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ABSTRACT
Many studies have been done on fertility for many years. However, very little has

been documented in the existing literature concerning modeling of fertility in the pres-
ence of interference, yet interference to fertility is a common phenomenon. In this study
fertility data sets for Rwanda, Indonesia and Kenya were modeled before and after in-
terference. The parameters of the model were estimated by the maximum likelihood
estimation method. The model life table approach was used to determine the Net Fer-
tility Value, F0. A relationship between fertility rate in the presence of interference and
population growth was also determined. Using Akaike’s Information Criteria, (AIC), it
was established that amongst the distributions fitted; Gamma, Weibull and Lognormal,
Gamma gave the best fit for the fertility rate data, for all the countries studied, and
interference simply shifts the Gamma distribution parameters. The result of this study
would help the Governments to understand fully the effect of interference on fertility rate
and plan for it. Demographers would also benefit from this study since it can be used to
project population growth after an interference.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

The term fertility in demography context, refers to the actual production of children and

not the physical capability to produce them, which is termed as fecundity. Demographers

have always measured how quickly a population is growing, by determining how frequently

people are added to the population by being born. This has been done by measuring

fertility rate of a population which can be done in two broad ways namely; the period

measures and the cohort measures. The period measures are measures which are based

on a cross section of a population in one year. They include the Crude Birth Rate, CBR

(the number of live births per 1000 women of a population in a given year), the General

Fertility Rate, GFR (the number of live births per 1000 women between ages 15-49 years

in a given year) and the Child Woman Ratio, CWR (the number of children under 5

years of age per 1000 women aged 15-49 years in a given year). On the other hand, cohort

measures are measures which follow the same people over a period of decades. They

include:

1. Age Specific Fertility Rate (ASFR), which refers to the annual number of live births

per woman in a particular age group expressed per 1000 women in that age group;

nfx = nBx

nFx

× 1000 (1.1)

where,

nfx = Age Specific Fertility rate for age group x to x + n

nBx = Number of births occurring to women in the age group x to x + n

nFx = Number of females in the age group x to x + n

n = number of years in the age interval (normally 5 years)

2. Total Fertility Rate (TFR), which refers to the average number of children a woman

would potentially have, were she to fast forward through all her child bearing years in a
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given year, under all the age specific fertility rates for that given year. TFR represent the

sum of annual age specific fertility rates computed for each age group in the childbearing

period.

TFR =
(

n

[ 6∑
i=0

nfx+in +4 f45

])
× 1000 (1.2)

Barret, Bogue and Anderson [3] describe total fertility rate as a synthetic rate which is

neither based on fertility of any real group of women, because this would involve waiting

until they complete childbearing, nor based on counting up of the total number of children

actually born over her reproductive lifetime, but based on the age specific fertility rate of

women in their child bearing years, which in conventional international statistical usage

is ages 15 - 49 years. TFR is therefore a measure of fertility of an imaginary woman

who passes through her reproductive life and is subjected to all the age specific fertility

rates for ages 15-49 years that were recorded for a given population in a given year. This

measure represents the number of children that would be born to a hypothetical cohort of

1,000 women who follow a set of a current schedule of age specific fertility rates, assuming

that none of the women die before reaching the end of the childbearing period.

According to Onoja and Osayomore [26], TFR is not only a more direct measure of the

level of fertility of a population but also, an indicator of the potentiality for population

change in a country. A rate of two children per woman is considered to be the replace-

ment rate for a population, leading to stability in terms of total numbers, a rate of above

two children would mean that a population is growing in size, while a rate of below two

children would mean that a population is declining in size and growing older.

1.2 Fertility In Response to Interference

In this context, the term interference, refers to a situation of large scale strike of unantic-

ipated phenomenon such as high magnitude earthquake, major floods, Wars and Geno-

cides, which leave many people dead and thousands others displaced. Many investigators

like Preston [30], Montogomery and Cohen [24], Guarcello [44, 13] and Palloni and Rafali-

manana [28] have long observed that a strike of an interference in a population may cause
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big losses of assets, lives and displacements. Households may then have an incentive to

increase the number of children ever born, and as a result, a positive fertility response in

excess of replacement effects may be experienced.

1.3 Basic concepts and Definitions

1.3.1 Baby boom and Baby bust

Baby boom refers to a dramatic increase in fertility rates normally after a strike of an

interference. For example, there was increase in fertility rates in the United states, Canada

and New Zealand during the period following the world war II (1947-1961). On the other

hand, baby bust refers to a rapid decline in fertility rates. Baby bust period normally

follow immediately after baby boom period.

1.3.2 Demography

This is the scientific study of human populations primarily with respect to their size, their

structure and their development. Demographers seek to understand population dynamics

by investigating three main demographic processes: birth, migration and aging (including

death) all which contribute to changes in populations.

1.3.3 Epidemiology

The science concerned with the study of the factors determining and influencing the

frequency and distribution of disease, injury and other health related events and their

causes in a defined human population.

1.3.4 Fertility and Fecundity

Demographers refer to fertility as the product or output of reproduction (actual live

births), and Fecundity as the physiological ability to give birth which is manifested roughly

in the period between menarche and menopause in women. Biologists do the opposite by

referring to fertility as the capacity to produce a baby and fecundity as the realization

of actual production hence should not be a source of confusion in this context. In de-

mography, fertility is concerned with the number of live babies that women give birth to
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even if they have subsequently died. A fertile woman therefore, is one who has borne live

children. Hence, a woman is not fertile until she has actually given birth to a live child.

Prior to that, she will be considered a fecund woman if she is within a certain age range

and there is no physical reason why she should not have children.

1.3.5 Fertility rate

This refers to live births per 1000 women, categorized according to a specific composition

of mothers in a population. Examples are such as CBR, GFR,CWR, ASFR and TFR

among others.

1.3.6 Model Life table

A life table is a mathematical model that portrays the mortality conditions at a particular

time among a population and provides a basis for estimating longevity. A model life table

was first developed in the 1950,s by the United Nations to study mortality conditions of

populations. Although life tables were developed for the study of mortality UN,[48], they

can be applied to any other ‘failure’ process so long as the process is measured in time

(varies with age or some other measure of duration). Shepad and Greene,[46] in 2003,

define Model life table as a table of data on survivorship and age specific reproductive

rates of individuals within a population. A life table is usually based on a cohort of some

arbitrary number of births (often 100,000). This number is denoted as l0 and is referred

to as the radix of the life table.

Life tables are used by demographers, public health workers, actuaries, and many others

in studies of mortality, longevity, fertility, population growth, as well as in making pro-

jections of population, and in many other areas.

Our study applies the model cohort life table by Coale and Demeny, [6] which conceptu-

ally traces a cohort of newborn babies through their entire life under the assumption that

they are subjected to the current observed schedule of age-specific death rates.
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1.3.7 Modeling and Demography

Ader [1] states that Modeling is a form of scientific approach, often used to express the

reality and its dimensions in precise terms. A model is therefore a simplified and mainly

a mathematical representation of reality. Modeling of demographical processes as defined

by Clogg and Eliason [5] is an attempt to represent demographic processes in the form of

mathematical function or set of functions relating two or more measurable demographic

variables. Since demographic models attempt to represent reality, they are based to a

greater extent on actual data which are of course random in nature hence are statistical

in nature. McCullagh [23], states that statistical Models include issues such as statistical

characterization of numerical data and estimation of the probabilistic future behavior of

a system based on past behavior. Statistical models therefore rely on probabilistic forms

of description that have wide application over all areas of science. In a statistical model,

randomness is present, and variable states are not described by unique values, but rather

by probability distributions while on the other hand, mathematical (deterministic) models

are described by unique values and grow out of equations that determine how a system

changes from one state to the next (differential equations) or how one variable depends

on the value or state of other variables (state equations).

1.3.8 Parametric and non Parametric Modeling

Parametric modeling covers techniques that rely on data belonging to a particular distri-

bution and assumes that the structure of the model is fixed. Parametric models assume

some finite set of parameters θ.

Given the parameters, future predictions, x are independent of the observed data, D.

On the other hand, non parametric modeling covers techniques that do not rely on the

assumptions that the data are drawn from any particular distribution. The structure

of the model is not specified in advance but is instead determined from the data. Non-

parametric does not mean that the model does not include parameters, but that the

number of parameters is not fixed in advance to specify a statistical model. Non para-

metric models assume that the data distribution cannot be defined in terms of a finite
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set of parameters. But, they can often be defined by assuming an infinite dimensional

parameter θ and usually, θ is thought of as a function.

1.3.9 Stable Population and Stationary Population

A stable population is one that has had constant birth rates and death rates for such

a long period of time that the number of people in every age group remains constant.

A stable population does not necessarily remain fixed in size. It can be expanding or

shrinking. Therefore, a population is said to be stable when both its growth rate and its

relative age distribution do not change over time.

A stationary population refers to a population whose total number and distribution by age

do not change with time hence unchanging in size (The difference in birth rate and death

rate is zero). Assuming no migration, such a hypothetical population can be obtained if

the number of births per year remained constant (usually assumed at 100,000) for a long

period of time and each cohort of births experienced the current observed mortality rates

throughout life. The annual number of deaths would thus equal 100,000 also and there

would be no change in size of the population.

1.4 Statement of the problem

Interference continues to affect fertility globally. The World War I in the years 1914-

1918, the World War II in the years 1939-1945, the Genocide in 1994 in Rwanda, the

Tsunami in 2004 in Indonesia and the Post election Violence in 2008 in Kenya are some

of the interferences that left thousands of people dead and many others displaced. Using

the Rwanda, Indonesia and Kenya Demographic and Health Survey (DHS) data sets, we

model fertility rates for the three countries before and after interference with the aim of

determining the effect of interference on the fertility rates.
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1.5 Objectives of the study

1.5.1 General Objective

To model human fertility rate data sets of Rwanda, Indonesia and Kenya in the presence

of interference

1.5.2 Specific Objectives

1. To fit a model to interference free data sets of Rwanda, Indonesia and Kenya.

2. To determine the parameter estimates of the model fitted to interference free data

sets of Rwanda, Indonesia and Kenya.

3. To fit a model to data affected by interference of Rwanda, Indonesia and Kenya.

4. To determine the parameter estimates of the model fitted to data affected by inter-

ference of Rwanda, Indonesia and Kenya.

5. To determine the effect of interference on fertility rate data sets of Rwanda, Indone-

sia and Kenya.

1.6 Significance of the study

A strike of interference in a country lead to an increase in the fertility rate of a coun-

try, which in turn lead to an increase in the demand for antenatal and postnatal care.

Maternal clinics may then need to be increased to cater for the rise in the fertility rates.

The results of this study are geared towards helping Governments to understand fully the

effect of interference and plan for it. Demographers would also benefit from this study

since it can be used to project population growth after an interference.

1.7 Justification of the study

This study is relevant in that it fills the gap left by researchers as little effort has been

put in incorporating the effect of interference in modeling fertility rate.
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1.8 Methodology

1.8.1 Some models of fertility rate

A variety of models, both parametric and non parametric have been proposed in literature

to describe age specific fertility patterns, and several of them have been found to provide

good fits to both human and non human fertility data. However, not much work has been

done in incorporating the effect of interference in modeling of fertility data. The follow-

ing are some of the models which have been used in literature for fitting fertility curves:

the Hadwiger model [14], the modified Gamma model which was proposed by Hoem and

Rennermalm [16], the Brass polynomial [4], the cubic spline which was proposed by Hoem

and Rennermalm [16] in 1978 and the quadratic splines [43].

