
log

1 +|z|

1 − |z|
􏼠 􏼡􏼠 􏼡‖f‖B∞(D). (6)

See, for instance, [3] for details. Let 1 < p < ∞ and q be
conjugate to p in the sense that (1/p) + (1/q) � 1. If
(L

p
a (D, mα))∗ is the dual space of L

p
a (D, mα), then

L
p
a D, mα( 􏼁( 􏼁

∗ ≈ L
q
a D, mα( 􏼁, α> − 1, (7)

under the integral pairing

〈f, g〉 � 􏽚
D

f(z)g(z)dmα, f ∈ L
p
a D, mα( 􏼁, g ∈ L

q
a D, mα( 􏼁( 􏼁.

(8)

It is well known that for 1 < p < ∞, L
p
a (D, mα) is re-

flexive.,e case p = 1 is the nonreflexive case and the duality
relations have been determined as follows:

L
1
a D, mα( 􏼁􏼐 􏼑

∗
≈B∞(D),

B∞,0(D)􏼐 􏼑
∗
≈ L

1
a D, mα( 􏼁,

(9)

under the duality pairings given by, respectively:

〈f, g〉 � 􏽚
D

f(z)g(z)dmα, f ∈ L
1
a D, mα( 􏼁, g ∈B∞(D)􏼐 􏼑,

〈f, g〉 � 􏽚
D

f(z)g(z)dmα, f ∈B∞,0(D), g ∈ L
1
a D, mα( 􏼁􏼐 􏼑.

(10)
In other words, the dual and predual spaces of the

nonreflexive Bergman space L1
a(D, mα) are the Bloch and

little Bloch spaces, respectively. For a comprehensive ac-
count of the theory of Bloch and Bergman spaces, we refer to
[1, 2, 4–6].

In [7], all the self analytic maps (φt)t≥0⊆Aut(U) of the
upper half-plane U were identified and classified
according to the location of their fixed points into three
distinct classes, namely, scaling, translation, and rotation
groups. For each self-analytic map φt, we define a cor-
responding group of weighted composition operator on
H(U) by

Sφt
f(z) � φt

′(z)( 􏼁
c
f φt(z)( 􏼁, (11)

for some appropriate weight γ.
It is noted in [7] Section 5 that for the rotation group, we

consider the corresponding group of weighted composition
operators defined on the analytic spaces of the disc H(D)

given by

Ttf(z) � e
ict

f e
ikt

z􏼐 􏼑, with c, k ∈ R, k≠ 0. (12)

,e study of composition operators on spaces of analytic
functions still remains an active area of research. For Bloch
spaces, most studies have only focussed on the boundedness
and compactness of these operators. See, for instance,
[3, 8–11]. In [7, 12], both the semigroup and spectral
properties of the group (Tt)t∈R were studied in detail on the
Hardy and Bergman spaces. ,e aim of this paper is to

extend the analysis of the group (Tt)t∈R from the Hardy and
Bergman spaces to the setting of the little Bloch space.
Specifically, we apply the theory of semigroups as well as
spectral theory of linear operators on Banach spaces to study
the properties of the group of weighted composition op-
erators given by equation (12) on the little Bloch space of the
disk. As a consequence, we shall complete the analysis of the
adjoint group on the dual of the nonreflexive Bergman space
L1

a(D, mα). ,e analysis of the adjoint group on the reflexive
Bergman space, that is, L

p
a (D, mα) for 1< p<∞, was con-

sidered exhaustively in [12]. We shall also consider a specific
automorphism of U and carry out an analysis of the cor-
responding composition operator.

If X is an arbitrary Banach space, let L(X) denote the
algebra of bounded linear operators on X. For a linear operator
T with domain D(T) ⊂ X, denote the spectrum and point
spectrum of T by σ(T) and σp(T), respectively.,e resolvent set
of T is ρ(T) � C\σ(T), while r(T) denotes its spectral radius.
For a good account of the theory of spectra, see [13–15]. If X
and Y are arbitrary Banach spaces and U ∈L(X, Y) is an
invertible operator, then clearly (At)t∈R ⊂L(X) is a strongly
continuous group if and only if Bt ≔ UAtU− 1, t ∈ R, is a
strongly continuous group inL(Y). In this case, if (At)t∈R has
generator Γ, then (Bt)t∈R has generator Δ = UΓU− 1 with
domain D(Δ) � UD(Γ) ≔ y ∈ Y: Uy ∈ D(Γ)􏼈 􏼉. Moreover,
σp(Δ) = σp(Γ) and σ(Δ) = σ(Γ), since if λ is in the resolvent set
ρ(Γ) ≔ C\σ(Γ), we have that R(λ, Δ) = UR(λ, Γ)U− 1. See, for
example, [16], Chapter II and [15], Chapter 3.

