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Abstract: An alternative method of the numerical solution of the heat equa-
tion is presented. A three-dimensional modelling approach is used in this paper
rather than one or two dimensional models in order to account for the lateral
heterogeneous thermal conductivity coefficients or the heat sources or sinks
commonly encountered in geothermal reservoir engineering studies.
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1. Introduction

Geothermal reservoirs produce primarily from fractures. In the study of geother-
mal reservoir behaviour, on some occasion, it may be required to determine the
temperature distribution in the field, particularly an analysis of the vertical
thermal gradients. This calls for the use of a three dimensional heat model
which account for lateral heat flow and the presence of sources or sinks for
heat in the geothermal reservoir. Mathematical models for geothermal systems
usually describe the three dimensional flow of water, steam or both and trans-
port of heat in porous media. The basic governing equations may be expressed
in terms of pairs of basic unknown thermodynamic quantities as independent
variables, for example, fluid enthalpy and pressure or fluid density and internal
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energy, or pressure and temperature or pressure and saturation saturation. In
this paper we present a model that can describe and predict the temperature
distribution in a geothermal reservoir. A reasonable approximation of the heat
transport mechanism in a geothermal field is the steady-state heat conduction
model described by the following linear partial differential equation whose de-
tailed derivation may be found in the works such as that of (see [1]).

V.IK(z,y,2)VT(z,y,2)] +q(z,y,2) =0 (1)

in which z, y, and z are the orthogonal(Cartesian) curvilinear coordinates, 7" is
the temperature of the reservoir, k the coefficient of thermal conductivity and
q is the internal source/sink that is a function of heat production. Equation
(1) may be written in space coordinates z, y, z as:

0 or. o or,. 0 aT
%(K(xaya 2)8_x)+8_y(K(x’y’ Z)a_y)—i_%(K(xaya Z)%)_‘_Q(l’)ya Z) =0. (2)

2. The Heat Model

The media in which geothermal fluids flow are usually porous rocks and frac-
tures. Our model in which heat flows will be represented by a cube, to account
for both the aerial and vertical extent of the geotherm field. We align the or-
thogonal Cartesian coordinate system (z,y, z) with the origin 0 at one corner
of the cube on the surface of the ground in such a manner that the z— and y—
axes lie on the plane of the ground. The z— axis represents the vertical increase
in the depth of the field with z = 0 on ground surface. We label the corners of
the cube in some way with letters A through G. Let I, J and H represent the
distances between the origin and the corner points of the cube along the x—,
y— and z— axes respectively. We then solve equation (1) inside the heat model
with the following boundary conditions:

(i) Surface temperature:

T(‘Tayaz) :T()(.Z',y,Z) at z=0

(i) Vertical boundaries:

T
%:O at =0,1,

T
—_— = t g
. 0 at y=0,J
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indicating that the heat flow components are perpendicular to vertical
boundaries, i.e. the temperature on the vertical surfaces are constants

(iii)
TH(l’,y,Z) or QH(mayaz)

to be temperature or heat flow at the base of the model

Now, geothermal reservoirs usually have very high temperatures, in the order
of 225°C (see[3]). Information about the temperature at the base of the model
is usually not available. To determine the temperature at the base of the
model, we use the average value of the observed heat flow on the surface of the
geothermal field, i.e. go(z,y). This heat flow is related to the temperature by
the equation
dr
K(z,y,2) 7
Equation (2) together with its associated boundary conditions can now be
solved inside and on the boundary of the heat model. Usually the assumptions
that are made that are necessary in order in order to solve the mathematical
model analytically are fairly restrictive. For example to obtain an analytic so-
lution, we would require that the medium of the solution be homogeneous and
isotropic, which is not true of most geothermal systems. For this reason we
shall use a numerical method based on finite differences although there exist
other numerical procedures or methods that can be used to solve the same heat
equation. An example of these methods is the class of finite element methods.

= QO(x7y70)‘ (3)

3. Finite Difference Technique

The finite difference method entails two basic ideas, namely, that the domain
of the solution of the partial differential equation is subdivided into a net with
a finite number of mesh points and that the derivative of the function we are
evaluating is replaced by a finite difference approximation. For the case of a
three domain, the mesh points will form shapes such as those of cubes. Here,
we shall illustrate the mathematical principle behind the finite difference repre-
sentation. Consider a function y = f(x). We perform a Taylor series expansion
of this function at the point x; and letting x = x;41, we have:

(l‘z‘+1 - l‘z‘)Qf”(l‘z‘)
2!

f(@iv1) = f(@i) + (g1 — 20) f(20) + +... (4)
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or 2.1 3,1
h=y; h°y;
o + 3] + ... (5)

Yir1 = Yi + hy; +

and 2, 3,1
2y Ry
2!1 - 3'Z +... (6)

where h = x;41 — z;. From the above expressions, we may write

yi1 =Y — hy, +

i) ~ P (7)
/ Yi — Yi—-1
yilai) ~ B )
and
oy o Vit~ Yin

The expressions in (7), (8) and (9) are known as the forward, backward and
central quotient representations of the first derivative of the given function.
Summing (5) and (6) and rearranging we find:

(Yit1 — 2y + Yi—1)
72

yi () = + el (10)
in which e = %yi” tends to zero as h tends to zero. With this background
in mind, we now turn to the heat equation in the form of equation (2). In
this equation we can reasonably assume that the thermal conductivity K is
a function of temperature, since the thermal conductivity varies considerably
with the temperature of the solids. Let us define a subsidiary function ¢ such

that: ”
K=— 11
I (11)

this implies that

¢ = / KdT (12)

Substituting for K in equation (2)we find:

9 99T, 0 99T 0 96T

9.\ o a7 — (== = 1
&55T0$)+8J5T8yy+8JaTazy+“%y“) 0 (13)
o 82 82 82
o 0% 0% -
612 + ayQ + 822 +Q(x7yaz) =0 (14)
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or
V26 +q(z,y,2) =0 (15)

where

0? 0? 0?