The Hadwiger function [14] is given by,

f(x) = ab

c
( c

x
)

3
2 exp[−b2( c

x
+ x

c
− 2)] (1.3)

where,

f(x) is the fertility rate at age x of the mother, the parameter a is related to the total

level of fertility, the parameter b determines the height of the curve and the parameter c

is related to the mean age of motherhood.
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The Gamma distribution modified for fertility analysis [16] is given by,

f(x) = R
1

Γ(b)cb
(x − d)b−1exp[−(x − d)

c
] for x > d (1.4)

where,

f(x) is the fertility rate at age x of the mother, d represents the minimum age at child-

bearing, parameter R determines the level of fertility. The parameters b and c have no

direct demographic interpretation, but are related to the mode, m, the mean, µ and the

variance, σ2, of the function such that; c = µ − m and b = σ2

c2 .

The Brass polynomial [4] is given by,

Mx = c(x − d)(d + w − x)2 (1.5)

where,

Mx is the fertility rate at age x of the mother, c is a measure of level of fertility but cannot

be interpreted as TFR. Parameter d is the lower age at fertility and w is the length of

reproductive period.

The cubic spline , which is a piecewise cubic [16] splines is given by;

f(x) = a + b(x − m) + c(x − m)2 + Σn
j=1dj(x − m − kj)3Dj (1.6)

where,

where Dj = 0 if x−m ≤ kj and Dj = 1 if x−m > kj, m is the minimum child bearing age,

x ≥ m, kj are the knots, n is the number of knots, and a, b, c and dj are the coefficients

that are estimated.
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The quadratic spline [43] is a piecewise quadratic function which is given by;

f(x) = a + b(x − m) + Σn
j=1cj(x − m − kj)2Dj (1.7)

where,

where Dj = 0 if x − m ≤ kj and Dj = 1 if x − m > kj, m is the minimum age, x ≥ m,

kj are the knots, n is the number of knots, and a, b and cj are the coefficients that are

estimated. In our study, we modeled fertility rate data both before and after interference

with a major aim of determining the effect of interference on fertility rate. We focused on

both interference free data sets (Rwanda 1992, Indonesia 2002 and Kenya 2003 data sets)

and also the data sets which had interference effect in them (Rwanda 2000, Indonesia

2007 and Kenya 2009 data sets). Using the model life table approach, we also determined

Net Fertility Value, F0 and related it to population growth.

1.8.2 Fitting model to data

Fitting model may involve a process of selection of the best fitting distribution function

from a predefined family of distributions. This practice requires judgment and expertise

and generally follows an iterative process of model choice, parameters estimation, and

quality of fit evaluation. In R software environment, which was developed by the R core

team [41], the package ‘fitdistrplus’ provides functions for fitting distributions to differ-

ent types of data sets (continuous, censored or non censored data and discrete data).

The package also allows for different estimation methods (maximum likelihood, moment

matching, and maximum goodness of fit estimation).

Method of moment matching

The method of moments involves constructing estimators of the parameters basing on

matching the sample moments with the corresponding distribution moments.

Method of maximum likelihood

The likelihood of a set of data refers to the probability of obtaining that particular set of

data given the chosen probability model. Maximum likelihood thus begins with the math-

ematical expression called likelihood function of the sample data, the expression which

contains the unknown parameters. The values of the unknown parameter that maximizes
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the sample likelihood are the maximum likelihood estimates (MLE).

In R environment, we get the MLE by either of the following three statements:

‘mle’ included in the ‘stats4’ package in the R software, ‘fitdistr’ included in the ‘MASS’

package of R software or the ‘fitdist’ included in the ‘fitdistrplus’ package of R software.

The statement ‘mle’ allows to estimate parameters for every kind of probability density

function , it needs only to know the likelihood analytical expression to be optimized.

However, arbitrary values of parameter estimates need to be supplied as starting values

(estimates got by the method of moments can be used at this stage).

In both the ‘MASS’ and the ‘fitdistrplus’ packages are available ‘fitdistr’ and ‘fitdist’ func-

tions respectively for maximum likelihood fitting of the univariate distributions without

any information about likelihood analytical expression. It is enough to specify a data

vector, the type of pdf and the list of starting values for iterative procedure.

In our study we used the maximum likelihood estimation method to estimate the param-

eters of the Gamma, Weibull and Lognormal distribution functions.

The Gamma distribution is defined by;

f(x) = 1
Γαβα xα−1e

−x
β α > 0, β > 0

where; α is the shape parameter , 1
β

is the rate parameter, β being the scale parameter.

The Weibull distribution is defined by;

g(x) = αβ(βx)α−1e−(βx)α
, for x > 0, α > 0, β > 0

where, α is the shape parameter , β is the scale parameter.

The Lognormal distribution is defined by;

q(x) = 1√
2πσ2x

exp[− (ln(x)−µ)2

2σ2 ], for x > 0, σ > 0, −∞ < µ < ∞

Where µ is the shape parameter ( the mean of the random variables logarithm), σ is the

scale parameter (the standard deviation of the random variables logarithm). Akaike’s

information Criteria (AIC) was also used to estimate the quality of fit of each model.

AIC is a measure of the relative quality of statistical models for a given set of data. Given

a collection of models for the data, AIC estimates the quality of each model, relative to

each of the other models. AIC is founded on information theory and it offers a relative
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estimate of the information lost when a given model is used to represent the process that

generates the data hence from among the candidate models, the model that minimizes

the information loss (the model with the lowest AIC value), is selected to be the best

fitting model to the set of data.

1.8.3 Source of data

Our data sets were obtained from the Demographic and Health Survey Program (DHS). A

body which since 1984, collects and disseminates nationally representative data on health

and population on developing countries. The project is implemented by ICF international

and funded by the United States Agency for International Development (USAID) and the

access of the data sets has been made open to researchers since September 2013. We

obtained and used the following data sets from the above named body.

• Rwanda 1992, Rwanda 2000 and Rwanda 2005 Demographic and Health survey data

sets

• Indonesia 1997, Indonesia 2002, Indonesia 2007 and the Indonesia 2012 Demographic

and Health survey data sets

• Kenya 2003, Kenya 2009 and Kenya 2014 Demographic and Health survey data sets
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CHAPTER 2

LITERATURE REVIW

Much has been documented in literature on the effect of interference on fertility. Stein

and Susser [45] in 1975, investigated the effect of massive famines on fertility in Neither-

land, China and Bangladesh and observed that fertility had reduced during the famine

interference and later on rose up sometime after the interference. In 1999, Lindstrom and

Berhanu [21] analysed the impacts of conflict on fertility in Ethiopia and documented

a sharp temporary decline in fertility during the early years of the violence, which was

followed by a high increase in fertility thereafter. Stiegler [47] in 2006 , analysed fertility

before and after the 1994 genocide in Rwanda and documented a decreasing trend of TFR

before the Genocide and a sharp rise after the Genocide. A paper by the Nairobi chronicle

research group [25] in 2008 also reported that the Kenya population had increased rapidly

in the months which followed the post election violence. Hosseini and Abbasi [18] in 2013

investigated the impact of the 2004 Bam erthquake in Iran and documented that Iran’s

fertility had declined in the year 2004 and then rose in the years 2005-2007.

Modeling fertility curves has also attracted the interest of demographers for many years,

and a variety of mathematical models have been proposed in order to describe the age

specific fertility pattern of populations. The Hadwiger function proposed by Hadwiger

in 1940 [14] was one of the earliest models which was fitted to age specific fertility data.

But, this model had a problem of overestimating fertility at the oldest fecund ages. Other

models have been proposed by various researchers, for fitting age specific fertility curves.

For instance, the Brass polynomial [4] proposed in 1960, the modified Gamma and modi-

fied Beta distribution functions [16] both proposed in 1978, the cubic splines [16] proposed

in 1978 and also the quadratic splines Schmertmann [43] proposed in 2003. However, the

polynomial and spline models only fit fertility curves when elevated to a suitable degree.

In 1981, Hoem et.al [17], compared the variations in fits of the cubic splines, the Gamma,

the Hadwiger and the Brass functions in smoothing human fertility, using contemporary

Denish fertility data and documented that among the models, the cubic spline fitted best.
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The Gamma and the Hadwiger functions were second and still fit the data well, while the

Beta and the Brass functions were less accurate.

Schmertmann [43] in 2003 fitted a quadratic spline to the age pattern of fertility, but this

model required 13 parameters to estimate making it a bit complex. In the year 2000,

Gage, [11] extended the application of the Gamma distribution function, the Hadwiger

function and the Brass polynomial to several non-human mammalian populations ( pri-

mates , Asian elephants, and PrzewalskiŠs horse (an extinct species)) . He tested all the

three models and documented that Gamma model provided the best fit for fecundity of

the non human populations. Otumba in 2012 [27], developed a model for optimal fish

harvesting using Leslie Matrix. The fish species fecundity data was observed to follow

a Gamma distribution. Jenna et.al [19] in 2015 used a multi level longitudinal data

to investigate the fertility response to unanticipated mortality shock that had resulted

from the 2004 Tsunami. They observed a positive association between exposure to the

2004Tsunami and subsequent fertility.

For all the models described above, modeling fertility rate with emphasis on interference

effect is scarce in literature. Our study models the fertility rates of the data sets of

Rwanda, Indonesia and Kenya both in the presence and in the absence of interference

with an aim of determining the effect of interference on the fertility rate.
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CHAPTER 3

MODELING NET FERTILITY VALUE IN RELATION TO POPULATION

GROWTH

3.1 Introduction

Population variables depend on properties of the individuals that compose the population.

The two basic parameters of a population are the individuals likelihood of surviving and

the individuals likelihood to produce offsprings which both depend on the individual’s

age. The main parameter estimated by demographic analysis to describe the potential for

population growth is the Net Fertility Rate (NFR). In our study , we used the model life

table approach adapted from Coale and Demeny [6] to estimate the Net fertility value F0

(commonly known as the Net Fertility Rate (NFR)), which we then linked to population

growth.

3.2 Model life table Assumptions

It is assumed that in a life table;

• The population is closed . This is a population whose net migration is Zero hence

not affecting the size of the population. Change in size of a closed population is as

a result of number of births and number of deaths only.

• The population is stationary. This refers to a population in which none of the

population variables change overtime. The annual number of births, the annual

number of deaths, population size and the sizes of age groups are all constant.

• Deaths and births are evenly spread over the year.
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3.3 Some Basic Model Life Table Variable Notations

Table 3.1: Some Basic Model Life table Variables

Variable Definition

l0 The radix of the life table. This is a cohort of some

arbitrary number of births on which the life table is based.

lx The number of individuals who survive to age x

sx The probability that an individual survives to age x.

sx = lx
l0

px The probability that an individual, alive at age x,

survives to age (x + 1).

px = lx+1
lx

dx The number of deaths between ages x and (x + 1)

dx = lx − lx+1

qx The probability of an individual alive at age x, dying

in the age intervals x to x + 1

qx = dx

lx

mx The number of female offsprings produced

per individual at age x

3.3.1 Basic Reproduction Number

In epidemiology, the transmissibility of an infection according to Fraser [10], can be quan-

tified by its basic reproduction number Ro, which is defined as the mean number of

secondary infections produced by a single infection into a completely susceptible host

population. For many simple epidemic processes, this parameter determines a threshold:

whenever Ro > 1, a typical infective gives rise, on average, to more than one secondary

infection, leading to an epidemic. In contrast, when Ro < 1, infectious individual typically

give rise, on average, to less than one secondary infection, and the prevalence of infection

cannot increase.

Lawi [20], in his model of Malaria-meningitis co-infection defined the basic reproduction
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number Ro, as the number of secondary (or meningitis) infections due to a single malaria

(or a single meningitis infective) individual. When Ro < 1, then an infectious individual

causes on average less than one new infection and the disease does not invade the pop-

ulation, while on the other hand when Ro > 1, then an infectious individual causes on

average more than one new infection and the disease invades and persists in the popula-

tion.