2. Groups of Composition Operators on the
Little Bloch Space

We consider the group of weighted composition operators
(Tt)t∈R given by equation (12) and defined on the little Bloch
space B∞,0(D) as Ttf(z) = eictf(eiktz), where c, k ∈ R, k ≠ 0
and ∀f ∈B∞,0(D). We denote the infinitesimal generator
of the group (Tt)t∈R by Γ{c, k} and give some of its properties
in the following proposition.

Proposition 1

(1) (Tt)t∈R is a strongly continuous group of isometries on
B∞,0(D)

(2) =e infinitesimal generator Γc,k of (Tt)t∈R on
B∞,0(D) is given by Γc,kf(z) � i(cf(z) + kzf′(z)).

with domain D(Γc,k) � f ∈B∞,0(D): zf′ ∈B∞,0􏽮

(D)}.

Proof. To prove isometry, we have

Ttf
����

����B∞(D)
� Ttf(0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + sup

z∈D
1 − |z|

2
􏼐 􏼑 Ttf( 􏼁′(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� e
ict

f(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + sup
z∈D

1 − |z|
2

􏼐 􏼑 e
ict

e
ikt

f′ e
ikt

z􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� |f(0)| + sup
z∈D

1 − |z|
2

􏼐 􏼑 f′ e
ikt

z􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(13)
By change of variables, let ω � eiktz. ,en,
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Ttf
����

����B∞(D)
� |f(0)| + sup

ω∈D
1 − |ω|

2
􏼐 􏼑 f′(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� ‖f‖B∞(D), as desired.

(14)

To prove strong continuity, we shall use the density of
polynomials inB∞,0(D). ,erefore, it suffices to show that,
for (zn)n≥0,

lim
t⟶0+

Ttz
n

− z
n

����
����B∞,0(D)

� 0. (15)

Now, Ttz
n − zn � eict(eiktz)n − zn � (ei(c+kn)t − 1)zn.

,erefore,

lim
t⟶0+

Ttz
n

− z
n

����
����B∞,0(D)

� lim
t⟶0+

sup
z∈D

1 − |z|
2

􏼐 􏼑 Ttz
n

− z
n

( 􏼁′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼠 􏼡

� lim
t⟶0+

sup
z∈D

1 − |z|
2

􏼐 􏼑 n e
i(k+kn)t

− 1􏼐 􏼑z
n− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

� 0, as claimed.

(16)

Now, for the infinitesimal generator Γc,k, let f ∈ D(Γc,k)

in B∞,0(D), then the growth condition (6) implies that

Γc,kf(z) � lim
t⟶0+

eictf eiktz( 􏼁 − f(z)

t
�

z

zt
e

ict
f e

ikt
z􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌t�0

� i cf(z) − izf′(z)( 􏼁.

(17)

,erefore, D(Γc,k)⊆ f ∈B∞,0(D): zf′ ∈B∞,0(D)􏽮 􏽯.
Conversely, if f ∈B∞,0(D) is such that zf′ ∈B∞,0(D),
then F(z) � i(cf(z) + kzf′(z)) ∈B∞,0(D) and for all t > 0,

Ttf(z) − f(z)

t
�
1
t

􏽚
t

0

z

zs
Tsf(z)( 􏼁ds

�
1
t

􏽚
t

0
e

ics
i cf e

iks
z􏼐 􏼑 + k e

iks
z􏼐 􏼑f′ e

iks
z􏼐 􏼑􏼐 􏼑􏼐 􏼑ds

�
1
t

􏽚
t

0
TsF(z)ds.

(18)

Strong continuity of (Ts)s≥0 implies that
1
t

􏽚
t

0
TsFds − F

�������

�������
≤
1
t

􏽚
t

0
TsF − F

����
����ds⟶ 0, as t⟶ 0+

.

(19)

,us, D(Γc,k)⊇ f ∈B∞,0(D): zf′ ∈B∞,0(D)􏽮 􏽯. □

Define Mz, Q on H(D) by Mz f(z) = zf(z) and
Qf(z) � (f(z) − f(0))/z, (Qf(0) � f′(0)). More gener-
ally, Qmf(z) � 􏽐

∞
k�m ((f(k)(0))/k!)zk− m, Qmf(0) �

((fm(0))/m!). ,en, Mm
z Qmf � 􏽐

∞
m ((f(k)(0))/k!)zk and

QmMm
z f � f. We now give the following proposition.

Proposition 2

(1) Mz: B∞(D)⟶B∞(D) is bounded.
(2) MzB∞,0(D)⊆B∞,0(D).
(3) Q: B∞,0(D)⟶B∞,0(D) is bounded.

(4) For m ≥ 1, Mm
z B∞,0(D) � f ∈B∞,0(D):􏽮 fk(0) �

0∀k<m}. In particular, MzB∞,0(D) is closed in
B∞,0(D).