922 "oy T 922

is the Laplacian operator. Let us introduce notation that will be useful in

the few lines. Let 7, j and k be counters in the x—, y— and z— directions

respectively. Here x = iAx, y = jAy and z = kAz, where Az, Ay and Az

are spacing in the z, y and z directions of the Cartesian coordinate system

respectively. Therefore

¢(ZL', Y, Z) = ¢(ZAIE7]A:U7 k‘AZ) = ¢i7j,k (16)

V? =

Suppose that the interior mesh increments corresponding to =, y and z are hq,
ho and hg, i.e. Ax = hy, Ay = hy and Az = hs. Then replacing each second
derivative with its finite difference equivalent yields:

(Dijt1ke — 200k + Dij—1k)
h3

(Dit1jk — 20i ik + bim1k)
h2
1

+

(Gijht1 — 20 ik + Gijk—1)
h2
3

+ +qijr =0 (17)
which may be rearranged to give

Giik = a1(Giv1jk + Gim14k) + 2(Pij1k + Gij—1.k)

+a3(Ps jh1 + Gijr—1) + agijr =0, (18)
in which (hoh )2
B 23
M= Sl ha)? + (hahs)? + (hiha)2)’ (19)
_ (hihs)?
2 = Sl ha)? + (hahs)? + (hiha )’ (20)
_ (hihg)?
= Sl ha)? + (hahs)? + (hiha )’ (21)
(hihahg)?

* = Ahiha)® + (haha)? + (k)] (22)

From equation (18) we notice that one unknown is linked to six other unknowns.
For simplicity, consider equal spacing in each of z, y and z directions, i.e. let
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h = hy = hy = hg which would mean that a3 = as = a3 = % and o = % s0
that

1
Gijk = 6[(¢i+1,j,k + Gi—1jk) + (Pijr1k + Pij-1k)
+(ijhr1 + Bijr—1) + hGi ] = 0. (23)
This is a finite difference equation. If we label the unknowns in positions
(iaja k)a (Z + 1)ja k)a (Z - 1)ja k)a (Za] + 1) k)a (Za] - la k)a (iaja k + 1)7 (iaja k — 1)

as

¢0> qbla ¢2> ¢3> ¢4> ¢5> ¢6>

respectively for ease of writing, then:

(1 + b2 + ¢3 + da + P5 + ¢6 + h%q0)
6

where ¢ is calculated as the average of the six points around the centre. Using
Taylor series expansion with equal spacing h on each ¢ at these positions and
expanding to sufficiently higher order derivatives of ¢ at the point (i, j, k) and
substituting into equation (23) and rearranging the terms, it can be shown that
the local truncation error is of the order 0(h?) indicating it is a second order
method. We consider the heat model subdivided into 27 smaller cubes, 9 per
layer for 3 layers. We examine the use of the model equation (23) vis-avis the
nodes of the heat model. Equation (23) holds in the interior of the model and
with Dirichlet boundary conditions namely:

bl :(;5(07y725), b2 :(ZS(I7y7Z)7 b3 :(ZS(%,O,Z), b4:¢($,J,Z),

b5 :QS(I',y,O), b6 :QS(I',y,H)

Here ¢ is specified on the boundary of the model. Equation (23) is solved by the
following procedure: We order the points on the x and y planes then proceed
plane by plane in the z direction to yield a set of linear algebraic equations.
This procedure has been done as an example, for the heat model with the
following features: Subdivide the interval I on the x— axis into three equal
spacing, subdivide the interval J on the y— axis into three equation spacing
and finally subdivide the interval H on the z— axis into three equal spacing.
The size of the system of equations depends on the number of slices we make
in the cube. To minimize the complexity for illustration purposes we use three
slices, i.e. the mesh size h = %, on each axis. Label all the corners of the cubes
of the heat model as ¢1, ¢o, ..., ¢gs. This results in a total of 64 nodes out of
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which 8 are interior. Applying equation (23) to each interior node of the model
we find a system of 8 equations in 8 unknowns. On rearranging, this yields a
set of linear algebraic equations of the form:

Ap=b (24)

in which A is a block tri-diagonal and diagonally dominant matrix, ¢ is the
vector of unknown quantities while b is a vector of known quantities. This
may be solved by known iterative methods such as the ADI method of Douglas
and Rachford (see[2]). The solution of this system of equations yields the
temperatures at the internal mesh points.

4. Model Verification

For purely illustrative purposes, we shall solve the heat equation inside the
model when subjected to the following boundary conditions:

$(0,y,2) =100°C,  ¢x,0,2) =160°C, ¢(x,y,0) = 60°C,

oy, z) =250°C,  ¢(x,J,0) =280, ¢y, H)=280°C.

For simplicity we shall in this example neglect heat source. Using the software
MATLAB to compute the unknowns yields:

1 =133.8°C, ¢y =169.3°C, ¢35 =163.3°C, ¢4 = 193.3°C,

b5 =183.0C, ¢g =213.3°C, @7 =207.3°C, ¢g=237.3°C.

5. Conclusion

We note that if data for the surface heat flow is available, then this technique
can be very useful in estimating the temperature distribution in geothermal
reservoirs before exploitation of the reservoir.
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