In our context, Basic reproduction number R0, may represent the Net Reproduction value

(number) or the Net Reproduction Rate (NRR), which refers to the average number of

female offsprings produced by an individual in her reproductive lifetime into a popula-

tion. The word ‘individual’ is used here to refer to a woman of child bearing age which

in conventional statistics usage is a woman aging between 15 to 49 years old.
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3.3.2 Determination of Net Reproduction Number and Net Fertility Number

Net reproduction number, R0 refers to the average number of female offsprings produced

by an individual in her reproductive lifetime into a population. The word ‘individual’ in

this context, refers to a woman of child bearing age (15-49 years). Using the model life

table [6];

sx = probability that an individual survives to age x

mx = the number of female offsprings produced

by an individual at age x,

sxmx = average number of female offsprings

produced by an individual at age x.

Summing sxmx across all ages, gives the average number of female offsprings produced by

an individual over her reproductive lifetime hence, the Net Reproduction Number, R0.

R0 =
49∑

x=15
sxmx (3.1)

Assuming that each woman produces female and male offsprings in the ratio 1 : 1 , then,

mx = 1
2 of the total number of offsprings born to an individual at age x.

If we let F0 be the average number of offsprings produced by an individual over her life-

time, then,

R0 = F0

2
(3.2)

F0 = 2
( 49∑

x=15
sxi

mxi

)
(3.3)

Case 1: If F0 = 2 , the population remains stable.

Case 2: If F0 < 2 , the population shrinks.

Case 3: If F0 > 2 , the population is increases.

Case 4: If we let ρ quantify the magnitude of the presence of interference effect, such

that, ρ ≥ 1 ,and that, ρF0 > 2, the population increases.
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Determination of Generation time

Generation time (T) refers to the time it takes for a new born baby girl to produce a baby

girl [46].

Recall; sxmx is the average number of female offsprings born to a female at age x.

By weighting each female offspring by age of the mother ‘x’ when each was born , and sum-

ming across all the female offspring born in her reproductive life, we obtain (∑49
x=15 xsxmx).

And dividing the result by (Fo

2 ), gives us the mean age of a female when each of her female

offspring was born.

T =
∑49

x=15 xsxmx∑49
x=15 sxmx

(3.4)

T =
∑49

x=15 xsxmx
1
2Fo

(3.5)

T = 2(∑49
x=15 xsxmx)

Fo

(3.6)

Case 1 If we let T
′ be the generation time for exact replacement, F0 = 2, then

T
′ =

19∑
x=15

xsxmx (3.7)

Case 2: If we let T
′′ be the generation time for F0 < 2, then, T

′′
> T

′ , Generation

time is therefore increased. So, it takes more time for a cohort to replace itself and the

population shrinks.

Case 3: If we let T
′′′ be the generation time for F0 > 2, then, T

′′′
< T

′ , Generation time

is therefore decreased. So, hence it takes less time for a cohort to replace itself and the

population increases.

19



Net Fertility Value and Population Growth.

R0 represent a multiplicative factor which converts original population to a new popu-

lation one generation later in the relationship Nt = N0(R0)t, (Pianka, 2016), where, N0

represents the population at time Zero (the present generation), and Nt represents the

population after time t (later generation).

Nt = N0(R0)t (3.8)

Nt = N0

(
F0

2

)t

(3.9)

Case 1: - If we let F0 = 2 then this implies that Nt = N0, the population remains stable.

Case 2: - If we let F0 < 2 then this implies that, N
′
t < N0, the population decreases.

Case 3: - If we let F0 > 2 then this implies that, N
′′
t > N0, the population increases.
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CHAPTER 4

MODELING INTERFERENCE FREE DATA

4.1 Introduction

In this chapter, we modeled data sets of Rwanda 1992, Indonesia 2002 and Kenya 2003

and by using Akaikes information Criteria (AIC), we investigate among the probability

distributions (Gamma, Weibull and Lognormal), the probability distribution that pro-

vides the best fit to the interference free data sets.

4.2 Rwanda 1992 fertility data model choice

Descriptive statistics and Graphical techniques were done to help identify candidate dis-

tribution functions for the Rwanda 1992 fertility data .

4.2.1 Histograms for Rwanda 1992 fertility data

The histogram for the Rwanda 1992 fertility data was plotted using R software and

displayed as shown in Figure 4.1 below, (see Appendix A.1.1).
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Figure 4.1: Histogram for Rwanda 1992 fertility data.

In Figure 4.1, we observe that the histogram is positively skewed. The Rwanda 1992

fertility data followed a positively skewed distribution.

4.2.2 Skewness - Kurtosis Plots for Rwanda 1992 fertility data

A skewness-kurtosis plot, proposed by Cullen and Frey in 1999 [7] was done for Rwanda

1992fertility data. The plot helps in the identification from among the positively skewed

family of distributions, the candidate probability distribution that models the data set.

Values of skewness and kurtosis were computed on bootstrap samples and reported as

summary statistics, (see Appendix A.1.2).
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Figure 4.2: Skewness-kurtosis plot for Rwanda 1992 fertility data

Figure 4.2 Summary statistics

Estimated skewness: 0.2043342, Estimated kurtosis: 2.44022

In Figure 4.2, the skewness is non zero and positive (0.20) and kurtosis is platykurtic

(2.44)The non zero skewness reveals lack of symmetry of the empirical distribution.

The kurtosis value quantifies the weight of the tails in comparison to the normal distri-

bution for which the kurtosis equals 3.

From Figure 4.2 Summary statistics, the skewness and the kurtosis combination of the

Rwanda 1992 data is (0.20, 2.44) . On comparing the (square of skewness, kurtosis) com-

bination of the Rwanda 1992 data set(0.04, 2.44) with the (square of skewness, kurtosis)

combinations that can be assumed by other distributions, we observe a consistency of the

Rwanda 1992 data with the Gamma, Weibull and Lognormal distributions whose (square

of skewness, kurtosis) combinations are all about (0.04, 3.2). Our candidate models there-

fore were observed to be, Gamma, Lognormal and Weibull distributions.
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4.2.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Rwanda 1992 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Rwanda

1992 sample data were done by method of maximum likelihood using the R software. The

parameter estimates from the sample data from literature gave the arbitrary values of

the candidate distribution parameters that were used in the Method of MLE to fit the

candidate distributions. and the results were as shown in the Table Table 4.1 below, (see

Appendix A.1.3).

Table 4.1: Gamma, Weibull and Lognormal distributions Parameter

estimates for Rwanda 1992 data

Country and year Distribution Parameter Estimate

Rwanda 1992 Gamma shape 4.731041

rate 0.8039636

Weibull shape 3.449948

scale 5.658448

Lognormal meanlog 1.6362189

sdlog 0.5718458

From Table 4.1, the parameter estimates were then used for Rwanda 1992 data simulation

purposes with respect to the three candidate distributions, which were then fitted to the

simulated data by MLE. The fitted parameter estimates in Table 4.2 below were then

obtained.

4.2.4 Gamma, Weibull and Lognormal distributions fits to Rwanda 1992 fer-

tility data

The parameters of the fitted models were estimated by MLE with the help of R software.

The numerical results, returned by the software were; the fitted parameter estimates (af-

ter the iterative procedure) and the Akaike’s Information Criteria (AIC), (see appendix

A.1.4).
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Table 4.2: Fitted model parameter estimates for Gamma, Weibull

and Lognormal to Rwanda 1992 data

Distribution Parameter Estimate AIC

Gamma shape 4.7675508 128990.5

rate 0.8102551

Weibull shape 2.316357 130270.5

scale 6.653763

Lognormal meanlog 1.6637720 130039.1

sdlog 0.4832737

From Table 4.2 above, we observed that Gamma distribution fitted with the lowest AIC

value as compared to Weibull and Lognormal distribution. Gamma distribution looses

the least amount of information in fitting the Rwanda 1992 data set, as evidenced by the

lowest AIC value that the Gamma parameters recorded. Gamma distribution is therefore

a better model for the Rwanda 1992 data set as compared to Weibull and Lognormal

distributions.

4.2.5 Quality and Goodness of fit test for Model to Rwanda 1992 fertility

data

The density functions of the Gamma, Weibull and Lognormal and the histogram of

Rwanda 1992 were plotted and given in Figure 4.3 below, (see Appendix A.1.5).
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Figure 4.3: Density plots of some distributions on Histogram for Rwanda 1992 fertility data.

From Figure 4.3 above, we see that gamma distribution mentioned earlier fits the data

best.

The quantile - quantile (Q − Q) plot as shown in Figure 4.4 below was also done to give a

graphical technique for testing for the goodness of fit for each model to the Rwanda 1992

fertility data.
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Figure 4.4: Q-Q plots for Gamma, Weibull and Lognormal for Rwanda 1992 fertility data.

In Figure 4.4, most of the Gamma points lie along the empirical line hence Gamma dis-

tribution is a better model for the Rwanda 1992 as compared to the Weibull and the

Lognormal distributions.

4.3 Indonesia 2002 fertility data model choice

Descriptive statistics and Graphical techniques were used to identify the candidate dis-

tribution for the Indonesia 2002 fertility data.

4.3.1 Histograms for Indonesia 2002 fertility data

The histogram for the Indonesia 2002 fertility data was plotted using R software and

displayed as shown below, (see Appendix A.2.1).
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Figure 4.5: Histogram for Indonesia 2002 fertility data.

From Figure 4.5, histogram was positively skewed hence, candidate models for Indonesia

2002 fertility data were positively skewed.

4.3.2 Skewness - Kurtosis Plots for Indonesia 2002 fertility data

A skewness-kurtosis plot was done for Indonesia 2002 and positively skewed candidate

distributions identified. Values of skewness and kurtosis were computed on bootstrap

samples and reported as summary statistics, (see Appendix A.2.2).
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Figure 4.6: Skewness-kurtosis plot for Indonesia 2002 fertility data.

Figure 4.6 summary statistics

Estimated skewness: 1.255609, Estimated kurtosis: 5.395964

Figure 4.6 shows that the skewness is non Zero and positive (1.26) and kurtosis is lep-

tokurtic (5.40) for the Indonesia 2002 data. The non zero skewness from the graph reveals

lack of symmetry of the empirical distribution.

From the Cullen and Frey graph (Figure 4.6), the skewness and the kurtosis combination

of the Indonesia 2002 data is (1.26, 5.40) . On comparing the (square of skewness, kurto-

sis) combination of the Indonesia 2002 data set(1.58, 5.40) with the (square of skewness,

kurtosis) combinations that can be assumed by other distributions, we observe a consis-

tency of the Indonesia 2002 data with the Gamma, Weibull and Lognormal distributions

whose (square of skewness, kurtosis) were about (1.58, 5.2), (1.58, 5.5) and (1.58, 6.0) re-

spectively. Our candidate models therefore, were Gamma, Lognormal and Weibull.
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4.3.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Indonesia 2002 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Indonesia

2002 sample data were done by method of maximum likelihood and the values shown in

Table 4.3 below, (see Appendix A.2.3).

Table 4.3: Gamma, Weibull and Lognormal distributions

Parameter estimates for Indonesia 2002 data

Distribution Parameter Estimate

Gamma shape 1.974798

rate 0.7410074

Weibull shape 0.8856127

scale 4.229692

Lognormal meanlog 0.7045324

sdlog 0.7994178

From Table 4.3, the parameter estimates were then used for Indonesia 2002 data simula-

tion purposes with respect to the three candidate distributions, which were then fitted to

the simulated data by MLE. The fitted parameter estimates in Table 4.3 below were then

obtained.