Proof. If f ∈B∞(D), then for all z ∈ D,

1 − |z|
2

􏼐 􏼑 (zf)′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1 − |z|
2

􏼐 􏼑 zf′(z) + f(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 1 − |z|
2

􏼐 􏼑 f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 1 − |z|
2

􏼐 􏼑|f(z)|

≤ 1 − |z|
2

􏼐 􏼑 f′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 1 − |z|
2

􏼐 􏼑

· 1 +
1
2
log((1 +|z|)/(1 − |z|))􏼒 􏼓‖f‖B∞(D).

(20)

,erefore, assertions (1) and (2) follow. For (3), if
f ∈B∞,0(D), then for |z| < 1,

1 − |z|
2

􏼐 􏼑 (Qf)′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 1 − |z|
2

􏼐 􏼑
zf′(z) − f(z) + f(0)

z2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1 − |z|2 f′(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

|z|

+
1 − |z|2􏼐 􏼑(1 +(1/2)log((1 +|z|)/(1 − |z|)))‖f‖B∞(D)

|z|2

+
1 − |z|2􏼐 􏼑‖f‖B∞(D)

|z|2
⟶ 0 as |z|⟶ 1.

(21)

,us, Qf ∈B∞,0(D). To prove (4), let f ∈B∞,0(D)

and f(0) � 0. ,en, f � MzQf ∈MzB∞,0(D). ,e reverse
inclusion is obvious. ,erefore, the one-to-one and onto
mapping Mz: B∞,0(D)⟶ f ∈B∞,0(D): f(0) � 0􏽮 􏽯 is
bounded. So, the open mapping theorem implies that the
inverse is bounded. It therefore follows that Q: span
(1)⊕MzB∞,0(D)⟶B∞,0(D) is bounded. □

Proposition 3. Let Γc,k be the infinitesimal generator of the
group (T)t∈R given by (12) on B∞,0(D), then

(1) Γc,k � ic + kΓ0,1 with domain D(Γc,k) � D(Γ0,1)

� f ∈B∞,0(D): zf′ ∈B∞,0(D)􏽮 􏽯.

(2) σ(Γc,k) � ic + kσ(Γ0,1)􏽮 􏽯 and σp(Γc,k) � ic + kσp􏽮

(Γ0,1)}.

In fact, λ ∈ ρ(Γ0,1) if and only if ic + kλ ∈ ρ(Γc,k), and

R ic + kλ, Γc,k􏼐 􏼑 �
1
k

R λ, Γ0,1􏼐 􏼑. (22)

Proof. See [12], Lemma 4.3. □

As a result of Proposition 3 above and without loss of
generality, we restrict our attention to the generator
Γ0,1instead of Γc,k as the cases c ≠ 0 and k ≠ 1 where k ≠ 0 can
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be easily obtained from Γ0,1. Indeed, Γ0,1f(z) = izf′(z) with
domain D(Γ0,1) � f ∈B∞,0(D): zf′ ∈B∞,0(D)􏽮 􏽯 is the
infinitesimal generator of the group Tt = f(eitz) which is
exactly the case when c = 0 and k = 1 in equation (12). We
now give the spectral properties of the generator Γ0,1 as well
as the resulting resolvents in the following theorem.

Theorem 1

(1) σ(Γ0,1) � σp(Γ0,1) � in: n ∈ Z+􏼈 􏼉, and for each n ≥ 0,
ker(in − Γ0,1) � span(zn).

(2) If λ ∈ ρ(Γ0,1), then MzB∞,0(D) is R(λ, Γ0,1), invariant
∀m ∈ Z+, m>I(λ). Moreover, if h ∈Mm

z B∞,0(D),
then

R λ, Γ0,1􏼐 􏼑h(z) � iz
− λt

􏽚
z

0
ωiλ− 1

h(ω)dω � iz
m

· 􏽚
1

0
t
m+iλ− 1

Q
m

h( 􏼁(tz)dt.

(23)

(3) For λ ∈ ρ(Γ0,1), the resolvent operator R(λ, Γ0,1) is
compact.

(4) σ(R(λ, Γ0,1)) � σp(R(λ, Γ0,1)) � w ∈ C: |w − (1/{

(2R(λ)))| � (1/2R(λ))}. Moreover,

r R λ, Γ0,1􏼐 􏼑􏼐 􏼑 � R λ, Γ0,1􏼐 􏼑
�����

����� �
1

|R(λ)|
. (24)

Proof. Since each Tt is an invertible isometry, its spectrum
satisfies σ(Tt)⊆ zD, and the spectral mapping theorem for
strongly continuous groups (see, for example, [16], ,eorem
V.2.5 or [17]) implies that etσ(Γ0,1) ⊆ σ(Tt). ,us, etσ(Γ0,1) ⊆
zD⟹ |etσ(Γ0,1)| � 1⟹ etR(ω) � 1⟹R(ω) � 0 for ω ∈
σ(Γ0,1). It immediately follows that σ(Γ0,1)⊆ iR.

We now solve the resolvent equation: If λ ∈ C and
h ∈H(D), (λ − Γ)f � h. ,is is equivalent to

f′(z) +
iλ
z

f(z) �
i

z
h(z), (z≠ 0),

z
iλ

f(z) � iz
iλ− 1

h(z), (z ∈ D\(− 1, 0]).

(25)

In particular, (λ − Γ)f = 0 if and only f(z) =Kz− iλ, whereK
is a constant. Since z− iλ ∈H(D) if and only if − iλ ∈ Z+, it
follows that

σp Γ0,1􏼐 􏼑 � in: n ∈ Z+􏼈 􏼉, (26)

with ker(in − Γ0,1) = span(zn). Moreover, if n ∈ Z+ and λ ∈
σp(Γ0,1), then

(λ − Γ)f � z
n
, (27)

has a unique solution

f(z) �
1

λ − in
z

n
. (28)

Notice that, for λ ∉ σp(Γ0,1) and f ∈ D(Γ0,1), (λ − Γ)f(0) �

λf(0). More generally, if f(z) � zng(z) with g(0)≠ 0, then

(λ − Γ)f � λf − z z
m

g( 􏼁′

� z
m λg − mz

m
g − z

m+1
g′􏼐 􏼑.

(29)

Note that the functions (λ − Γ)f and f have the same order
of zero at 0. ,us, Mm

z B∞,0(D) is invariant under λ − Γ0,1.
Fix λ ∈ C\σp(Γ0,1) and let m>I(λ). If h � zmg with

g ∈B∞,0(D), then

i 􏽚
z

0
ωiλ− 1

h(ω)dω � iz
m+iλ

􏽚
1

0
t
m+iλ− 1

g(tz)dt. (30)

,us, (λ − Γ)h has a unique solution:

f(z) � iz
m

􏽚
1

0
t
m+iλ− 1

Q
m

h( 􏼁(tz)dt. (31)

If u ∈B∞(D) and 0 ≤ t < 1, then

‖u(tz)‖B∞(D) � sup
|z|<1

1 − |z|
2

􏼐 􏼑t u′(tz)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ sup
|z|<1

1 − t
2
|z|

2
􏼐 􏼑 u′(tz)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ ‖u‖B∞(D).

(32)

,us, ‖f‖≤ (1/(m − I(λ)))‖Mm
z ‖‖Qm‖‖h‖. Now,∀m≥ 1,

B∞,0(D) � span z
n

( 􏼁⊕M
m
z B∞,0(D),

R λ, Γ0,1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌span zn( )0≤n<m

�

1
λ

1
λ − i

0

⋱

0

1
λ − (m − 1)i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)

,us, λ ∉ σp(Γ0,1) implying that R(λ, Γ0,1) is bounded on
B∞,0(D). ,erefore, σ(Γ0,1) = σp(Γ0,1). ,is proves (1) and
(2).

To prove the compactness of the resolvent operator, we
argue as in [7],,eorem 5.2. Fix λ ∈ ρ(Γ0,1) and let m ∈ Z+ be
such that I(λ)<m. ,en, by equation (33), it suffices to
show that Rm(λ, Γ0,1) � R(λ, Γ0,1)|Mm

z B∞,0(D) is compact.
Let A(rD), r > 0, be the disc algebra

A(rD) � C(rD)∩H(rD), equipped with the supremum
norm, and for each t, 0 ≤ t < 1, and f ∈H(D), let Htf(z) �

ft(z) � f(tz).,en, by equation (32), for every t ∈ [0, 1),Ht is a
contraction on B∞,0(D).

Now, by equation (23), Rm(λ, Γ0,1) � iMm
z 􏽒

1
0 tm+iλ− 1

HtQ
mdt with convergence in norm. Define Cr �

iMm
z 􏽒

r

0 tm+iλ− 1HtQ
mdt on Mm

z B∞,0(D), for 0 < r < 1. ,en,
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Rm − Cr

����
����≤ 􏽚

1

r
t
m− I(λ)− 1

‖Q‖
mdt

�
‖Q‖m

m − I(λ)
1 − r

m− I(λ)
􏼐 􏼑⟶ 0,

(34)

as r⟶ 1− . Choosing s so that 1 < s < r− 1, we have that
Cr: Mm

z B∞,0(D)⟶Mm
z B∞,0(D) factors throughA(sD).

If B denotes the closed unit ball of Mm
z B∞,0(D), let

h � Qmf (f ∈Mm
z B∞,0(D)). ,en, ∀t, 0 ≤ t ≤ r, the growth

condition (6) implies that, for |z| ≤ s,

|h(tz)|≤ 1 +
1
2
log

1 + rs

1 − rs
􏼒 􏼓􏼒 􏼓‖h‖B∞,0(D),

d
dt

h(tz)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

‖h‖B∞,0(D)

1 − rs
.