4.3.4 Gamma, Weibull and Lognormal distributions fits to Indonesia 2002

fertility data

The parameters of the fitted models were estimated by maximum likelihood method us-

ing R software and the parameter estimates and the Akaike’s Information Criteria (AIC)

determined as shown in Table 4.4 below, (see Appendix A.2.4).
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Table 4.4: Fitted model Parameter estimates for Gamma, Weibull

and Lognormal distributions to Indonesia 2002 fertility data

Distribution parameter estimate AIC

Gamma shape 2.0218812 28476.32

rate 0.7651225

Weibull shape 1.492607 28574.74

scale 2.934566

Lognormal meanlog 0.7045505 29223.92

sdlog 0.8008027

From Table 4.4, Gamma distribution fitted with the lowest AIC value. Gamma dis-

tribution therefore lost the least information when used to generate the Indonesia 2002

fertility data set hence was a better model for the data compared to Weibull or Lognormal.

4.3.5 Quality and Goodness of fit test for Model to Indonesia 2002 fertility

data

The density functions of the Gamma, Weibull and Lognormal and the histogram of In-

donesia 2002 were plotted and given in Figure 4.7 below for the quality of fit assessment,

(see Appendix A.2.5).
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Figure 4.7: Density plots of some distributions on Histogram for Indonesia 2002 fertility data.

From Figure 4.7, Gamma distribution as mentioned earlier fits the data best.

The Q − Q plots for Gamma, Weibull and Lognormal for Indonesia 2002 were plotted in

Figure 4.8 below for graphical testing for the goodness of fit.
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Figure 4.8: Q-Q plots for Gamma, Weibull and Lognormal for Indonesia 2002 fertility data.

Gamma distribution fits the data best to the Indonesia 2002 fertility data as most of the

Gamma point lied along the empirical straight line. Gamma distribution was observed to

be the best fitting model for the Indonesia 2002 fertility data.

4.4 Kenya 2003 fertility data model choice

Descriptive statistics and Graphical techniques were used to identify the candidate dis-

tribution for the Kenya 2003 fertility data .

4.4.1 Histograms for Kenya 2003 fertility data

The histogram for the Kenya 2003 fertility data was plotted using R software and dis-

played as shown below, (see Appendix A.3.1).
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Figure 4.9: Histogram for Kenya 2003 fertility data.

Figure 4.9 above shows that the histogram is positively skewed. The candidate distribu-

tions for the Kenya 2003 fertility data are positively skewed.

4.4.2 Skewness - Kurtosis Plots for Kenya 2003 fertility data

A skewness-kurtosis plot [7] was done for Kenya 2003 and positively skewed candidate

distributions identified. (see Appendix A.3.2).
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Figure 4.10: Skewness-kurtosis plot for Kenya 2003 fertility data

Figure 4.10 Summary Statistics

Estimated skewness: 1.12774, Estimated kurtosis: 4.051652

Figure 4.10 shows that the skewness is non Zero and positive (1.13) and kurtosis is lep-

tokurtic (4.05) for the Kenya 2003 data. The non zero skewness from the graph reveals

lack of symmetry of the empirical distribution.

From the Cullen and Frey graph (Figure 4.10) the skewness and the kurtosis combination

of the Kenya 2003 data is (1.13, 4.05) . On comparing the (square of skewness, kurtosis)

combination of the Kenya 2003 data set((1.28, 4.05) ) with the (square of skewness, kur-

tosis) combinations that can be assumed by other distributions, we observe a consistency

of the Kenya 2003 data with the Gamma, Weibull and Lognormal distributions whose

(square of skewness, kurtosis) were about (1.28, 4.8), (1.28, 5.0) and (1.28, 5.2) respec-

tively. Our candidate models therefore, were Gamma, Lognormal and Weibull.
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4.4.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Kenya 2003 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Kenya 2003

sample data was done by method of maximum likelihood and the values are as shown in

Table 4.5 below, (see Appendix A.3.3).

Table 4.5: Gamma, Weibull and Lognormal distributions

parameter estimates for Kenya 2003 data
Distribution Parameter Value

Gamma shape 1.908814

rate 0.5442879

Weibull shape 1.168336

scale 4.700725

Lognormal meanlog 0.9949621

sdlog 0.8031937

From Table 4.5, the parameter estimates were then used for Kenya 2003 data simulation

purposes with respect to the three candidate distributions, which were then fitted to the

simulated data by MLE. The fitted parameter estimates in Table 4.6 below were then

obtained.

4.4.4 Gamma, Weibull and Lognormal distributions fits to Kenya 2003 fer-

tility data

The parameters of the fitted models were estimated by maximum likelihood method us-

ing R software and the parameter estimates and the Akaike’s Information Criteria (AIC)

determined as shown in Table 4.6 below, (see Appendix A.3.4).
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Table 4.6: Fitted model Parameter estimates for Gamma, Weibull

and Lognormal distributions to Kenya 2003 fertility data

Distribution parameter estimate AIC

Gamma shape 1.9894204 6070.594

rate 0.5782404

Weibull shape 1.486736 6084.772

scale 3.818015

Lognormal meanlog 0.9636709 6201.48

sdlog 0.8060106

From Table 4.6, Gamma distribution fitted with the lowest AIC value. Gamma distribu-

tion therefore lost the least information when used to generate the Kenya 2003 fertility

data set hence was a better model for the data compared to Weibull or Lognormal.

4.4.5 Quality and Goodness of fit test for Model to Kenya 2003 fertility data

The density functions of the Gamma, Weibull and Lognormal and the histogram of Kenya

2003 were plotted and given in the Figure 4.11 below for the quality of fit assessment,

(see Appendix A.3.5).
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Figure 4.11: Density plots of some distributions on Histogram for Kenya 2003 fertility data

From Figure 4.11, Gamma distribution as mentioned earlier fits the data best.

The Q − Q plots for Gamma, Weibull and Lognormal for Kenya 2003 were plotted in

Figure 4.12 below for graphical testing for the goodness of fit.
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Figure 4.12: Q-Q plots for Gamma, Weibull and Lognormal for Kenya 2003 fertility data.

Gamma distribution fits the data best to the Kenya 2003 fertility data as most of the

Gamma point lied along the empirical straight line. Gamma distribution was observed to

be the best fitting model for the Kenya 2003 fertility data.
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CHAPTER 5

MODELING DATA CONTAINING INTERFERENCE EFFECT

5.1 Introduction

In this chapter, we model the data sets of Rwanda 2000, Indonesia 2007 and Kenya 2009

which contain the effect of interference. Using Akaikes information Criteria (AIC), we

investigated among the probability distributions (Gamma, Weibull and Lognormal), the

distribution that best fits the data sets containing the effect of interference.

5.2 Rwanda 2000 fertility data model choice

Descriptive statistics and Graphical techniques were done to help identify candidate dis-

tribution functions for the Rwanda 2000 fertility data .

5.2.1 Histogram for Rwanda 2000 fertility data

The histogram for the Rwanda 2000 fertility data was plotted using R software and

displayed as shown below, (see Appendix B.1.1).
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Figure 5.1: Histogram for Rwanda 2000 fertility data.

From Figure 5.1 above, the histogram was observed to be positively skewed. The

candidate distributions were therefore positively skewed.

5.2.2 Skewness - Kurtosis Plots for Rwanda 2000 fertility data

A skewness-kurtosis plot, proposed by Cullen and Frey in 1999 [7], and provided by the

‘descdist’ function in the R software was done. Values of skewness and kurtosis were

computed on bootstrap samples and reported on skewness-kurtosis plot as shown below,

(see Appendix B.1.2).
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Figure 5.2: Skewness-kurtosis plot for Rwanda 2000 fertility data

Figure 5.2 summary statistics

Estimated skewness: 0.1583683, Estimated kurtosis: 2.536246

The non zero skewness from the graph reveals lack of symmetry of the empirical distri-

bution.

The kurtosis value quantifies the weight of the tails in comparison to the normal distri-

bution for which the kurtosis equals 3.

From the Cullen and Frey graph, the skewness and the kurtosis combination of the Rwanda

2000 data is (0.16, 2.54) . On comparing the (square of skewness, kurtosis) combination of

the Rwanda 2000 data set(0.03, 4.05) with the (square of skewness, kurtosis) combinations

that can be assumed by other distributions, we observe a consistency of the Rwanda 2000

data with the Gamma, Weibull and Lognormal distributions whose (square of skewness,

kurtosis) all were about (0.03, 3.1). The candidate models therefore, were Gamma, a Log-

normal and Weibull.
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5.2.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Rwanda 2000 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Rwanda 2000

sample data was done by method of maximum likelihood using the R software and the

results are shown in Table 5.1 below, (see Appendix B.1.3).

Table 5.1: Gamma, Weibull and Lognormal distributions

Parameter estimates for Rwanda 2000 data

Distribution Parameter Value

Gamma shape 4.946252

rate 0.8113425

Weibull shape 3.658164

scale 5.996006

Lognormal meanlog 1.7299596

sdlog 0.4728956

From Table 5.1, the parameter estimates were then used for Rwanda 2000 data simu-

lation purposes with respect to the three candidate distributions, which were then fitted

to the simulated data by MLE. The fitted parameter estimates in Table 5.2 below were

then obtained.
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5.2.4 Gamma, Weibull and Lognormal distributions fits to Rwanda 2000 fer-

tility data

The parameters of the fitted models were estimated by maximum likelihood using R soft-

ware.

The numerical results, returned by the software were; the parameter estimates and the

Akaike’s Information Criteria (AIC), (see Appendix B.1.4).

Table 5.2: Fitted model parameter estimates for Gamma, Weibull

and Lognormal to Rwanda 2000 data

Distribution parameter estimate AIC

Gamma shape 4.9727711 92923.67

rate 0.8230042

Weibull shape 2.354821 93950.42

scale 7.142197

Lognormal meanlog 1.5300374 93544.51

sdlog 0.4711724

From Table 5.2 above, we see that Gamma distribution fitted with the lowest AIC value,

hence a better model for the Rwanda 2000 data set than Weibull and Lognormal distri-

butions.
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5.2.5 Quality and Goodness of fit test for Model to Rwanda 2000 fertility

data

The density functions of the Gamma, Weibull and Lognormal and the histogram of

Rwanda 2000 were plotted as shown in Figure 5.3 below, (see Appendix B.1.5).
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Figure 5.3: Density plots of some distributions on Histogram for Rwanda 2000 fertility data.

From Figure 5.3 above, we see that gamma as given earlier fits the data best.

The goodness of fit of the quantile - quantile plot for the comparison of the fitted models

and the empirical distributions was also done to assess the quality of fit of the models to

Rwanda 2000 data, and the result displayed in Figure 5.4 below .
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Figure 5.4: Q-Q plot for Gamma, Weibull and Lognormal for Rwanda 2000 fertility data.

From Figure 5.4, Gamma distribution fits the data better than the Weibull and the Log-

normal distributions.

5.3 Indonesia 2007 fertility data model choice

Exploratory data analysis by the use of descriptive statistics and Graphical techniques

were done to help identify candidate distribution functions for the Indonesia 2007 fertility

data .

5.3.1 Histograms for Indonesia 2007 fertility data

The histogram for the Indonesia 2007 fertility data was plotted using R software and

displayed as shown below, (see Appendix B.2.1).
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Figure 5.5: Histogram for Indonesia 2007 fertility data

In Figure 5.5 above, we observe that the Histogram is positively skewed. The Indonesia

2007 fertility data was positively skewed hence candidate distributions were from a

family of positively skewed distributions.

5.3.2 Skewness - Kurtosis Plots for Indonesia 2007 fertility data

A skewness-kurtosis plot, proposed by Cullen and Frey in 1999 [7], and provided by the

‘descdist’ function in the R software was done. Values of skewness and kurtosis were

computed on bootstrap samples and were reported on skewness-kurtosis plot as shown in

Figure 5.6 below, (see Appendix B.2.2).
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Figure 5.6: Skewness - Kurtosis Plots for Indonesia 2007 fertility data

Figure 5.6 summary statistics

Estimated skewness: 1.099586, Estimated kurtosis: 4.241901

The non zero skewness from the graph reveals lack of symmetry of the empirical distri-

bution.