(35)

Let K � (1 + (1/2)log((1 + rs)/(1 − rs)))‖h‖B∞,0(D).
,us, for |z| ≤ s,

Crf(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤K
smrm− I(λ)

m − I(λ)
,

d
dz

Crf(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K

msm− 1rm− I(λ)

m − I(λ)
+

smrm− I(λ)

m − I(λ)

‖h‖B∞,0(D)

1 − rs
.

(36)

,us, by Arzela-Ascoli, CrB is precompact in A(sD)

which further implies thatCrB is precompact inB∞,0(D) by
the continuous embeddedness of A(sD) in B∞,0(D).
,erefore, each Cr is compact in L(Mm

z B∞,0(D)) and as a
result, Rm(λ, Γ0,1) � (norm)limr⟶1− Cr is compact as well.

,e spectral mapping theorem for resolvents as well as
assertion (1) above implies that

σ R λ, Γ0,1􏼐 􏼑􏼐 􏼑 � σp R λ, Γ0,1􏼐 􏼑􏼐 􏼑 �
1

λ − im
: m ∈ Z+􏼚 􏼛∪ 0{ }

� ω ∈ C: ω −
1

2R(λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1
2|R(λ)|

􏼨 􏼩.

(37)

Clearly, the spectral radius r(R(λ, Γ0,1)) � (1/|R(λ)|)

and therefore by the Hille–Yosida theorem, it follows that
(1/|R(λ)|) � r(R(λ, Γ0,1))≤ ‖R(λ, Γ0,1)‖≤ (1/|R(λ)|), as
desired. □

As a consequence, the properties of the general group Tt
given by equation (12) is as follows.

Corollary 1

(1) σ(Γc,k) � σp(Γc,k) � i(c + kn): n ∈ Z+􏼈 􏼉, and for
each n ≥ 0, ker(i(c + kn) − Γc,k) � span(zn).

(2) If μ ∈ ρ(Γc,k), then MzB∞,0(D) is R(μ, Γc,k) -invariant
∀m ∈ Z+, m>I((μ − ic)/k). Moreover, if
h ∈Mm

z B∞,0(D), then

R μ, Γc,k􏼐 􏼑h(z) �
i

k
z

− ((μ− ic)/k)t
􏽚

z

0
ωi((μ− ic)/k)− 1

h(ω)dω

�
i

k
z

m
􏽚
1

0
t
m+i(μ− ic/k)− 1

Q
m

h( 􏼁(tz)dt.

(38)

(3) For μ ∈ ρ(Γc,k), the resolvent R(μ, Γc,k) is compact.
(4) σ(R(μ, Γc,k)) � σp(R(μ, Γc,k)) � w ∈ C: |w −{ (1/2R

(μ))| � (1/2R(μ))}.
(5) r(R(μ, Γc,k)) � ‖R(μ, Γc,k)‖ � (1/(2|R(μ)|)).

Proof. Following Proposition 3, μ ∈ ρ(Γc,k) if and only if
(μ − ic)/k ∈ ρ(Γ0,1). ,e proof now follows at once from
,eorem 1. We omit the details. □

3. Adjoint of the Composition Group on the
Predual of Nonreflexive Bergman
Space L1

a(D, mα)

In studying the adjoint properties of the rotation group
isometries given by equation (12) on Bergman spaces
L

p
a (D, mα), 1 ≤ p < ∞; the second author in [12] considered

the reflexive case, that is, when 1< p<∞. ,is was an ex-
tension of the investigation of adjoint properties of the
Cesáro operator in [18] on Hardy spaces, and later gener-
alized to Bergman spaces in [7]. For the nonreflexive
Bergman space L1

a(D, mα) (that is, p � 1), the analysis of the
adjoint of the rotation group isometries remains open and
forms the basis of this section. Specifically, we complete the
analysis of the adjoint group of the group of isometries Ttf(z)
� eictf(eiktz), where c, k ∈ R with k ≠ 0 and ∀f ∈ L1

a(D, mα).
Recall from Section 1, the duality relation

(B∞,0(D))∗ ≈ L1
a(D, mα) under the integral pairing

〈g, f〉 � 􏽒
D

g(z)f(z)dmα (g ∈B∞,0(D), g ∈ L1
a(D, mα)).

In particular, the predual of L1
a(D, mα) is the little Bloch

space B∞,0(D). ,us, using this duality pairing, for every
g ∈B∞,0(D), we have

〈g, Ttf〉 � 􏽚
D

g(z)eictf eiktz( 􏼁dmα(z)

� 􏽚
D

e
− ict

g(z)f eiktz( 􏼁 1 − |z|
2

􏼐 􏼑
α
dA(z).

(39)

By a change of variables argument: Let ω = eiktz so that z
= e− iktω and

〈g, Ttf〉 � 􏽚
D

e
− ict

g e
− iktω􏼐 􏼑f(ω) 1 − e

− iktω
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
α
dA(ω)

� 􏽚
D

e
− ict

g e
− iktω􏼐 􏼑f(ω)dmα(ω)

� 􏽚
D

T− tg(ω)f(ω)dmα(ω) � 〈T− tg, f〉,

(40)

where T− tg(ω) � e− ictg(e− iktω) for all g ∈B∞,0(D). ,us,
the adjoint group T∗t of Tt for t ∈ R is therefore given by
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T
∗
t g(ω) ≔ T− tg(ω) � e

− ict
g e

− iktω􏼐 􏼑, for allg ∈B∞,0(D).

(41)

Let Γ denote the infinitesimal generator of the adjoint group
T∗t . Using the results of Section 2, we easily obtain the properties
of the group (T∗t )t∈R as we give in the following theorem.

Theorem 2. Let (T∗t )t∈R ⊆L(B∞,0(D)) be the adjoint
group of the group of weighted composition operators
(Tt)t∈R⊆L(L1

a(D, mα)) given by (41). =en, the following
hold:

(1) (T∗t )t∈R is strongly continuous group of isometries on
B∞,0(D).

(2) =e infinitesimal generator Γ of (T∗t )t≥0 is given by
Γg(ω) � − i(cg(ω) + kωg′(ω)) with domain
D(Γ) � g ∈B∞,0(D): ωg′ ∈B∞,0(D)􏽮 􏽯.

(3) σ(Γ) � σp(Γ) � − i(c + kn): n ∈ Z+􏼈 􏼉, and for each n
≥ 0, ker(− i(c + kn) − Γ) � span(ωn)

(4) If μ ∈ ρ(Γ), then MωB∞,0(D) is R(μ, Γ)-invariant
∀m ∈ Z+, m>I((− μ − ic)/k). Moreover, if
h ∈Mm

ωB∞,0(D), then

R(μ, Γ)h(w) � −
i

k
ω((μ+ic)/k)t

􏽚
ω

0
z

− i((μ+ic)/k)− 1
h(z)dz

� −
i

k
ωm

􏽚
1

0
t
m− i((μ+ic)/k)− 1

Q
m

h( 􏼁(tω)dt.

(42)

(5) σ(R(μ, Γ))�σp(R(μ, Γ))� w∈C: |w − (1/2R(μ))| �􏼈

(1/2R(μ))}.
(6) r(R(μ, Γ)) � ‖R(μ, Γ)‖ � (1/|R(μ)|).

Proof. ,e proof follows immediately by replacing c and k
with − c and − k, respectively, in Proposition 3 and Corollary
1. We omit the details. □

4. Specific Automorphism of the Half-Plane

In this section, we consider a specific automorphism group
(φt)t∈R ⊂ Aut(U) corresponding to the rotation group given by

φt(z) �
z cos t − sin t

z sin t + cos t
. (43)

It can be easily verified that φt(z) = ψ ∘ ut ∘ψ− 1(z), where
ut(z) = e− 2itz. ,e associated group of weighted composition
operators on H(U) is given by Sφt

, and by the chain rule, it
follows that Sφt

� Sψ− 1Sut
Sψ , where Sψ− 1 � S− 1

ψ .
Now, for f ∈B∞,0(D),

Sut
f(z) � ut

′(z)( 􏼁
c
f ut(z)( 􏼁

� e
− 2ict

f e
− 2it

z􏼐 􏼑.
(44)

Apparently, Sut
can be obtained as a special case of the

group (Tt)t≥0 given by equation (12) when c � − 2c and k �

− 2. Let Γ � Γ− 2c,− 2 be the infinitesimal generator of the group
Sut

, then the properties of Γ can be summarized by the
following proposition.

Proposition 4. Let Γ be the infinitesimal generator of the
group of isometries Sut

on B∞,0(D). =en,

(1) Γf(z) � i(− 2cf(z) − 2zf′(z)) for every f ∈
B∞,0(D), with domain

D(Γ) � f ∈B∞,0(D): f′ ∈B∞,0(D)􏽮 􏽯. (45)

(2) σ(Γ) � σp(Γ) � − 2(c + n)i: n ∈ Z+􏼈 􏼉, and for each n
≥ 0,

ker(− 2(c + n)i − Γ) � span z
n

( 􏼁. (46)

(3) If μ ∈ ρ(Γ), then R(Mm
z ) is R(μ, Γ)-invariant for

every m ∈ Z+, m>I(− (μ + 2ci)/2). Moreover, if
h ∈R(Mm

z ), then

R(μ, Γ)h(z) � −
i

2
z

((μ+2ic)/2)i
􏽚

z

0
ω− ((μ+2ic)/2)i− 1

h(ω)dω

≔ Rμh(z).