The kurtosis value quantifies the weight of the tails in comparison to the normal distri-

bution for which the kurtosis equals 3.

From the Cullen and Frey graph, the skewness and the kurtosis combination of the In-

donesia 2007 data is (1.10, 4.24) . On comparing the (square of skewness, kurtosis) combi-

nation of the Indonesia 2007 data set((1.21, 4.24) ) with the (square of skewness, kurtosis)

combinations that can be assumed by other distributions, we observe a consistency of the

Indonesia 2007 data with the Gamma, Weibull and Lognormal distributions whose (square

of skewness, kurtosis) were about (1.21, 4.7), (1.21, 4.9) and (1.21, 5.1) respectively. Our

candidate models therefore, were Gamma, Lognormal and Weibull.
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5.3.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Indonesia 2007 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Indonesia

2002 sample data was done by method of maximum likelihood using the R software and

the results are given in tables 4.1 below, (see Appendix B.2.3).

Table 5.3: Gamma, Weibull and Lognormal distributions

Parameter estimates for Indonesia 2007 data

Distribution Parameter Value

Gamma shape 3.09893

rate 0.7885535

Weibull shape 1.939006

scale 4.038839

Lognormal meanlog 1.1958164

sdlog 0.6176233

From Table 5.3, the parameter estimates were then used for Indonesia 2007 data simula-

tion purposes with respect to the three candidate distributions, which were then fitted to

the simulated data by MLE. The fitted parameter estimates in Table 5.4 below were then

obtained.

5.3.4 Gamma, Weibull and Lognormal distributions fits to Indonesia 2007

fertility data

The parameters of the fitted models were estimated by maximum likelihood method avail-

able in the ‘fitdistrplus’ in the R software.

The numerical results, returned by the software were; the parameter estimates and the

Akaike’s Information Criteria (AIC), (see Appendix B.2.4).
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Table 5.4: Fitted model Parameter estimates for Gamma, Weibull

and Lognormal distributions to Indonesia 2007 fertility data

Distribution parameter estimate AIC

Gamma shape 3.0914084 356450.6

rate 0.7888381

Weibull shape 1.860316 359050.4

scale 4.428022

Lognormal meanlog 1.1954818 361750.3

sdlog 0.6165636

From Table 5.4 above, Gamma distribution fitted with the lowest AIC value, which means

that Gamma distribution fits the data better than Weibull and Lognormal distributions.
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5.3.5 Quality and Goodness of fit test for Model to Indonesia 2007 fertility

data

The density functions of the Gamma, Weibull and Lognormal and the histogram of In-

donesia 2007 were plotted and given in Figure 5.7 below, (see Appendix B.2.5).
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Figure 5.7: Density plots of some distributions on Histogram for Indonesia 2007 fertility data

From Figure 5.7 we see that gamma as given earlier fits the data best.

To assess the quality of fit, quantile-quantile plot for the comparison of the Gamma,

Weibull and Lognormal fitted models and the empirical distribution were also done and

the result of this displayed in Figure 5.8 below .
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Figure 5.8: Q-Q plots for Gamma, Weibull and Lognormal for Indonesia 2007 fertility data.

From Figure 5.8, most of the Gamma points lied along the empirical straight line. There-

fore, Gamma distribution fitted the Indonesia 2007 fertility data better than Weibull and

Lognormal.

5.4 Kenya 2009 fertility data model choice

Exploratory data analysis by the use of descriptive statistics and Graphical techniques

were done to help identify candidate distribution functions for the Kenya 2009 fertility

data.
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5.4.1 Histograms for Kenya 2009 fertility data

The histogram for the Kenya 2009 fertility data was plotted using R software and displayed

as in Figure 5.9 below, (see appendix B.3.1).
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Figure 5.9: Histogram for Kenya 2009 fertility data.

From Figure 5.9, the Histogram was positively skewed. Candidate distributions were

therefore, positively skewed.

5.4.2 Skewness - Kurtosis Plots for Kenya 2009 fertility data

A skewness-kurtosis plot, [7], was done. Values of skewness and kurtosis were computed on

bootstrap samples and reported on skewness-kurtosis plot as shown below, (see Appendix

B.3.2).
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Figure 5.10: Skewness-kurtosis plot for Kenya 2009 fertility data

Figure 5.10 summary statistics

Estimated skewness: 0.5378432, Estimated kurtosis: 2.884296

The non zero skewness from the graph reveals lack of symmetry of the empirical distri-

bution.

The kurtosis value quantifies the weight of the tails in comparison to the normal distri-

bution for which the kurtosis equals 3.

From the Cullen and Frey graph, the skewness and the kurtosis combination of the Kenya

2009 data is (0.54, 2.88) . On comparing the (square of skewness, kurtosis) combination of

the Kenya 2009 data set(0.29, 2.88) with the (square of skewness, kurtosis) combinations

that can be assumed by other distributions, we observe a consistency of the Kenya 2009

data with the Gamma, Weibull and Lognormal distributions whose (square of skewness,

kurtosis) were about (0.29, 3.3), (0.29, 3.4) and (0.29, 3.5) respectively. Our candidate

models therefore, were Gamma, Lognormal and Weibull.
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5.4.3 Parameter estimates for Gamma, Weibull and Lognormal distributions

from Kenya 2009 data

Gamma, Weibull and Lognormal distributions parameter estimates from the Kenya 2009

sample data was done by method of maximum likelihood using the R software and the

results were reported in Table 5.5 below, (see Appendix B.3.3).

Table 5.5: Gamma, Weibull and Lognormal distributions

Parameter estimates for Kenya 2009 data

Distribution Parameter Value

Gamma shape 3.845601

rate 0.7286859

Weibull shape 2.826407

scale 5.143644

Lognormal meanlog 1.5335975

sdlog 0.5425868

From Table 5.5, the parameter estimates were then used for Kenya 2009 data simulation

purposes with respect to the three candidate distributions, which were then fitted to the

simulated data by MLE. The fitted parameter estimates in Table 5.6 below were then

obtained.

5.4.4 Gamma, Weibull and Lognormal distributions fits to Kenya 2009 fer-

tility data

The parameters of the fitted models were estimated by maximum likelihood method using

R software.

The numerical results, returned by the software were; the parameter estimates and the

Akaike’s Information Criteria (AIC), (see Appendix B.3.4).
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Table 5.6: Fitted model Parameter estimates for Gamma, Weibull

and Lognormal distributions to Kenya 2003 fertility data

Distribution parameter estimate AIC

Gamma shape 3.7706601 104686.9

rate 0.7155335

Weibull shape 2.059387 105522.9

scale 5.964338

Lognormal meanlog 1.5235397 105776.3

sdlog 0.5512704

From Table 5.6 above, we see that Gamma distribution fitted with the lowest AIC

value, hence Gamma distribution fitted the data better than Weibull and Lognormal

distributions.

5.4.5 Quality and Goodness of fit test for Model to Kenya 2009 fertility data

The density functions of the Gamma, Weibull and Lognormal and the histogram of Kenya

2009 were plotted as shown in Figure 5.11 below, (see Appendix B.3.5).
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Figure 5.11: Density plots of some distributions on Histogram for Kenya 2009 fertility data

From Figure 5.11 above, Gamma as given earlier fits the data best.

The goodness of fit of the quantile-quantile plot for the comparison of the fitted models

and the empirical distributions was also done and the result displayed in Figure 5.12 be-

low .
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Figure 5.12: Q-Q plot for Gamma, Weibull and Lognormal for Kenya 2009 fertility data.

Again Gamma distribution fits the Kenya 2009 fertility data best.
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CHAPTER 6

SUMMARY OF RESULTS, CONCLUSION AND RECOMENDATIONS

This chapter contains the summary of results obtained from modeling fertility rate of the

data sets of Rwanda , Indonesia and Kenya both in the presence and also in the absence

of interference. It also contains conclusions drawn from the summaries as well as the

recommendations for future work.

6.1 Summary of Results

This study was set up with an objective of modeling the fertility rate data in the presence

of interference. We determined the effect of interference in the fertility rates of Rwanda,

Indonesia and Kenya by analyzing the fertility rate data sets of the mentioned countries

before and after respective interferences which took place in the respective countries, and

summarized our results as shown in Section 6.2 below. Using the life table approach, we

modeled fertility rate by determining the Net fertility value, F0 and linked it to popu-

lation growth. We also fitted probability distributions to both the data sets which were

interference free (Rwanda 1992, Indonesia 2002 and Kenya 2003) and also to those which

had the interference effect in them (Rwanda 2000, Indonesia 2007 and Kenya 2009), and

determined the effect of interference on the probability distributions.

6.2 Effect of interference on fertility rates of Rwanda, Indonesia and Kenya

We determined the effect of interference in the fertility rates of Rwanda, Indonesia and

Kenya by analyzing the fertility rate data sets of Rwanda, Indonesia and Kenya before

and after respective interferences which took place in the respective countries, and sum-

marized our results in subsections 6.2.1 , 6.2.2 and 6.2.3.

59



6.2.1 Rwanda fertility rate before and after the 1994 Genocide Interference

Harff and Fein [15] refer to Genocide as any form of violent act committed with an aim of

destroying in part or in whole, a national, racial or a religious group of people. It may be

carried out through either killing members of the group, causing serious bodily or mental

harm to members of the group, intentionally inflicting on the group, conditions of life

calculated to bring about its physical destruction in whole or in part, imposing measures

intended to prevent births within the group or even forcibly transferring children of the

group to another group. The Rwanda Genocide, as was reported by Verwimp [49] in the

year 2000 was a mass slaughter of Tutsi group by members of the Hutu majority, with an

aim of eliminating them completely from existence. The violent act cleared 75 percent of

the Tutsi group and claimed a total of 800,000 Rwandan lives. We carried out an analysis

of the fertility rate of Rwanda in the years 1992, 2000 and 2005 DHS data sets [38, 39, 40],

using R statistical software (see Appendix C.1.1) and displayed the results in Table 6.1

below.

Table 6.1: Fertility rate of Rwanda in the years 1992, 2000 and 2005

Year Fertility rate

1992 5.885

2000 6.330

2005 5.876

From Table 6.1, the fertility rate of Rwanda in the year 1992 was 5.885. The rate then

rose to 6.330 in the year 2000 and later on reduced to 5.876 in the year 2005. We observed

from Table 6.1 that the fertility rate had increased in the Rwanda 2000 data set which

had the Genocide interference effect.

6.2.2 Indonesia fertility rate before and after the 2004 Tsunami Interference

In the Macmillan English Dictionary [22], Tsunami is defined as a very large wave or se-

ries of waves caused when an earthquake moves a large quantity of water in the sea. The
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World Health Organization [50] and Dudley [9] reported that a massive earthquake which

measured 9.3 on the Richter scale struck the west of Northern Sumatra in 2004, triggered

a powerful Tsunami which swept the coasts and neighboring countries such as Indonesia,

Sri Lanka, India and Thailand, with Aceh province in Indonesia being the hardest hit

and suffering the highest loss of life. The 2004 Indian Ocean Tsunami was exceptional in

magnitude causing death toll of about 170,000 people and displacement of over 500,000

people in countries bordering the Indian ocean as was documented by Athukorala and

Resosudarmo [2], Doocy [8] and [12]. We carried out an analysis of the fertility rate of

Indonesia in the years 1997, 2002, 2007 and 2012 DHS data sets [31, 32, 33, 34], using R

statistical software (see Appendix C.1.2) and displayed the results in Table 6.2 below.

Table 6.2: Fertility rate of Indonesia in the years 1997,2002, 2007 and 2012.