(47)

Proof. Take c� − 2c and k� − 2 in Proposition 1 and Cor-
ollary 1. ,e proof follows immediately.

Now, using the similarity theory of semigroups,
we detail the properties of the group of weighted
composition operators associated with the automor-
phism group (φt)t≥0 given by (43) in the following
theorem. □

Theorem 3. Let φt ∈ Aut(U) be given by
φt(z) � (z cos t − sin t)/(z sin t + cos t), for all t ∈ R, z ∈ U,
and let Sφt

f(z) ≔ (φt
′)cf(φt(z)) be the corresponding group

of isometries on B∞,0(U). =en,

(1) =e infinitesimal generator Δ of the group Sφt
on

B∞,0(U) is given by

Δ(h(z)) � − 2czh(z) − 1 + z
2

􏼐 􏼑h′(z), (48)

with domain D(Δ) � 􏼈h ∈B∞,0(U): 2c(ω + i)h +

(ω + i)2h′ ∈B∞,0(D)􏼉.
(2) σp(Δ) � σ(Δ) � − 2(c + n)i: n ∈ Z+􏼈 􏼉, and for each n
≥ 0, ker(− 2(c + n)i − Δ) � span(S− 1

ψ zn).
(3) If μ ∈ ρ(Δ) and if m ∈ Z+ is such that

m>I((− μ)/(2 − ic)). =en, if h ∈R(Mm
z ), we have

R(μ,Δ)h(z) � (z − i)
((μ+2ic)/2)i

· (z + i)
− (((μ+2ic)/2)i+2c)

· 􏽚
z

0
(ω − i)

− ((μ+2ic)/2)i− 1

· (ω + i)
((μ+2ic)/2)i+2c− 1

h(ω)dω.

(49)

(4) R(μ, Δ) is compact on B∞,0(D).
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(5) σ(R(μ,Δ)) � σp(R(μ,Δ)) � w ∈ C: |w − (1/2R{

(μ))| � (1/|R(μ)|)}. Moreover

r(R(μ,Δ)) � ‖R(μ,Δ)‖ �
1

R(μ)
. (50)

Proof. Let g(z) � ψ− 1(z) � ((z − i)/(z + i)) and g− 1(z)

� ψ(z) � ((i(1 + z))/(1 − z)). Since φt(z) � g− 1 ∘ ut ∘g(z),
it follows that Sφt

� SgSut
Sg− 1 � SgSut

S− 1
g , where Sg is in-

vertible. Let Δ be the generator of Sφt
and Γ ≔ Γ− 2c,− 2

be the generator of Sut
, then Δ � SgΓS− 1

g with domain D(Δ) �

SgD(Γ).
Let f′ ∈ B∞,0(D), then f ∈ D(Γ) and define h ≔ Sgf

belongs to D(Δ) with f � S− 1
g (h). ,en,

Δ(h(z)) � SgΓS
− 1
g h(z) � SgΓf(z)

� Sg − 2icf(z) − 2izf′(z)( 􏼁

� g′(z)( 􏼁
c

− 2icf(g(z)) − i2g(z)f′(g(z))( 􏼁.

(51)

As stated earlier, g(z) � ((z − i)/(z + i)), implying that
g′(z) � (2i/(z + i)2), and thus

Δ(h(z)) �
(2i)c

(z + i)2c
− 2icf(g(z)) − i2g(z)f′(g(z))( 􏼁.

(52)

Since g− 1(z) � ((i(1 + z))/(1 − z)) and (g− 1(z))′
� (2i/(1 − z)2), then we have f(z) � S− 1

g h(z) � Sg− 1h(z) �

((2i)c/(1 − z)2c)h(g− 1(z)) implying that f(g(z))

� ((z + i)2c/(2i)c)h(z). Moreover, f′(z) � ((2i)c/
(1 − z)2c+2)(2c(1 − z)h(g− 1(z)) + 2ih′(g− 1(z))) implying
that

f′(g(z)) �
(z + i)2c+1

(2i)c+1 2ch(z) +(z + i)h′(z)( 􏼁. (53)

,erefore,

Δ(h(z)) �
(2i)c

(z + i)2c
− ic

(z + i)2c

(2i)c h(z) − i
z − i

z + i

(z + i)2c+1

(2i)c+1􏼠

· 2ch(z) +(z + i)h′(z)( 􏼁􏼓

� − 2ich(z) − 2c(z − i)h(z) − (z − i)(z + i)h′(z)

� − 2czh(z) − 1 + z
2

􏼐 􏼑h′(z)􏼑.

(54)

As given earlier, the domain of Δ, D(Δ) is given by D(Δ)
� SgD(Γ) � Sgf: ∈ D(Δ)􏽮 􏽯. Now h ∈ D(Δ) implies that
S− 1

g h ∈ D(Γ) which implies that (Sg− 1h)′ ∈ B∞,0(D). But

Sg− 1h􏼐 􏼑′ �
(2i)c

(1 − z)2c
h g

− 1
(z)􏼐 􏼑􏼠 􏼡
′

� 2c(2i)
c
(1 − z)

− 2c− 1
h g

− 1
(z)􏼐 􏼑

+
(2i)c

(1 − z)2c

2i

(1 − z)2
h′ g

− 1
(z)􏼐 􏼑

�
(2i)c

(1 − z)2c
2c(1 − z)

− 1
h g

− 1
(z)􏼐 􏼑􏼐

+
2i

(1 − z)2
h′ g

− 1
(z)􏼐 􏼑􏼡.

(55)

,en, we have

Sg− 1h􏼐 􏼑′ �
(2i)c

(1 − z)2c

2c

1 − g ∘g− 1(z)
h g

− 1
(z)􏼐 􏼑􏼠

+
2i

1 − g ∘g− 1(z)( 􏼁
2h′ g

− 1
(z)􏼐 􏼑⎞⎠.

(56)

By change of variables, let ω � g− 1(z) which implies
g(ω) � z � g ∘g− 1(z) and (Sg− 1h)′ � Sg− 1((2c/(1 − g(ω)))

h(ω) + (2i/(1 − g(ω))2)h′(ω)). ,erefore,

h ∈ D(Δ)⇔ Sg− 1
2c

1 − g(ω)
h(ω) +

2i

(1 − g(ω))2
h′(ω)􏼠 􏼡 ∈ B∞,0(D)

⇔
2c

1 − g(ω)
h(ω) +

2i

(1 − g(ω))2
h′(ω)􏼠 􏼡 ∈ B∞,0(D)

⇔
ω + i

2i
2ch(ω) + (ω + i)h′(ω)( 􏼁 ∈ B∞,0(D),

(57)

which implies that U(Δ) � h ∈ B∞,0(D): 2ch(ω) +􏽮

(ω + i)h′(ω) ∈ B∞,0(D)}.
From Section 1, the spectrum and point spectrum of Δ

are given as σp(Δ) � σp(Γ) � σ(Γ) � σ(Δ) � − i(c + n):􏼈

n ∈ Z+}.
For the resolvents, if μ ∈ ρ(Δ) � ρ(Γ), then for m ∈ Z+,

m>I(− (μ + ic)) and if h ∈ R(Mm
z ), we have R(μ,Δ) �

SfR(μ, Γ)S− 1
f and so
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R(μ,Δ)h(z) � Sg −
i

2
z

((μ+2ic)/2)i
􏽚

z

0
ω− i((μ+2ic)/2)− 1

Sg− 1h(ω)dω􏼒 􏼓

� Sg −
i

2
z

((μ+2ic)/2)i
􏽚

z

0
ω− ((μ+2ic)/2)i− 1 (2i)c

(1 − ω)2c
h g

− 1
(ω)􏼐 􏼑dω􏼠 􏼡

� −
i

2
(2i)c

(z + i)2c
(g(z))

((μ+2ic)/2)i
􏽚

z

0
(g(ω))

((μ+2ic)/2)i− 1 (2i)c

(1 − g(ω))2c
h(ω)

dg

dω
dω

�
z − i

(z + i)2c􏼠 􏼡

((μ+2ic)/2)i

􏽚
z

0
(ω − i)

((μ+2ic)/2)i− 1
(ω + i)

((μ+2ic)/2)i+2c− 1
h(ω)dω.

(58)

Finally, from spectral mapping theorems it follows that,
for all μ ∈ ρ(Δ), the spectrum of R(μ, Δ) is given by

σ(R(μ,Δ)) �
1

μ − z
: z ∈ σ(Δ)􏼨 􏼩∪ 0{ }

�
1

μ + i(c + n)
: n ∈ Z+􏼨 􏼩∪ 0{ }

� ω ∈ C: ω −
1

2R(μ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1
2R(μ)

􏼨 􏼩.

(59)

Similarly, the point spectrum is given by

σp(R(μ,Δ)) �
1

μ − z
: z ∈ σp(Δ)􏼨 􏼩∪ 0{ }

� ω ∈ C: ω −
1

2R(μ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1
2R(μ)

􏼨 􏼩.

(60)

,erefore, σ(R(μ,Δ)) � σp(R(μ,Δ)) � ω ∈{

C: |ω − (1/(2R(μ)))| � (1/(2R(μ)))}. Finally, we conclude
this section by proving the spectral radius
r(R(μ,Δ)) � (1/(|R(μ)|)) and ‖R(μ,Δ)‖ � (1/(|R(μ)|)).

It is clear that the spectrum of the resolvent is
r(R(μ,Δ)) � (1/(|R(μ)|)). Hille–Yosida theorem yields
r(R(μ,Δ)) � (1/(|R(μ)|))≤ ‖R(μ,Δ)‖≤ (1/(|R(μ)|)). □
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