Year Fertility rate

1997 2.995

2002 2.665

2007 3.930

2012 3.618

From Table 6.2, the fertility rate of Indonesia in the year 1997 was 2.995. This rate fell to

2.665 in the year 2002, then later rose up to 3.930 in 2007, and later on reduced to 3.618

in the year 2012. We observed from Table 6.2 that the fertility rate had increased in the

Indonesia 2007 data set which had the Tsunami interference effect.

6.2.3 Kenya fertility rate before and after the 2008 Post election violence

Interference

Samir [42] reported that in January 2008, Kenya underwent a post election violence follow-

ing the 30th December, 2007 results of a hotly-contested presidential election. Opposition

leader Raila Odinga and his supporters rejected the declared victory of incumbent pres-

ident Mwai Kibaki, alleging it was the result of rigging. Protests went into widespread
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violence as decades of ethnic rivalry blew out of control. The violence claimed the lives of

more than 1,200 people and about 600,000 people displaced into temporary camps. We

carried out an analysis of the fertility rate of Kenya in the years 2003, 2009 and 2014 DHS

data sets [35, 36, 37], using R statistical software (see Appendix C.1.3) and displayed the

results in Table 6.3 below.

Table 6.3: Fertility rate of Kenya in the years 2003, 2009 and 2014.

Year Fertility rate

2003 3.507

2009 5.277

2014 3.410

From Table 6.3, the fertility rate of Kenya in the year 2003 was 3.507. This rate rose up

to 5.277 in the year 2009, and later on reduced to 3.410 in the year 2014. We observed

from table 6.3 that the fertility rate had increased in the Kenya 2009 data set which had

the Post election violence interference effect.

6.3 Determination of effect of interference on fertility rate

We fitted probability distribution functions to both the data sets which were interference

free (Rwanda 1992, Indonesia 2002 and Kenya 2003) and also to those which had the in-

terference effect in them (Rwanda 2000, Indonesia 2007 and Kenya 2009), and determined

the effect of interference on the fertility rate data sets.

6.3.1 The Rwanda 1992 fertility findings

In Figure 4.1 we observed that the Rwanda 1992 fertility data was positively skewed . In

Figure 4.2 we observed that the Kurtosis (2.44022) and skewness(0.2043342) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Among the

three positively skewed distributions, Gamma distribution was observed to give the best
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fit (Figures 4.3 and 4.4). In addition, in Table 4.2 Gamma probability density function

had fitted the Rwanda 1992 fertility data with the lowest AIC value hence was the best

fitting density function with a shape parameter of 4.768 and a rate parameter of 0.810.

6.3.2 The Rwanda 2000 fertility findings

In Figure 5.1 we observed that the Rwanda 2000 fertility data was positively skewed . In

Figure 5.2 we observed that the Kurtosis (2.536246) and skewness(0.1583683) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Among the

three positively skewed distributions namely Gamma, Weibull and Lognormal that were

fitted to the Rwanda 2000 fertility data in Figures 5.3 and 5.4 , Gamma distribution was

observed to give the best fit. In addition, in Table 5.2 Gamma probability density func-

tion had fitted the Rwanda 2000 fertility data with the lowest AIC value hence was the

best fitting density function with a shape parameter of 4.973 and a rate parameter of 0.823.

6.3.3 Gamma distribution fitted on Rwanda 1992 versus Gamma distribu-

tion fitted on Rwanda 2000 fertility rate data

The summary of the results from Table 4.2 and Table 5.2 were as follows;

Table 6.4: Summary of parameter estimates for Gamma

fit on data sets of Rwanda 1992 and Rwanda 2000.

year shape parameter rate parameter

1992 4.768 0.810

2000 4.973 0.823

From Table 6.4, we observe an increase in both the shape (α) and the rate ( 1
β

) parameters

of the Gamma distribution.

The shape parameter α increased by 4.3 percent in the year 2000 compared to the year

1992.
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The rate parameter 1
β

increased by 1.6 percent in the year 2000 compared to the year

1992.

The Figure 6.1 shows a graph of Gamma distribution fitted to Rwanda 1992 and also to

Rwanda 2000 fertility data sets on the same scale (see Appendix C.2.1)

Gamma functions on Rwanda 1992 and 2000 data

 Number of children

G
am

m
a 

di
st

rib
ut

io
n

0.
00

0.
05

0.
10

0.
15

0 5 10 15 20 25 30

shape=4.768 , rate=0.810

shape=4.973 , rate=0.823

Gamma fit to Rwanda 1992 data
Gamma fit to Rwanda 2000 data

Figure 6.1: Gamma fit on Rwanda 1992 and on Rwanda 2000 data on the same scale

From Figure 6.1 above, the peakedness of the Gamma distribution fitted to Rwanda 2000

data had decreased and its range had also become broader as compared to the Gamma

fitted to the Rwanda 1992 one.

6.3.4 The Indonesia 2002 fertility findings

In Figure 4.5 we observed that the Indonesia 2002 fertility data was positively skewed . In

Figure 4.6 we observed that the Kurtosis (5.395964) and skewness(1.255609) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Among the

three positively skewed distributions namely Gamma, Weibull and Lognormal that were

fitted to the Indonesia 2002 fertility data in Figures 4.7 and 4.8 , Gamma distribution
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was observed to give the best fit. Also, in Table 4.4 Gamma probability density function

had fitted the Indonesia 2002 fertility data with the lowest AIC value hence was the best

fitting density function with a shape parameter of 2.022 and a rate parameter of 0.765.

6.3.5 The Indonesia 2007 fertility findings

In Figure 5.5 we observed that the Indonesia 2007 fertility data was positively skewed . In

Figure 5.6 we observed that the Kurtosis (4.241901) and skewness(1.099586) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Gamma

distribution was observed to give the best fit (Figures 5.7 and 5.8 ). In addition, in Table

5.4 Gamma probability density function had fitted the Indonesia 2007 fertility data with

the lowest AIC value hence was the best fitting density function with a shape parameter

of 3.091 and a rate parameter of 0.789.
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6.3.6 Gamma distribution fitted on Indonesia 2002 versus Gamma distribu-

tion fitted on Indonesia 2007 fertility rate data.

The summary of the results from Table 4.4 and Table 5.4 were as follows;

Table 6.5: Summary of parameter estimates for Gamma

fit on data sets of Indonesia 2002 and Indonesia 2007

year shape parameter rate parameter

2002 2.022 0.765

2007 3.091 0.789

From Table 6.5, we observe an increase in both the shape (α) and the rate ( 1
β

) parameters

of the Gamma distribution.

The shape parameter α increased by 52.9 percent in the year 2007 compared to the year

2002.

The rate parameter 1
β

increased by 3.1 percent in the year 2007 compared to the year

2002.

Figure 6.2 below shows a graph of Gamma distribution fitted to Indonesia 2002 and also

to Indonesia 2007 fertility data sets on the same scale (see Appendix C.2.2)
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 Gamma function on Indonesia 2002 and 2007 data
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Figure 6.2: Gamma fit on Indonesia 2002 and on Indonesia 2007 data on the same scale

From Figure 6.2 above, the peakedness of the Gamma distribution fitted to Indonesia

2007 data had decreased and its range had become broader as compared to the Gamma

fitted to the Indonesia 2002 one.

6.3.7 The Kenya 2003 fertility findings

In Figure 4.9 we observed that the Kenya 2003 fertility data was positively skewed . In

Figure 4.10 we observed that the Kurtosis (4.051652) and skewness(1.12774) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Among the

three positively skewed distributions namely Gamma, Weibull and Lognormal that were

fitted to the Kenya 2003 fertility data in Figures 4.11 and 4.12 , Gamma distribution

was observed to give the best fit. In addition, in Table 4.6 Gamma probability density

function had fitted the Kenya 2003 fertility data with the lowest AIC value hence was
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the best fitting density function with a shape parameter of 1.989 and a rate parameter of

0.578.

6.3.8 The Kenya 2009 fertility findings

In Figure 5.9 we observed that the Kenya 2009 fertility data was positively skewed . In

Figure 5.10 we observed that the Kurtosis (2.884296) and skewness(0.5378432) of the data

was consistent with either a Gamma, a Weibull or a Lognormal distribution. Among the

three positively skewed distributions namely Gamma, Weibull and Lognormal that were

fitted to the Kenya 2009 fertility data in Figures 5.11 and 5.12 , Gamma distribution

was observed to give the best fit. In addition, in Table 5.6 Gamma probability density

function had fitted the Kenya 2009 fertility data with the lowest AIC value hence was

the best fitting density function with a shape parameter of 3.771 and a rate parameter of

0.716.

6.3.9 Gamma distribution fitted on Kenya 2003 versus Gamma distribution

fitted on Kenya 2009 fertility rate data.

The summary of the results from Table 4.6 and Table 5.6 were as follows;

Table 6.6: Summary of parameter estimates for Gamma

fit on data sets of Kenya 2003 and Kenya 2009

year shape parameter rate parameter

2003 1.989 0.578

2009 3.771 0.716

From Table 6.6, we observe an increase in both the shape and the rate parameters of the

Gamma distribution.

The shape parameter α increased by 89.6 percent in the year 2009 compared to the year

2003.

The rate parameter 1
β

increased by 23.7 percent in the year 2009 than in the year 2003.

The scale parameter β decreased by 19.1 percent in the year 2009 than in the year 2003.
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From Table 6.6, we observe an increase in both the shape (α) and the rate ( 1
β

) pa-

rameters of the Gamma distribution.

The shape parameter α increased by 89.6 percent in the year 2009 compared to the year

2003.

The rate parameter 1
β

increased by 23.9 percent in the year 2009 compared to the year

2003.

The Figure 6.3 below shows a graph of Gamma distribution fitted to Kenya 2003 and also

to Kenya 2009 fertility data sets on the same scale (see Appendix C.2.3)
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Figure 6.3: Gamma fit on Kenya 2003 and on Kenya 2009 data on the same scale

From Figure 6.3 above, the peakedness of the Gamma distribution fitted to Kenya 2009

data had decreased and its range had also become broader as compared to the Gamma

fitted to the Kenya 2003 one.
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6.4 Conclusions

In our study we set out to model the fertility rate in the presence of interference using five

objectives. We managed to meet all our objectives as were clearly spelt out in Chapter

one in Section 1.5.

we fitted the fertility data sets for Rwanda, Indonesia and Kenya were modeled before

and after interference. The model parameters were estimated by the maximum likelihood

estimation method. Using Akaike’s Information Criteria, (AIC), it was established that

amongst the distributions studied; Gamma, Weibull and Lognormal, Gamma gave the

best fit for the fertility rate data, for all the countries studied, and interference simply

shifts the Gamma distribution parameters (see Tables 6.4, 6.5 and 6.6). Also, in our

analysis results in Tables 6.1, 6.2 and 6.3 fertility rates for all the countries studied had

increased in the presence of interference effect. We concluded that presence of interference

effect in a country increases its fertility rate.

Using the model life table approach we determined the Net Fertility Value, F0 and con-

cluded that F0 is greater than 2 in case of interference effect, which is above replacement

levels fertility of a population.

6.5 Recommendations

Strike of an interference in a country may create a period of baby boom (dramatic increase

in fertility rates). Even though baby bust (rapid decline in fertility rates) normally fol-

lows after baby boom but as long as the baby boom period is there to stay, there should

be adequate planning in the country affected to handle such a scenario. We therefore

recommend that in case of a strike of interference, Governments should plan for it, by

increasing the number of Health facilities to handle the increased need for antenatal and

postnatal care programs. We also recommend that stake holders in a country should be

quick to put its policies that govern population control in check soon after occurrence of

an interference, so as to manage expected population increase due to baby boom.
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6.6 Future work

We had an assumption in the model life table approach that population size and the sizes

of age groups are all constant. In many situations, this assumption may not be correct

causing bias in the results. The static nature of the life table may underestimate the the

growth rate of a population as it fails to include the compensatory effects such as decrease

in mortality and decrease in reproductive age. A study may be carried out which attempts

to overcome the problem, of not including the compensation effects.

In this study we modeled fertility rate in the presence of interference. We considered the

Tsunami, the Genocide and the Post election violence interferences. One could actually

consider one type of interference , for example high magnitude Earthquake and develop

a time series model for prediction purposes especially in a country where a series of high

magnitude earthquakes have been experienced.
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Appendix A

R- MANUSCRIPT FOR MODELING INTERFERENCE FREE DATA

SETS

A.1 Rwanda 1992 fertility data modeling

A.1.1 Plotting of Histogram for Rwanda 1992 fertility data

#Histogram plot

library(ggplot2)

qplot(rwanda1992$children,geom=‘histogram’,binwidth=1,xlab=‘Number

of children’,ylab=‘Frequency’,main=‘Histogram for Rwanda 1992

fertility data’,col=‘black’)

A.1.2 Skewness-Kurtosis plot for Rwanda 1992 fertility data

# skewmess-kurtosis plot

library("fitdistrplus")

descdist(rwanda1992$children, boot = 1000)

A.1.3 Parameter estimates to Rwanda 1992 fertility data

library("fitdistrplus")

rwanda1992=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda1992.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

mean(rwanda1992$children)

var(rwanda1992$children)

m= mean(rwanda1992$children)

m

v=var(rwanda1992$children)

v
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shape = mˆ2/v

shape

rate = m/v

rate

rwanda1992$children=rgamma(n=27602,shape=4.731041,rate=0.8039636)

#parameter estimates for weibull for rwanda 1992 from sample

#rwanda1992=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda1992.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

lx=log(rwanda1992$children)

m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)

scale

#rwanda1992$children=rweibull(n=27602,shape=3.444908,scale=5.652191)

#parameter estimates for lognormal for rwanda 1992 from sample

rwanda1992=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda1992.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

lx=log(rwanda1992$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)

mx

estimate =c(mx, sd0)

estimate
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A.1.4 Fitting Gamma , Weibull and Lognormal distributions to Rwanda 1992

fertility data

rwanda1992$children=rgamma(n=27602,shape=4.731041,rate=0.8039636)

library(‘‘fitdistrplus")

fg <- fitdist(rwanda1992$children, ‘‘gamma")

summary(fg)

fw <- fitdist(rwanda1992$children, ‘‘weibull")

summary(fw)

fln <- fitdist(rwanda1992$children, ‘‘lnorm")

summary(fln)

A.1.5 Quality and goodness of fit to Rwanda 1992 fertility data

#Evaluation of quality of fit for rwanda 1992 data

rwanda1992$children=rgamma(n=27602,shape=4.731041,rate=0.8039636)

library(‘‘fitdistrplus")

#par(mfrow=c(2,1))

plot.legend <- c(‘‘Weibull", ‘‘lognormal", ‘‘gamma")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of children’,

ylab=‘Density’,main=c(‘Histogram and some probability densities’,‘

on Rwanda 1992 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot for some

probability densities’,‘ on Rwanda 1992 fertility data’))

A.2 Indonesia 2002 fertility data modeling

A.2.1 Plotting of Histogram for Indonesia 2002 fertility data

indonesia2002=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2002.txt’

,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

#Histogram plot

library(ggplot2)
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qplot(indonesia2002$children,geom=‘histogram’,binwidth=1,xlab=‘Number of

children’,ylab=‘Frequency’,main=’Histogram for Indonesia 2002 fertility

data’,col=’black’)

A.2.2 Skewness-Kurtosis plot for Indonesia 2002 fertility data

# skewmess-kurtosis plot

library("fitdistrplus")

descdist(indonesia2002$children, boot = 1000)

A.2.3 Parameter estimates to Indonesia 2002 fertility data

#Parameter estimates for gamma,Weibull and Lognormal for Indonesia 2002

#parameter estimates for gamma for indonesia 2002 from sample

indonesia2002=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2002.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

mean(indonesia2002$children)

var(indonesia2002$children)

m= mean(indonesia2002$children)

m

v=var(indonesia2002$children)

v

shape = mˆ2/v

shape

rate = m/v

rate

indonesia2002$children=rgamma(n=7684,shape=1.974798,rate=0.7410074)

#parameter estimates for weibull for indonesia 2002 from sample

#indonesia2002=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2002.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

indonesia2002$children=rgamma(n=7684,shape=1.974798,rate=0.7410074)

lx=log(indonesia2002$children)
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m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)

scale

#parameter estimates for lognormal for indonesia 2002 from sample

#indonesia2002=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2002.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

indonesia2002$children=rgamma(n=7684,shape=1.974798,rate=0.7410074)

lx=log(indonesia2002$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)

mx

estimate =c(mx, sd0)

estimate

A.2.4 Fitting Gamma , Weibull and Lognormal distributions to Indonesia

2002 fertility data

#Fitting Gamma , Weibull and Lognormal distributions to Indonesia 2002 data

indonesia2002$children=rgamma(n=7684,shape=1.974798,rate=0.7410074)

library("fitdistrplus")

fg <- fitdist(indonesia2002$children, "gamma")

summary(fg)

fw <- fitdist(indonesia2002$children, "weibull")

summary(fw)

fln <- fitdist(indonesia2002$children, "lnorm")
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summary(fln)

A.2.5 Quality and goodness of fit to Indonesia 2002 fertility data

#Evaluation of quality of fit for indonesia 2002

indonesia2002$children=rgamma(n=7684,shape=1.974798,rate=0.7410074)

library("fitdistrplus")

#par(mfrow=c(2,1))

plot.legend <- c("Weibull", "lognormal", "gamma")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of

children’,ylab=‘Density’,main=c(‘Histogram and

some probability densities’,‘ on Indonesia 2002 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot

for some probability densities’,‘ on Indonesia 2002 fertility data’))

A.3 Kenya 2003 fertility data modeling

A.3.1 Plotting of Histogram for Kenya 2003 fertility data

kenya2003=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2003.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

#Histogram plot

library(ggplot2)

qplot(kenya2003$children,geom=‘histogram’,binwidth=1,xlab=‘Number of

children’,ylab=‘Frequency’,main=‘Histogram for Kenya 2003 fertility

data’,col=‘black’)

A.3.2 Skewness-Kurtosis plot for Kenya 2003 fertility data

# skewmess-kurtosis plot

library("fitdistrplus")

descdist(kenya2003$children, boot = 1000)
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A.3.3 Parameter estimates to Kenya 2003 fertility data

#Parameter estimates for gamma, Weibull and Lognormal for Kenya 2003 data

#parameter estimates for gamma for kenya 2003 from sample

kenya2003=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2003.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

mean(kenya2003$children)

var(kenya2003$children)

m= mean(kenya2003$children)

m

v=var(kenya2003$children)

v

shape = mˆ2/v

shape

rate = m/v

rate

kenya2003$children=rgamma(n=1430,shape=1.908814,rate=0.5442879)

#parameter estimates for weibull for kenya 2003 from sample

#kenya2003=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2003.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

kenya2003$children=rgamma(n=1430,shape=1.908814,rate=0.5442879)

lx=log(kenya2003$children)

m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)

scale

#parameter estimates for lognormal for kenya 2003 from sample
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#kenya2003=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2003.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

kenya2003$children=rgamma(n=1430,shape=1.908814,rate=0.5442879)

lx=log(kenya2003$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)

mx

estimate =c(mx, sd0)

estimate

A.3.4 Fitting Gamma , Weibull and Lognormal distributions to Kenya 2003

fertility data

#Fitting Gamma , Weibull and Lognormal distributions to Kenya 2003 data

kenya2003$children=rgamma(n=1430,shape=1.908814,rate=0.5442879)

library("fitdistrplus")

fg <- fitdist(kenya2003$children, "gamma")

summary(fg)

fw <- fitdist(kenya2003$children, "weibull")

summary(fw)

fln <- fitdist(kenya2003$children, "lnorm")

summary(fln)

A.3.5 Quality and goodness of fit to Kenya 2003 fertility data

#Evaluation of quality of fit for Kenya 2003

kenya2003$children=rgamma(n=1430,shape=1.908814,rate=0.5442879)

library("fitdistrplus")

plot.legend <- c("Weibull", "lognormal", "gamma")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of children’,

ylab=‘Density’,main=c(‘Histogram and some probability densities’,’
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on Kenya 2003 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot for some

probability densities’,‘ on Kenya 2003 fertility data’))
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Appendix B

R- MANUSCRIPT FOR MODELING DATA CONTAINING

INTERFERENCE

B.1 Rwanda 2000 fertility data modeling

B.1.1 Plotting of Histogram for Rwanda 2000 fertility data

rwanda2000=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2000.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

# Histogram plot

library(ggplot2)

qplot(rwanda2000$children,geom=‘histogram’,binwidth=1,xlab=‘Number of

children’,ylab=’Frequency’,main=’Histogram for Rwanda 2000 fertility

data’,col=‘black’)

B.1.2 Skewness-Kurtosis plot for Rwanda 2000 fertility data

# skewmess-kurtosis plot

library("fitdistrplus")

descdist(rwanda2000$children, boot = 1000)

B.1.3 Parameter estimates to Rwanda 2000 fertility data

#Parameter estimates for gamma, Weibull and Lognormal for Rwanda 2000 data

#Parameter estimates for gamma for rwanda 2000 data

library("fitdistrplus")

rwanda2000=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2000.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

mean(rwanda2000$children)

var(rwanda2000$children)
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m= mean(rwanda2000$children)

m

v=var(rwanda2000$children)

v

shape = mˆ2/v

shape

rate = m/v

rate

rwanda2000$children=rgamma(n=19440,shape=4.946252,rate=0.7813425)

#descdist(rwanda2000$children, boot = 1000)

#parameter estimates for weibull from rwanda 2000 from sample

#rwanda2000=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2000.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

lx=log(rwanda2000$children)

m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)

scale

#rwanda2000$children=rweibull(n=19440,shape=4.946252,rate=0.7813425)

#parameter estimates for lognormal from rwanda 2000 from sample

#rwanda2000=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2000.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

lx=log(rwanda2000$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)
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mx

estimate =c(mx, sd0)

estimate

B.1.4 Fitting Gamma , Weibull and Lognormal distributions to Rwanda 2000

fertility data

#Fitting Gamma , Weibull and Lognormal distributions to Rwanda 2000 data

rwanda2000$children=rgamma(n=19440,shape=4.946252,rate=0.7813425)

library("fitdistrplus")

fg <- fitdist(rwanda2000$children, "gamma")

summary(fg)

fw <- fitdist(rwanda2000$children, "weibull")

summary(fw)

fln <- fitdist(rwanda2000$children, "lnorm")

summary(fln)

B.1.5 Quality and goodness of fit to Rwanda 2000 fertility data

#Evaluation of quality of fit to Rwanda 2000

rwanda2000$children=rgamma(n=19440,shape=4.946252,rate=0.7813425)

library("fitdistrplus")

plot.legend <- c("Weibull", "lognormal", "gamma")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of children’,

ylab=‘Density’,main=c(‘Histogram and some probability densities’,‘

on Rwanda 2000 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot for some

probability densities’,‘ on Rwanda 2000 fertility data’))

B.2 Indonesia 2007 fertility data modeling

B.2.1 Plotting of Histogram for Indonesia 2007 fertility data

indonesia2007=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2007.txt’
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,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

# Histogram plot

library(ggplot2)

qplot(indonesia2007$children,geom=‘histogram’,binwidth=1,xlab=‘Number

of children’,ylab=‘Frequency’,main=‘Histogram for Indonesia 2007

fertility data’,col=‘black’)

B.2.2 Skewness-Kurtosis plot for Indonesia 2007 fertility data

# skewmess-kurtosis plot

library("fitdistrplus")

descdist(indonesia2007$children, boot = 1000)

B.2.3 Parameter estimates to Indonesia 2007 fertility data

#Parameter estimates for gamma, Weibull and Lognormal for Indonesia 2007

#Parameter estimates for gamma for indonesia 2007 data

library("fitdistrplus")

#parameter estimates for indonesia 2007 from sample

indonesia2007=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2007.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

mean(indonesia2007$children)

var(indonesia2007$children)

m= mean(indonesia2007$children)

m

v=var(indonesia2007$children)

v

shape = mˆ2/v

shape

rate = m/v

rate

indonesia2007$children=rgamma(n=84726,shape=3.09893,rate=0.7885535)
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#parameter estimates for weibull for indonesia 2007 from sample

#indonesia2007=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2007.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

indonesia2007$children=rgamma(n=84726,shape=3.09893,rate=0.7885535)

lx=log(indonesia2007$children)

m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)

scale

#parameter estimates for lognormal for indonesia 2007 from sample

#indonesia2007=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2007.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

indonesia2007$children=rgamma(n=84726,shape=3.09893,rate=0.7885535)

lx=log(indonesia2007$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)

mx

estimate =c(mx, sd0)

estimate

B.2.4 Fitting Gamma , Weibull and Lognormal distributions to Indonesia

2007 fertility data

#Fitting Gamma , Weibull and Lognormal distributions to Indonesia 2002

indonesia2007$children=rgamma(n=84726,shape=3.09893,rate=0.7885535)

library("fitdistrplus")
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fg <- fitdist(indonesia2007$children, "gamma")

summary(fg)

fw <- fitdist(indonesia2007$children, "weibull")

summary(fw)

fln <- fitdist(indonesia2007$children, "lnorm")

summary(fln)

B.2.5 Quality and goodness of fit to Indonesia 2007 fertility data

#Evaluation of quality of fit to Indonesia 2007

indonesia2007$children=rgamma(n=84726,shape=3.09893,rate=0.7885535)

library("fitdistrplus")

plot.legend <- c("Weibull", "lognormal", "gamma")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of children’,

ylab=‘Density’,main=c(‘Histogram and some probability densities’,‘ on

Indonesia 2007 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot for some

probability densities’,‘ on Indonesia 2007 fertility data’))

B.3 Kenya 2009 fertility data modeling

B.3.1 Plotting of Histogram for Kenya 2009 fertility data

kenya2009=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2009.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

# Histogram plot

library(ggplot2)

qplot(kenya2009$children,geom=‘histogram’,binwidth=1,xlab=‘Number of

children’,ylab=‘Frequency’,main=‘Histogram for Kenya 2009

fertility data’,col=‘black’)

B.3.2 Skewness-Kurtosis plot for Kenya 2009 fertility data

# skewmess-kurtosis plot
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library("fitdistrplus")

descdist(kenya2009$children, boot = 1000)

B.3.3 Parameter estimates to Kenya 2009 fertility data

#Parameter estimates for gamma, Weibull and Lognormal for Kenya 2009 data

#Parameter estimates for gamma for Kenya 2009 data

library("fitdistrplus")

#parameter estimates for gamma for kenya 2009 from sample

var(kenya2009$children)

m= mean(kenya2009$children)

m

v=var(kenya2009$children)

v

shape = mˆ2/v

shape

rate = m/v

rate

kenya2009$children=rgamma(n=22534,shape=3.845601,rate=0.7286859)

#parameter estimates for weibull for kenya 2009 from sample

#kenya2009=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2009.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

kenya2009$children=rgamma(n=22534,shape=3.845601,rate=0.7286859)

lx=log(kenya2009$children)

m=mean(lx)

m

v=var(lx)

v

shape = m/sqrt(v)

shape

scale = exp(m + v/shape)
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scale

#parameter estimates for lognormal for kenya 2009 from sample

#kenya2009=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2009.txt’

,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

kenya2009$children=rgamma(n=22534,shape=3.845601,rate=0.7286859)

lx=log(kenya2009$children)

sd0 = sqrt((n - 1)/n) * sd(lx)

sd0

mx=mean(lx)

mx

estimate =c(mx, sd0)

estimate

B.3.4 Fitting Gamma , Weibull and Lognormal distributions to Kenya2009

fertility data

#Fitting Gamma , Weibull and Lognormal distributions to Kenya 2009 data

kenya2009$children=rgamma(n=22534,shape=3.845601,rate=0.7286859)

library("fitdistrplus")

fg <- fitdist(kenya2009$children, "gamma")

summary(fg)

fw <- fitdist(kenya2009$children, "weibull")

summary(fw)

fln <- fitdist(kenya2009$children, "lnorm")

summary(fln)

B.3.5 Quality and goodness of fit to Kenya 2009 fertility data

#Evaluation of quality of fit to Kenya 2009

kenya2009$children=rgamma(n=22534,shape=3.845601,rate=0.7286859)

library("fitdistrplus")

denscomp(list(fw,fln,fg),legendtext=plot.legend,xlab=‘Number of children’,
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ylab=‘Density’,main=c(‘Histogram and some probability densities’,‘

on Kenya 2009 fertility data’))

qqcomp(list(fw,fln,fg),legendtext=plot.legend,main=c(‘Q-Q plot for some

probability densities’,‘ on Kenya 2009 fertility data’))
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Appendix C

R- MANUSCRIPT FOR SUMMARY OF RESULTS, CONCLUSIONS AND

RECOMENDATIONS

C.1 Analysis of the Rwanda, Indonesia and Kenya fertility data

C.1.1 Analysis of the 1992, 2000 and 2005 Rwanda fertility data

#analysis of the mean number of children born in Rwanda ,

rwanda1992=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda1992.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(rwanda1992$children)

rwanda2000=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2000.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(rwanda2000$children)

rwanda2005=read.table(‘C:/Users/EVA/Desktop/MY DATA/rwanda2005.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(rwanda2005$children)

C.1.2 Analysis of the 1997, 2002, 2007 and 2012 Indonesia fertility data

#analysis of the mean number of children born in Indonesia

indonesia1997=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia1997.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(indonesia1997$children)

indonesia2002=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2002.

txt’,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(indonesia2002$children)

indonesia2007=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2007.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(indonesia2007$children)
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indonesia2012=read.table(‘C:/Users/EVA/Desktop/MY DATA/indonesia2012.

txt’,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(indonesia2012$children)

C.1.3 Analysis of the 2003, 2009 and 2014 Kenya fertility data

#analysis of the mean number of children born in Kenya ,

kenya2003=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2003.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(kenya2003$children)

kenya2009=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2009.

txt’,header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(kenya2009$children)

kenya2014=read.table(‘C:/Users/EVA/Desktop/MY DATA/kenya2014.txt’,

header=TRUE,strip.white=TRUE,na.strings=‘NA’,sep=‘\t’,dec=‘.’)

summary(kenya2014$children)

C.2 Determination of effect interference on the probability distributions in

presence of interference

C.2.1 Gamma fitted to Rwanda 1992 and Rwanda 2000 fertility data sets on

same scale

rwanda1992=rgamma(n=1000,shape=4.731041,rate=0.8039636)

rwanda2000=rgamma(n=1000,shape=4.946252,rate=0.8113425)

eta=seq(0,30,length=1000)

rwanda1992=seq(0, 30, length=1000)

rwanda2000=seq(0, 30, length=1000)

simmapDefaultGamma1 <- dgamma(rwanda1992, shape=4.731041, rate=0.8039636)

simmapDefaultGamma2 <- dgamma(rwanda2000, shape=4.946252, rate=0.81134)

#Make probability density function for SIMMAP default gamma distribution

plot(c(0,30),range(simmapDefaultGamma1 ,simmapDefaultGamma2 ),xlab=‘

Number of children’,ylab=‘Gamma distribution’,main=‘Gamma functions on
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Rwanda 1992 and 2000 data’,type=‘n’,axes=FALSE)

axis(2)

box()

lines(eta,simmapDefaultGamma1,lwd=2,col=‘red’)

lines(eta,simmapDefaultGamma2,lwd=2,col=‘blue’)

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=’red’)

text(coords$x[2], coords$y[2], pos=3, "shape=4.731 , rate=0.804")

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=’blue’)

text(coords$x[2], coords$y[2], pos=3, "shape=4.946 , rate=0.811")

legend(9,0.1,lwd=1,col=c(‘red’,‘blue’),legend=c(‘Gamma fit to

Rwanda 1992 data’,‘Gamma fit to Rwanda 2000 data’))

C.2.2 Gamma fitted to Indonesia 2002 and Indonesia 2007 fertility data sets

on same scale

indonesia2002=rgamma(n=1000,shape=1.974798,rate=0.7410074)

indonesia2007=rgamma(n=1000,shape=3.09893,rate=0.7885535)

eta=seq(0,30,length=1000)

indonesia2002=seq(0, 30, length=1000)

indonesia2007=seq(0, 30, length=1000)

simmapDefaultGamma1 <- dgamma(indonesia2002, shape=1.974798,

rate=0.7410074)

simmapDefaultGamma2 <- dgamma(indonesia2007, shape=3.09893,rate=0.7885535)

#Make probability density function for SIMMAP default gamma distribution

plot(c(0,30),range(simmapDefaultGamma1 ,simmapDefaultGamma2 ),xlab=‘

Number of children’,ylab=‘Gamma distribution’,main=‘ Gamma function on

Indonesia 2002 and 2007 data’,type=‘n’,axes=FALSE)
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axis(2)

box()

lines(eta,simmapDefaultGamma1,lwd=2,col=’red’)

lines(eta,simmapDefaultGamma2,lwd=2,col=’blue’)

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=’red’)

text(coords$x[2], coords$y[2], pos=3, "shape=1.975 , rate=0.741")

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=’blue’)

text(coords$x[2], coords$y[2], pos=3, "shape=3.099 , rate=o.789")

legend(8,0.1,lwd=1,col=c(‘red’,‘blue’),legend=c(‘Gamma fit to

Indonesia 2002 data’,‘Gamma fit to Indonesia 2007 data’))

C.2.3 Gamma fitted to Kenya 2003 and Kenya 2009 fertility data sets on

same scale

kenya2003=rgamma(n=1000,shape=1.908814,rate=0.5442879)

kenya2009=rgamma(n=1000,shape=3.845601,rate=0.7286859)

eta=seq(0,30,length=1000)

kenya2003=seq(0, 30, length=1000)

kenya2009=seq(0, 30, length=1000)

simmapDefaultGamma1 <- dgamma(kenya2003, shape=1.908814, rate=0.5442879)

simmapDefaultGamma2 <- dgamma(kenya2009, shape=3.845601, rate=0.7286859)

#Make probability density function for SIMMAP default gamma distribution

plot(c(0,30),range(simmapDefaultGamma1 ,simmapDefaultGamma2 ),xlab=‘

Number of children’,ylab=‘Gamma distribution’,main=‘Gamma functions on

Kenya 2003 and 2009 data’,type=‘n’,axes=FALSE)

axis(2)

box()
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lines(eta,simmapDefaultGamma1,lwd=2,col=‘red’)

lines(eta,simmapDefaultGamma2,lwd=2,col=‘blue’)

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=‘red’)

text(coords$x[2], coords$y[2], pos=3, "shape=1.909 , rate=0.544")

coords = locator(2)

arrows(coords$x[1], coords$y[1], coords$x[2], coords$y[2], code=1,

length=0.125,col=‘blue’)

text(coords$x[2], coords$y[2], pos=3, "shape=3.846 , rate=0.729")

legend(9,0.1,lwd=1,col=c(‘red’,‘blue’),legend=c(‘Gamma fit to Kenya

2003 data’,‘Gamma fit to Kenya 2009 data’))
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